正弦函数和余弦函数图像与性质
- 格式:doc
- 大小:718.00 KB
- 文档页数:10
6.1正弦函数和余弦函数的图像与性质一、复习引入 1、复习(1)函数的概念在某个变化过程中有两个变量x 、y ,若对于x 在某个实数集合D 内的每一个确定的值,按照某个对应法则f ,y 都有唯一确定的实数值与它对应,则y 就是x 的函数,记作()x f y =,D x ∈。
(2)三角函数线设任意角α的顶点在原点O ,始边与x 轴的非负半轴重合,终边与单位圆相交于点(,)P x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,设它与角α的终边(当α在第一、四象限角时)或其反向延长线(当α为第二、三象限角时)相交于T .规定:当OM 与x 轴同向时为正值,当OM 与x 轴反向时为负值;当MP 与y 轴同向时为正值,当MP 与y 轴反向时为负值;当AT 与y 轴同向时为正值,当AT 与y 轴反向时为负值;根据上面规定,则,OM x MP y ==,由正弦、余弦、正切三角比的定义有:sin 1y yy MP r α====; cos 1x xx OM r α====; tan y MP AT AT x OM OAα====;这几条与单位圆有关的有向线段,,MP OM AT 叫做角α的正弦线、余弦线、正切线。
二、讲授新课【问题驱动1】——结合我们刚学过的三角比,就以正弦(或余弦)为例,对于每一个给定的角和它的正弦值(或余弦值)之间是否也存在一种函数关系?若存在,请对这种函数关系下一个定义;若不存在,请说明理由.1、正弦函数、余弦函数的定义(1)正弦函数:R x x y ∈=,sin ; (2)余弦函数:R x x y ∈=,cos【问题驱动2】——如何作出正弦函数R x x y ∈=,sin 、余弦函数R x x y ∈=,cos 的函数图象?2、正弦函数R x x y ∈=,sin 的图像 (1)[]π2,0,sin ∈=x x y 的图像【方案1】——几何描点法步骤1:等分、作正弦线——将单位圆等分,作三角函数线(正弦线)得三角函数值; 步骤2:描点——平移定点,即描点()x x sin ,; 步骤3:连线——用光滑的曲线顺次连结各个点小结:几何描点法作图精确,但过程比较繁。
【方案2】——五点法步骤1:列表——列出对图象形状起关键作用的五点坐标; 步骤2:描点——定出五个关键点;步骤3:连线——用光滑的曲线顺次连结五个点小结:[]π2,0,sin ∈=x x y 的五个关键点是()0,0、⎪⎭⎫ ⎝⎛1,2π、()0,π、⎪⎭⎫⎝⎛0,23π、()0,2π。
(2)R x x y ∈=,sin 的图像由()Z k x x k ∈=+,sin 2sin π,所以函数x y sin =在区间[]πππ22,2+k k()0,≠∈k Z k 上的图像与在区间[]π2,0上的图像形状一样,只是位置不同.于是我们只要将函数[]π2,0,sin ∈=x x y 的图像向左、右平行移动(每次平行移动π2个单位长度),就可以得到正弦函数R x x y ∈=,sin 的图像。
3、余弦函数R x x y ∈=,cos 的图像 (1)[]π2,0,cos ∈=x x y 的图像(2)R x x y ∈=,cos 的图像 图像平移法 由x x cos 2sin =⎪⎭⎫⎝⎛+π,可知只须将R x x y ∈=,sin 的图像向左平移2π即可。
三、例题举隅例、作出函数[]π2,0,sin 1∈+=x x y 的大致图像;【设计意图】——考察利用“五点法”作正弦函数、余弦函数图像 【解】在直角坐标系中,描出五个关键点:()1,0、 ⎪⎭⎫ ⎝⎛2,2π、()1,π、⎪⎭⎫⎝⎛0,23π、()1,2π③连线练习、作出函数[]π2,0,sin 21∈-=x x y 的大致图像二、性质1.定义域:正弦函数、余弦函数的定义域都是实数集R [或(-∞,+∞)], 分别记作:y =sin x ,x ∈R y =cos x ,x ∈R2.值域因为正弦线、余弦线的长度小于或等于单位圆的半径的长度,所以|sin x |≤1, |cos x |≤1,即-1≤sin x ≤1,-1≤cos x ≤1也就是说,正弦函数、余弦函数的值域都是[-1,1] 其中正弦函数y =sin x ,x ∈R①当且仅当x =2π+2k π,k ∈Z 时, 取得最大值1 ②当且仅当x =-2π+2k π,k ∈Z 时,取得最小值-1而余弦函数y =cos x ,x ∈R①当且仅当x =2k π,k ∈Z 时,取得最大值1②当且仅当x =(2k +1)π,k ∈Z 时,取得最小值-13.周期性由sin(x +2k π)=sin x ,cos(x +2k π)=cosx (k ∈Z )知:正弦函数值、余弦函数值是按照一定规律不断重复地取得的。
一般地,对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x ),那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期。
由此可知,2π,4π,……,-2π,-4π,……2k π(k ∈Z 且k ≠0)都是这两个函数的周期对于一个周期函数f (x ),如果在它所有的周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期。
4.奇偶性由sin(-x)=-sinx ,cos(-x)=cosx可知:y =sinx 为奇函数, y =cosx 为偶函数∴正弦曲线关于原点O 对称,余弦曲线关于y 轴对称5.单调性结合上述周期性可知:正弦函数在每一个闭区间[-2π+2k π,2π+2k π](k ∈Z )上都是增函数,其值从-1增大到1;在每一个闭区间[2π+2k π,23π+2k π](k ∈Z )上都是减函数,其值从1减小到-1。
余弦函数在每一个闭区间[(2k -1)π,2k π](k ∈Z )上都是增函数,其值从-1增加1典型例题(3个,基础的或中等难度)例1:求使下列函数取得最大值的自变量x 的集合,并说出最大值是什么。
(1)y =cosx +1,x ∈R ; (2)y =sin2x ,x ∈R解:(1)使函数y =cos x +1,x ∈R 取得最大值的x 的集合,就是使函数y =cos x ,x ∈R取得最大值的x 的集合{x |x =2k π,k ∈Z }。
∴函数y =cos x +1,x ∈R 的最大值是1+1=2。
(2)令Z =2x ,那么x ∈R 必须并且只需Z ∈R ,且使函数y =sinZ ,Z ∈R 取得最大值的Z 的集合是{Z |Z =2π+2k π,k ∈Z } 由2x =Z =2π+2k π,得x =4π+k π即 使函数y =sin2x ,x ∈R 取得最大值的x 的集合是{x |x =4π+k π,k ∈Z } ∴函数y =sin2x ,x ∈R 的最大值是1。
例2:求下列函数的单调区间 (1)y =-cosx (2)y=41sin(4x -3π) (3)y=3sin(3π-2x) 解:(1)由y =-cosx 的图象可知:单调增区间为[2k π,(2k +1)π](k ∈Z ) 单调减区间为[(2k -1)π,2k π](k ∈Z ) (2)当2k π-2π≤4x-3π≤2k π+2π,∴函数的递增区间是[2πk -24π,2πk +245π](k ∈Z )当2k π+2π≤4x-3π≤2k π+23π∴函数的递减区间是[2πk +245π,2πk +2411π](k ∈Z )(3)当2k π-2π≤3π-2x ≤2k π+2π时,函数单调递减,∴ 函数单调递减区间是[k π-12π,k π+125π](k ∈Z )当2k π+2π≤3π-2x ≤2k π+23π时,函数单调递增,∴ 函数单调递减区间是[k π+125π,k π+1211π](k ∈Z )例3:求下列三角函数的周期:(1) y=sin(x+3π) (2) y=cos2x (3) y=3sin(2x +5π)解:(1)令z= x+3π而 sin(2π+z)=sinz 即:f(2π+z)=f (z) f[(x+2π)+3π]=f(x+3π)∴周期T=2π. (2)令z=2x ∴f (x )=cos2x=cosz=cos(z+2π)=cos(2x+2π)=cos[2(x+π)]即:f (x +π)=f (x )∴周期T=π。
(3)令z=2x +5π则 f (x )=3sinz=3sin(z+2π)=3sin(2x +5π+2π)=3sin(524ππ++x )=f (x +4π) ∴周期T=4π。
注:y =A sin(ωx +φ)的周期T=||2ωπ。
(四)课堂练习(2个,基础的或中等难度) 1、求使下列函数y=3-cos 2x取得最大值的自变量x 的集合,并说出最大值是什么。
解:当cos2x =-1,即2x=2k π+π,k ∈Z ,∴{x|x=4k π+2π,k ∈Z }, y=3-cos 2x取得最大值。
2、求y=x 2sin 21的周期。
解:∵y=x 2sin 21=41(1-cos2x )=41-41cos2x ,∴T=π。
3、求函数y=3cos(2x+3π)的单调区间。
解:当2k π≤2x+3π≤2k π+π时,函数单调递减,∴ 函数的单调递减区间是[k π-6π,k π+3π](k ∈Z )当2k π-π≤2x+3π≤2k π时,函数单调递增,∴ 函数的单调递增区间是[k π-32π,k π-6π](k ∈Z )(五)拓展探究(2个) 1、求下列函数的周期: (1)y=sin(2x+4π)+2cos(3x-6π) (2)y=|sinx| (3)y=23sinxcosx+2cos 2x -1 解:(1)y 1=sin(2x+4π) 最小正周期T 1=π y 2=2cos(3x-6π) 最小正周期 T 2=32π ∴T 为T 1 ,T 2的最小公倍数2π∴T=2π(2)T=π(3) y=3sin2x+cos2x=2sin(2x+6π)∴T=π 2、求下列函数的最值:(1)y=sin(3x+4π)-1 (2)y=sin 2x -4sinx+5 (3)y=xx cos 3cos 3+- 解:(1)当3x+4π=2k π+2π即 x=1232ππ+k (k ∈Z)时,y max =0 当3x+4π=2k π-2π即x=432ππ-k (k ∈Z)时,y min =-2 (2) y=(sinx -2)2+1 ∴当x=2k π-2πk ∈Z 时,y max =10 当x=2k π-2πk ∈Z 时,y min = 2 (3) y=-1+xcos 31+当x=2k π+π k ∈Z 时,y max =2当x=2k π k ∈Z 时, y min =21 作业一、填空题 1、函数y=cos(x -2π)的奇偶性是_________________。