第3章 煤炭热解
- 格式:ppt
- 大小:4.28 MB
- 文档页数:89
煤炭资源的煤炭热解与煤制气技术煤炭作为一种重要的能源资源,在现代工业发展中起到关键作用。
然而,传统的煤炭利用方式存在一些问题,如煤炭的高效利用以及对环境的污染等。
为了解决这些问题,煤炭热解与煤制气技术应运而生。
本文将重点介绍煤炭热解与煤制气技术的原理、应用及前景。
一、煤炭热解技术煤炭热解是指在高温(500-1000摄氏度)和缺氧(或无氧)条件下,将煤炭分解为气体、液体和固体产物的过程。
这种热解过程可以利用石油炼制过程的废气,或者通过专门设计的煤气化设备进行。
1. 煤炭热解的原理煤炭热解的原理是将煤炭中的有机成分分解为可燃气体、焦炭和液体产物。
在热解过程中,煤炭中的挥发分子和焦油分子被释放出来,而不可燃的矿物质则留在焦炭中。
这种反应可以通过控制热解温度和施加适当的压力来调节产物的比例。
2. 煤炭热解的应用煤炭热解技术具有广泛的应用前景。
首先,它可以将煤炭中的有机物质转化为可燃气体,用于供热和发电。
其次,通过热解后产生的焦炭可用于冶金和化工行业。
此外,煤炭热解还可以产生液体燃料,如煤油和煤焦油,用于交通运输和化工领域。
3. 煤炭热解技术的前景煤炭热解技术在能源转型和环境保护方面具有重要意义。
它可以提高煤炭利用效率,减少温室气体排放,并降低对环境的污染。
此外,煤炭热解技术还可以减轻对传统石油资源的依赖,并为煤炭行业带来新的发展机遇。
二、煤制气技术煤制气技术是指通过气化反应将煤炭转化为合成气的过程。
合成气主要由一氧化碳和氢气组成,可以作为燃料或原料用于化学工业的合成反应。
1. 煤制气的原理煤制气是通过将煤炭与氧气或蒸汽进行气化反应,生成一氧化碳和氢气。
气化过程需要高温和压力条件下进行,煤炭中的有机物质被转化为可燃气体。
反应过程可以分为两个阶段,首先是煤的干馏反应,生成挥发分子;然后是气化反应,将挥发分子转化为一氧化碳和水蒸气。
2. 煤制气的应用煤制气技术在化工和能源领域有广泛的应用。
合成气可以作为燃料供应给燃气锅炉、燃气轮机和内燃机等设备,用于供热和发电。
煤热解反应过程及影响因素摘要:介绍了煤热解的反应过程,并针对反应过程分析和总结了煤化程度、键断裂的速度和二次反应的程度、键断裂生成的自由基的稳定速度、催化作用对煤热解的影响。
关键词:煤热解;反应过程;影响因素1 煤热解简介煤的热解是指煤在惰性气氛下持续加热至较高温度时发生的一系列物理、化学变化的过程。
煤的热解过程可以形成煤气、焦油和半焦(或焦炭)三类产品,这三种形态的产物各具利用价值。
2 煤炭热解反应过程煤热解的一般过程为:煤受热后,煤结构中弱键断裂,生成气体、水和自由基,随着热解的进行,煤热解自由基会与氢自由基结合,形成稳定的挥发分;当温度继续升高时,部分挥发分蒸发,部分挥发分熔融,形成胶质体;紧接着胶质体受热分解成初级挥发产物——一次挥发物,一次挥发物在从颗粒内部传递到颗粒表面,再从颗粒表面传递到反应器外时,会发生二次缩聚和裂解反应,生成二次挥发物,同时伴随着半焦的生成。
进一步提高温度,半焦会继续缩聚,生成高强度的焦炭,同时伴随着少量热解气的产生。
上述描述的是炼焦煤的热解历程,低煤化程度的煤如褐煤,其热解历程也大致相似,但是褐煤热解过程中仅分解产生焦油、气体和粉状焦,不会形成胶质体。
3 影响煤炭热解的因素3.1 煤化程度煤化程度是煤热解过程最主要的影响因素之一。
煤化程度对煤热解产物分布的影响是因为不同煤种所具有的物理结构特征、化学结构特征、元素组成和含量不同,在热解过程中表现出的热塑性行为不同,以及这种热塑性对二次反应的影响也不同。
随煤化程度的增加,煤炭开始热解的温度逐渐升高。
3.2 键断裂的速度和二次反应的程度键断裂的速度和挥发分二次反应的程度主要与传热和传质有关。
在原料不变的情况下,影响传热、传质和二次反應的因素主要由煤热解工艺条件决定,包括:热解终温、加热速率、煤炭粒径、热解压力、停留时间等。
①热解温度不同,热解产物—焦油、半焦、煤气和水的比例不同,且差别较大,这是因为热是影响煤热解的首要因素。
煤热解反应过程及影响因素煤热解是指在缺氧或低氧条件下,煤在高温下发生化学反应,产生气体、液体和固体产物的过程。
煤热解反应过程是复杂的化学反应链,受到多种因素的影响。
本文将从煤热解反应机理、影响因素以及煤热解技术应用等方面进行探讨。
一、煤热解反应机理在缺氧或低氧条件下,煤热解反应主要包括干馏和热分解两种反应机理。
干馏是指在高温条件下煤内部分解,主要产物为气体和液体烃类化合物;热分解是指煤中的大分子化合物在高温条件下裂解成小分子化合物,主要产物为固体焦炭。
煤热解反应的总体过程可以用以下化学反应来表示:C + O2 → CO2 + HeatC + 1/2O2 → CO + HeatC + H2O → CO + H2以上反应所示,煤与氧气或水蒸气反应生成一氧化碳、二氧化碳和氢气等气体产物,并伴随着释放热能。
二、影响因素煤热解反应受到多种因素的影响,主要包括煤的性质、热解条件、反应动力学以及反应温度等。
1. 煤的性质煤的性质主要包括煤种、挥发分含量、灰分含量和固定碳含量等。
不同种类的煤在热解过程中产物组成和产率都会有所不同。
一般来说,热解性能较好的炼焦煤和无烟煤在热解过程中产生的焦炭较多,而液体和气体产物较少;而热解性能差的褐煤和煤泥在热解过程中产生的气体和液体产物较多,而产生的焦炭较少。
2. 热解条件热解条件包括反应温度、反应时间和反应压力等。
在高温条件下,煤热解产物中焦炭的产率会增加,而气体和液体产物的产率会减少;反之,在低温条件下,气体和液体产物的产率会增加,焦炭的产率会减少。
反应时间和反应压力也会对煤热解反应产物的组成和产率产生影响。
3. 反应动力学煤热解反应是一个复杂的动力学过程,受到反应速率和反应平衡的影响。
反应速率决定了反应的快慢,而反应平衡则决定了反应的终态。
通过研究煤热解反应的动力学参数,可以更好地控制煤热解反应过程,提高产物的质量和产率。
4. 反应温度反应温度是影响煤热解反应最重要的因素之一。
煤的热解—干馏所谓煤的热解,是指在隔绝空气的条件下,煤在不同温度下发生的一系列物理、化学变化的复杂过程。
其结果是生成气体(煤气)、液体(焦油)、固体(半焦或焦炭)等产品。
煤的热解也称为煤的干馏或热分解。
按热解最终温度不同可分为:高温干馏900-1050℃,中温干馏700--800℃,低温干馏500-600℃。
煤的干馏是热化学加工的基础。
3.1.热解过程:从上可见,煤的焦化过程大致可分为三个阶段。
第一阶段(室温~300℃),从室温到300℃为干燥、脱吸阶段,煤在这一阶段外形没有什么变化,120℃前是脱水干燥,120-200℃是放出吸附在毛细孔中的气体,如CH4、CO2、N2等,是脱气过程。
第二阶段(300~550或600℃),这一阶段以解聚和分解反应为主,煤形成胶质体并固化黏结成半焦。
煤在300℃左右开始软化,强烈分解,析出煤气和焦油,煤在450℃前后焦油量最大,在450~600℃气体析出量最多。
煤气成分除热解水,一氧化碳和二氧化碳外,主要是CH4及不饱和气态烃。
这一阶段由于产生了气,液,固三相共存的胶质体(特别是中等变质程度的烟煤),产生了熔融,流动和膨胀到再固化的过程。
第三阶段(600~1000℃),以缩聚反应为主,这是半焦变成焦炭的阶段,以缩聚反应为主。
焦油量极少,在550-750℃,半焦分解析出大量气体,主要是氢气,少量CH4,成为二次解析。
700℃时氢气量最大。
此阶段基本不产生焦油。
750--1000℃半焦进一步分解,继续析出少量气体(主要是氢气),同时残留物进一步缩聚,半焦变成焦炭。
除了烟煤,煤化程度低的褐煤、泥煤,与烟煤干馏过程一样,但不存在胶体形成阶段,仅发生激烈分解,析出大量气体和焦油,无粘性,形成的半焦为粉状,加热到高温时形成焦粉。
另外,高变质无烟煤的热解过程比较简单,是一个连续的析出少量气体的过程,既不能生成胶质体也不生成焦油。
因此,无烟煤不适宜用干馏方法进行加工。
煤炭热解技术概述文章来源:中化新网更新时间:2010-08-06煤的热解也称为煤的干馏或热分解,是指煤在隔绝空气的条件下进行加热,煤在不同的温度下发生一系列的物理变化和化学反应的复杂过程。
煤热解的结果是生成气体(煤气)、液体(焦油)、固体(半焦或焦炭)等产品,尤其是低阶煤热解能得到高产率的焦油和煤气。
焦油经加氢可制取汽油、柴油和喷气燃料,是石油的代用品,而且是石油所不能完全替代的化工原料。
煤气是使用方便的燃料,可成为天然气的代用品,另外还可用于化工合成。
半焦既是优质的无烟燃料,也是优质的铁合金用焦、气化原料、吸附材料。
用热解的方法生产洁净或改质的燃料,既可减少燃煤造成的环境污染,又能充分利用煤中所含的较高经济价值的化合物,具有保护环境、节能和合理利用煤资源的广泛意义。
总之,热解能提供市场所需的多种煤基产品,是洁净、高效地综合利用低阶煤资源提高煤炭产品的附加值的有效途径。
各国都开发了具有各自特色的煤炭热解工艺技术。
热解工艺分类:煤热解工艺按照不同的工艺特征有多种分类方法。
按气氛分为惰性气氛热解(不加催化剂),加氢热解和催化加氢热解。
按热解温度分为低温热解即温和热解(500 ~650 ℃)、中温热解(650 ~800 ℃)、高温热解(900 ~1000 ℃)和超高温热解(>1200 ℃)。
按加热速度分为慢速(3 ~5 ℃/min)、中速(5 ~100 ℃/s)、快速(500 ~105℃/s)热解和闪裂解(>106℃/s)。
按加热方式分为外热式、内热式和内外并热式热解。
根据热载体的类型分为固体热载体、气体热载体和固-气热载体热解。
根据煤料在反应器内的密集程度分为密相床和稀相床两类。
依固体物料的运行状态分为固定床、流化床、气流床,滚动床。
依反应器内压强分为常压和加压两类。
煤热解工艺的选择取决于对产品的要求,并综合考虑煤质特点、设备制造、工艺控制技术水平以及最终的经济效益。
慢速热解如煤的炼焦过程,其热解目的是获得最大产率的固体产品-焦炭;而中速、快速和闪速热解包括加氢热解的主要目的是获得最大产率的挥发产品-焦油或煤气等化工原料,从而达到通过煤的热解将煤定向转化的目的。