探索性因子分析(课堂PPT)
- 格式:ppt
- 大小:450.50 KB
- 文档页数:25
探索性因子分析(总7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--什么是探索性因子分析法探索性因子分析法(Exploratory Factor Analysis,EFA)是一项用来找出多元观测变量的本质结构、并进行处理降维的技术。
因而,EFA能够将具有错综复杂关系的变量综合为少数几个核心因子。
探索性因子分析法的起源因子分析法是两种分析形式的统一体,即验证性分析和纯粹的探索性分析。
英国的心理学家Charles Spearman在1904年的时候,提出单一化的智能因子(A Single Intellectual Factor)。
随着试验的深入,大量个体样本被分析研究,Spearman的单一智能因子理论被证明是不充分的。
同时,人们认识到有必要考虑多元因子。
20世纪30年代,瑞典心理学家Thurstone打破了流行的单因理论假设,大胆提出了多元因子分析(Multiple Factor Analysis)理论。
Thurstone在他的《心智向量》(Vectors of Mind, 1935)一书中,阐述了多元因子分析理论的数学和逻辑基础。
[编辑]探索性因子分析和验证性因子分析的异同[1]探索性因子分析和验证性因子分析相同之处两种因子分析都是以普通因子分析模型作为理论基础,其主要目的都是浓缩数据,通过对诸多变量的相关性研究,可以用假想的少数几个变量(因子、潜变量)来表示原来变量(观测变量)的主要信息。
图1所示即为最简单、也最为常见的因子模型,每个观测变量(指标)只在一个因子(潜变量)上负荷不为零,x1、x2、x3是潜变量ξ1的指标,x4、x5是潜变量ξ2的指标。
将图1所示的因子模型推广至一般意义上的因子模型后,各观测变量x_i与m个公共因子ξ1,ξ2,...,ξm之间的关系可以用数学模型表示如下:x1= λ11ξ1+ λ12ξ2+ ... + λ1mξm+ δ1......x k= λk1ξ1+ λk2ξ2+ ... + λkmξm+ δk其中:x i为各观测变量;ξi是公共因子;δi是x i,的特殊因子,有时也称误差项,包括x i的唯一性因子和误差因子两部分;λij是公共因子的负载;m是公共因子ξ1,ξ2,...,ξm的个数,k是各观测变量x1,...,x k的个数,m<k。
因子分析(探索性)结果输出结果1:KMO检验和Bartlett的检验KMO检验和Bartlett的检验KMO值0.888Bartlett球形度检验近似卡方2005.769 df 253.000p 0.000***注:***、**、*分别代表1%、5%、10%的显著性水平图表说明:上表展示了KMO检验和Bartlett球形检验的结果,用来分析是否可以进行因子分析。
● 若通过KMO检验(KMO>0.6),说明了题项变量之间是存在相关性的,符合因子分析要求;● 若通过Bartlett检验:P<0.01或P<0.05, 呈显著性,则可以进行因子分析。
智能分析KMO检验的结果显示,KMO的值为0.888,同时,Bartlett球形检验的结果显示,显著性P值为0.000***,水平上呈现显著性,拒绝原假设,各变量间具有相关性,因子分析有效,程度为适合。
输出结果2:方差解释表格总方差解释成分特征根旋转后方差解释率特征根方差百分比累积特征根方差百分比累积1 10.063 43.752% 43.752% 4.921 21.395% 21.395%2 2.185 9.502% 53.254% 3.808 16.556% 37.951%3 1.552 6.749% 60.003% 2.803 12.186% 50.138%4 1.274 5.538% 65.541% 2.678 11.645% 61.783%5 1.008 4.384% 69.925% 1.873 8.142% 69.925%6 0.832 3.616% 73.541%7 0.766 3.331% 76.872%8 0.663 2.882% 79.754%9 0.569 2.474% 82.228%10 0.542 2.358% 84.587%11 0.479 2.083% 86.67%12 0.430 1.871% 88.541%13 0.403 1.754% 90.295%14 0.385 1.675% 91.97%15 0.292 1.27% 93.24%16 0.265 1.154% 94.394%17 0.264 1.149% 95.543%18 0.229 0.994% 96.537%19 0.208 0.906% 97.443%20 0.178 0.773% 98.216%21 0.157 0.683% 98.9%22 0.149 0.649% 99.549%23 0.104 0.451% 100.0%图表说明:图表说明:● 碎石图是根据各主成分对数据变异的解释程度绘制的图。