煤的热解技术
- 格式:ppt
- 大小:8.04 MB
- 文档页数:26
煤热解反应过程及影响因素煤热解是指煤在高温下分解产生气体、液体和固体产物的过程,是煤转化过程中的重要环节。
煤热解反应对煤的气化、燃烧、液化等过程具有重要影响,因此研究煤热解反应过程及其影响因素是提高煤利用效率、推动清洁煤技术发展的重要课题。
一、煤热解反应过程煤热解反应是在热解区域内,由于外加热量作用,煤在缺氧或氧气气氛中,发生向高分子的物质向低分子物质转化的过程。
煤热解的反应可以分为三个阶段:初期干馏阶段、固体炭化阶段及残渣转化阶段。
1. 初期干馏阶段在热解过程中,当煤颗粒受热后,煤内部产生热量,煤内部温度升高,煤发生干馏反应。
初期干馏引起煤中原油烃、焦油和气体的析出。
2. 固体炭化阶段这是煤热解反应的最主要的阶段。
在这一阶段中,煤分子内部链断裂,若有水或气体参与,则会促使稀释产物的升华;若无水或气体参与,则可加速固体炭化反应的进行。
3. 残渣转化阶段残渣转化是指在高温下,残留的热解产物在气氛中进一步转化的过程。
这一阶段的反应比较缓慢,但是碳氢物质的氧化速度却比较快,残渣转化的反应主要有氧化和氧化-重组两个主要反应。
二、影响煤热解反应的因素1. 温度温度是影响煤热解反应速率和产物分布的重要因素。
一般来说,提高热解反应温度可以加快热解反应速率,促进气化产物的生成。
过高的温度也会导致产物的稀释和气化速率下降。
2. 压力压力是影响煤热解反应的重要因素之一,它与温度一起,决定了煤热解反应的进行速率。
加大煤热解反应压力,可以增加反应物料的浓度,提高反应速率,加大产物收率。
3. 反应介质煤热解反应的介质对煤热解反应产物的种类和分布有着重要影响。
不同的反应介质,会导致不同的热解反应途径和产物分布。
4. 煤种和煤质5. 煤颗粒粒度和煤颗粒的形态煤颗粒的粒度和形态对煤热解反应的速率和产物分布有重要影响,小颗粒煤能够更好地获得均匀的热解温度,从而有利于提高产物的收率。
6. 加热速率和时间加热速率和时间也是影响煤热解反应的重要因素,适当的加热速率和时间可以提高反应速率和产物收率。
煤热解原理煤热解是指煤在高温下分解为煤焦油、煤气和焦炭的过程。
这一过程是通过将煤加热到高温,使其内部的化学键断裂,从而释放出各种化合物。
煤热解是研究煤的结构和性质的重要手段,也是煤化学工业中重要的生产过程之一。
煤热解的原理是基于煤的组成和结构特点。
煤是一种含碳化合物,其主要成分是碳、氢、氧和少量的硫、氮等元素。
煤中的碳是其主要组成元素,占据了煤的大部分质量。
当煤加热到高温时,其内部的化学键会发生断裂,从而产生各种气体和液体产物。
煤热解的过程可以分为两个主要阶段:干馏和蒸馏。
在干馏阶段,煤中的挥发分开始被释放出来,形成煤气和煤焦油。
煤气主要由一氧化碳、二氧化碳、甲烷等组成,而煤焦油则是一种具有复杂化学结构的液体。
在蒸馏阶段,煤焦油继续分解,产生更多的煤气和焦炭。
焦炭是煤热解的固体产物,其主要成分是碳。
煤热解的温度和反应时间对产物的分布和性质有重要影响。
通常情况下,较低的温度和短的反应时间会产生较多的煤焦油,而较高的温度和较长的反应时间则会产生较多的煤气和焦炭。
此外,煤热解的反应速率也会随着温度的升高而增加。
煤热解的产物具有广泛的应用价值。
煤焦油可以用作涂料、沥青、染料、塑料等的原料,也可以通过进一步处理得到高附加值的化学品。
煤气可以作为燃料用于发电、供热等,也可以用于合成天然气、液化石油气等。
焦炭是冶金工业中重要的还原剂和燃料,也可以用于制造电极、碳素材料等。
煤热解技术的发展与应用对于煤炭资源的高效利用和能源结构的优化具有重要意义。
通过研究煤热解的机理和控制方法,可以提高煤热解的效率和产物的质量,减少对环境的影响。
同时,煤热解也为煤炭资源的综合利用提供了新的途径和思路。
煤热解是一种重要的煤化学过程,通过加热煤使其分解产生煤焦油、煤气和焦炭。
煤热解的原理基于煤的组成和结构特点,通过断裂化学键释放出各种化合物。
煤热解的产物具有广泛的应用价值,对于煤炭资源的高效利用和能源结构的优化具有重要意义。
煤热解技术的发展与应用是当前煤化工领域的研究热点,也是实现绿色低碳发展的重要途径之一。
【关键字】精品第五章煤的工艺性质煤的工艺性质是指煤在一定的加工工艺条件下或某些转化过程中呈现的特性。
如煤的黏结性、结焦性。
第一节煤的热解一、热解过程1.煤的热解定义将煤在惰性气氛中(隔绝空气的条件下)持续加热至较高温度时发生的一系列物理变化和化学反应生成气体(煤气)、液体(煤焦油)和固体(半焦或焦炭)的复杂过程称为煤的热解(pyrolysis)、或煤的干馏、煤的炭化(carbonization)。
2.煤的热解分类按热解终温分三类:低温干馏(500~)中温干馏(700~)高温干馏(950~)3.煤的热解过程大致可分为三个阶段:(1)第一阶段:室温~活泼分解温度Td(300~350℃)即煤的干燥脱吸阶段。
煤的外形基本上没有变化。
在以前脱去煤中的游离水;120~脱去煤所吸附的气体如CO、CO2和CH4等;在以后,年轻的煤如褐煤发生部分脱羧基反应,有热解水生成,并开始分解放出气态产物如CO、CO2.H2S等;近时开始热分解反应,有微量焦油产生。
烟煤和无烟煤在这一阶段没有显著变化。
(2)第二阶段:活泼分解温度Td~600℃这一阶段的特征是活泼分解。
以分解和解聚反应为主,生成和排出大量挥发物(煤气和焦油)。
气体主要是CH4及其同系物,还有,为热解一次气体。
焦油在时析出的量最大,气体在450~时析出的量最大。
烟煤在这一阶段从软化开始,经熔融、流动和膨胀再到固化,出现了一系列特殊现象,在一定温度范围内产生了气、液、固三相共存的胶质体。
(3)第三阶段(600~1000℃)又称二次脱气阶段。
以缩聚反应为主,半焦分解生成焦炭,析出的焦油量极少。
一般在时缩聚反应最为明显和激烈,产生的气体主要是H2,仅有少量的CH4,为热解二次气体。
随着热解温度的进一步升高,约在750~,半焦进一步分解,继续放出少量气体(主要是H2)。
同时分解残留物进一步缩聚,芳香碳网不断增大,排列规则化,密度增加,使半焦变成具有一定强度或块度的焦炭。
煤热解主要装置和技术(一)鲁奇鲁尔煤气公司法(LurgiRuhrgas)1.工艺简介该法是由LurgiGmbH公司(联邦德国)和RuhrgasAG公司(美国)开发研究的,其工艺流程见图1-1。
粒度小于5mm的煤粉与焦炭热载体混合之后,在重力移动床直立反应器中进行干馏。
产生的煤气和焦油蒸气引至气体净化和焦油回收系统,循环的焦炭部分离开直立炉用风动输送机提升加热,与废气分离后作为热载体再返回到直立炉。
在常压下进行热解得到热值为26~32MJ/m3的煤气,半焦以及煤基原油,后者是焦油产品经过加氢制得。
2.开发应用状况此工艺过程在日处理能力12t煤的装置上已经掌握,并建立了日处理250t煤的试验装置以及日处理800t煤的工业装置。
(二)大连理工大学固体热载体干馏新技术1.工艺简介大连理工大学郭树才等人开发的固体热载体干馏新技术主要实验装置有混合器、反应槽、流化燃烧提升管、集合槽和焦油冷凝回收系统等。
原料煤粉碎干燥后加入原料槽。
干馏产生的半焦为热载体,存于集合槽,煤和半焦按一定的焦煤比分别经给料器进入混合器。
由于混合迅速而均匀,物料粒度小,高温的半焦将热量传给原料粒子,加热速度很快,煤即发生快速热分解。
由于煤粒热解产生的挥发物引出很快,二次热解作用较轻,故新法干馏煤焦油产率较高。
经混合器混匀的物料进入反应槽,在此完成干馏过程,析出干馏气态产物,即挥发产物。
反应槽固态产物半焦经给料器进入燃烧器。
半焦或加入的燃料与预热的空气进行燃烧,使半焦达到热载体规定的温度,在提升管中被提升到一级旋风分离器,半焦与烟气分离。
热半焦自一级旋风分离器人集合槽,作为热载体循环。
多余的半焦经排料槽作为干馏产物外送。
烟气在二级旋风分离器除尘后外排。
干馏气态产物自反应槽导出后,经过除尘器、空冷器和水冷器析出焦油和水。
煤气经干燥脱去水分,在-30℃左右条件下进行冷冻,回收煤气中的汽油。
净煤气经抽气机及计量后送出。
2.开发应用状况已完成多种油页岩、南宁褐煤、平庄褐煤和神府煤的10kg/h的试验室实验,在内蒙古平庄煤矿进行了能力为150t/d的褐煤固体热载体热解的工业性实验并建成5.5万t/a的工业示范厂。
煤炭热解技术概述作者:文章来源:中化新网点击数:96 更新时间:2010-08-06煤的热解也称为煤的干馏或热分解,是指煤在隔绝空气的条件下进行加热,煤在不同的温度下发生一系列的物理变化和化学反应的复杂过程。
煤热解的结果是生成气体(煤气)、液体(焦油)、固体(半焦或焦炭)等产品,尤其是低阶煤热解能得到高产率的焦油和煤气。
焦油经加氢可制取汽油、柴油和喷气燃料,是石油的代用品,而且是石油所不能完全替代的化工原料。
煤气是使用方便的燃料,可成为天然气的代用品,另外还可用于化工合成。
半焦既是优质的无烟燃料,也是优质的铁合金用焦、气化原料、吸附材料。
用热解的方法生产洁净或改质的燃料,既可减少燃煤造成的环境污染,又能充分利用煤中所含的较高经济价值的化合物,具有保护环境、节能和合理利用煤资源的广泛意义。
总之,热解能提供市场所需的多种煤基产品,是洁净、高效地综合利用低阶煤资源提高煤炭产品的附加值的有效途径。
各国都开发了具有各自特色的煤炭热解工艺技术。
热解工艺分类:煤热解工艺按照不同的工艺特征有多种分类方法。
按气氛分为惰性气氛热解(不加催化剂),加氢热解和催化加氢热解。
按热解温度分为低温热解即温和热解(500 ~650 ℃)、中温热解(650 ~800 ℃)、高温热解(900 ~1000 ℃)和超高温热解(>1200 ℃)。
按加热速度分为慢速(3 ~5 ℃/min)、中速(5 ~100 ℃/s)、快速(500 ~105℃/s)热解和闪裂解(>106℃/s)。
按加热方式分为外热式、内热式和内外并热式热解。
根据热载体的类型分为固体热载体、气体热载体和固-气热载体热解。
根据煤料在反应器内的密集程度分为密相床和稀相床两类。
依固体物料的运行状态分为固定床、流化床、气流床,滚动床。
依反应器内压强分为常压和加压两类。
煤热解工艺的选择取决于对产品的要求,并综合考虑煤质特点、设备制造、工艺控制技术水平以及最终的经济效益。
慢速热解如煤的炼焦过程,其热解目的是获得最大产率的固体产品-焦炭;而中速、快速和闪速热解包括加氢热解的主要目的是获得最大产率的挥发产品-焦油或煤气等化工原料,从而达到通过煤的热解将煤定向转化的目的。
煤热解原理(一)煤热解什么是煤热解煤热解是一种将煤转化为有用化学品和能源的过程。
它是一种煤化学处理技术,通过在高温和缺氧条件下对煤进行加热分解,将煤中的有机物转化为气体、液体和固体产品。
煤热解原理煤热解的原理是在充分加热的情况下,煤中的有机质分解产生气体、液体和固体副产品。
这个过程可以通过以下几个步骤来解释:1.脱挥发分:在煤热解过程中,首先煤中的挥发分会被蒸发出来,形成煤气。
这个过程被称为脱挥发分。
2.减挥发分:继续升温将煤中的有机质分解为液体和固体产物,同时释放出大量的气体。
这个过程被称为煤减挥发分。
3.炭化反应:在高温下,煤中的碳会逐渐形成炭化物。
这个过程类似于煤变为焦炭的过程。
煤热解产品煤热解可以产生多种产品,包括以下几类:1.煤气:煤热解过程中,脱挥发分释放出的气体可以被收集,经过净化后可用于发电、供热等用途。
2.煤焦油:煤热解过程中,减挥发分产生的液体产品。
煤焦油可以用于制备化工原料、润滑油等。
3.煤焦炭:煤热解过程中,炭化反应产生的固体产物。
煤焦炭常用于炼钢、制造电极等领域。
煤热解技术应用煤热解技术在能源和化工领域有广泛的应用,包括以下几个方面:1.煤热解发电:通过煤热解产生的煤气,可以用于发电,减少对传统燃煤发电的依赖,降低对环境的影响。
2.煤热解化学品制备:通过煤热解产生的煤焦油,可以制备出各种化工原料,例如苯、甲醇等,为化工行业提供了新的原料来源。
3.煤热解炼钢:煤焦炭作为高质量的炭素材料,被广泛应用于炼钢过程中,提高了炼钢的效率和产品质量。
煤热解的优势和挑战煤热解作为一种煤化学处理技术,具有以下优势和挑战:优势:•能源多样化:煤热解可以将煤转化为多种形式的能源,减少对石油等传统能源的依赖。
•化工原料多样性:煤热解可以产生多种化工原料,为化工行业提供了更多的选择。
•低碳排放:煤热解过程中可以控制废气中的排放物,降低了温室气体的排放。
挑战:•高温高压条件:煤热解需要在高温高压的环境下进行,对设备和工艺条件要求较高。
煤热解反应过程及影响因素煤热解反应是指煤在高温下失去结晶水和挥发分解的过程,是煤的直接转化过程之一。
煤热解反应途径可分为两种:一种是热解分解反应,一种是热解气化反应。
煤热解反应主要受煤的性质和反应条件的影响,因此影响因素非常多。
下面将详细介绍煤热解反应过程及影响因素。
一、煤热解反应过程1. 煤热解分解反应从化学反应上看,热解过程主要包括挥发分解和固相炭化两个反应过程。
煤在高温下会分解产生气体和炭质残渣。
在这个过程中,煤的结构和化学成分将发生变化。
挥发分解是指煤在高温下失去挥发分子,如水、一氧化碳、二氧化碳、甲烷、乙烷、苯等。
挥发分解是热解反应的一个重要组成部分,也是煤热解反应的初级过程。
固相炭化是指挥发分解后的残渣进一步失去挥发分子,形成固体碳。
在煤热解分解反应中,固相炭化是一个重要的过程,直接影响到煤的炭化程度和炭产率。
煤热解气化反应是指煤在高温下分解产生可燃气体的反应。
煤热解气化反应可以分为两种类型:一种是干燥气化,一种是干馏气化。
干燥气化是指煤中的水分在高温下挥发出去,煤的有机物质则发生气化反应,生成一氧化碳、氢气、甲烷等可燃气体。
这两种类型的气化反应共同构成了煤热解气化反应,是煤直接气化的重要途径。
二、影响煤热解反应的因素1. 煤的性质煤的性质对煤热解反应有着重要的影响。
煤的挥发分是煤热解反应最主要的产物,所以煤的挥发分含量对煤热解反应有着重要的影响。
通常来说,挥发分含量较高的煤热解反应活性较大,气化性能较好。
煤的结构和成分也会影响煤热解反应。
不同类型的煤(例如烟煤、褐煤、石煤等)在热解过程中产物组成和气化特性都有所不同。
2. 反应条件反应温度、反应时间和反应气氛是影响煤热解反应的重要因素。
一般来说,较高的反应温度有利于提高煤的活化程度和产气率,但过高的温度则会导致气化产物的结构复杂化,使气化产物分布不均匀。
反应时间对煤热解反应也有着影响。
过短的反应时间会使煤热解不完全,气化产物的产率不高;而过长的反应时间则会导致过煤化,产气速率下降。
煤炭资源的煤炭热解与煤制气技术煤炭作为一种重要的能源资源,在现代工业发展中起到关键作用。
然而,传统的煤炭利用方式存在一些问题,如煤炭的高效利用以及对环境的污染等。
为了解决这些问题,煤炭热解与煤制气技术应运而生。
本文将重点介绍煤炭热解与煤制气技术的原理、应用及前景。
一、煤炭热解技术煤炭热解是指在高温(500-1000摄氏度)和缺氧(或无氧)条件下,将煤炭分解为气体、液体和固体产物的过程。
这种热解过程可以利用石油炼制过程的废气,或者通过专门设计的煤气化设备进行。
1. 煤炭热解的原理煤炭热解的原理是将煤炭中的有机成分分解为可燃气体、焦炭和液体产物。
在热解过程中,煤炭中的挥发分子和焦油分子被释放出来,而不可燃的矿物质则留在焦炭中。
这种反应可以通过控制热解温度和施加适当的压力来调节产物的比例。
2. 煤炭热解的应用煤炭热解技术具有广泛的应用前景。
首先,它可以将煤炭中的有机物质转化为可燃气体,用于供热和发电。
其次,通过热解后产生的焦炭可用于冶金和化工行业。
此外,煤炭热解还可以产生液体燃料,如煤油和煤焦油,用于交通运输和化工领域。
3. 煤炭热解技术的前景煤炭热解技术在能源转型和环境保护方面具有重要意义。
它可以提高煤炭利用效率,减少温室气体排放,并降低对环境的污染。
此外,煤炭热解技术还可以减轻对传统石油资源的依赖,并为煤炭行业带来新的发展机遇。
二、煤制气技术煤制气技术是指通过气化反应将煤炭转化为合成气的过程。
合成气主要由一氧化碳和氢气组成,可以作为燃料或原料用于化学工业的合成反应。
1. 煤制气的原理煤制气是通过将煤炭与氧气或蒸汽进行气化反应,生成一氧化碳和氢气。
气化过程需要高温和压力条件下进行,煤炭中的有机物质被转化为可燃气体。
反应过程可以分为两个阶段,首先是煤的干馏反应,生成挥发分子;然后是气化反应,将挥发分子转化为一氧化碳和水蒸气。
2. 煤制气的应用煤制气技术在化工和能源领域有广泛的应用。
合成气可以作为燃料供应给燃气锅炉、燃气轮机和内燃机等设备,用于供热和发电。
煤热解反应过程及影响因素煤热解是指在缺氧或低氧条件下,煤在高温下发生化学反应,产生气体、液体和固体产物的过程。
煤热解反应过程是复杂的化学反应链,受到多种因素的影响。
本文将从煤热解反应机理、影响因素以及煤热解技术应用等方面进行探讨。
一、煤热解反应机理在缺氧或低氧条件下,煤热解反应主要包括干馏和热分解两种反应机理。
干馏是指在高温条件下煤内部分解,主要产物为气体和液体烃类化合物;热分解是指煤中的大分子化合物在高温条件下裂解成小分子化合物,主要产物为固体焦炭。
煤热解反应的总体过程可以用以下化学反应来表示:C + O2 → CO2 + HeatC + 1/2O2 → CO + HeatC + H2O → CO + H2以上反应所示,煤与氧气或水蒸气反应生成一氧化碳、二氧化碳和氢气等气体产物,并伴随着释放热能。
二、影响因素煤热解反应受到多种因素的影响,主要包括煤的性质、热解条件、反应动力学以及反应温度等。
1. 煤的性质煤的性质主要包括煤种、挥发分含量、灰分含量和固定碳含量等。
不同种类的煤在热解过程中产物组成和产率都会有所不同。
一般来说,热解性能较好的炼焦煤和无烟煤在热解过程中产生的焦炭较多,而液体和气体产物较少;而热解性能差的褐煤和煤泥在热解过程中产生的气体和液体产物较多,而产生的焦炭较少。
2. 热解条件热解条件包括反应温度、反应时间和反应压力等。
在高温条件下,煤热解产物中焦炭的产率会增加,而气体和液体产物的产率会减少;反之,在低温条件下,气体和液体产物的产率会增加,焦炭的产率会减少。
反应时间和反应压力也会对煤热解反应产物的组成和产率产生影响。
3. 反应动力学煤热解反应是一个复杂的动力学过程,受到反应速率和反应平衡的影响。
反应速率决定了反应的快慢,而反应平衡则决定了反应的终态。
通过研究煤热解反应的动力学参数,可以更好地控制煤热解反应过程,提高产物的质量和产率。
4. 反应温度反应温度是影响煤热解反应最重要的因素之一。