水塔水位自动控制器的设计
- 格式:doc
- 大小:104.50 KB
- 文档页数:14
水塔水位plc自动控制用plc控制水位的自动控制原理水塔水位自动控制一、实验目的用PLC 构成水塔水位自动控制系统二、实验设备1)Dais-__ 可编程控制模拟实验仪2)计算机3)连接导线一套三、实验内容1、控制要求:当水塔水位低于水位界(S4 为ON 表示)时,电磁阀Y 打开,于是进水(S4 为OFF 表示水池水位高于水池低水界),当水池水位高于水池低水界(S3 为ON 表示),电磁阀Y 关闭。
1)I/O 分配表:输入输出SB4:X2 L2:Y1SB3:X32)输入下图的梯形图。
3)调试并运行程序,观察结果。
2、控制要求:当水池水位低于SB4 所指示的位置时,启动SB4 按钮,L2 所指示的电机工作,水池进水。
当水池水位达到SB3 所指示的位置时,启动SB3 按钮,使L2 所指示的电机关闭,停止进水;当水塔水位低于SB2 所指示的位置时,启动SB2 按钮,L1 所指示的电机工作,开始水塔进水。
当水塔水位达到SB1 所指示的位置时,启动SB1 按钮,使L1 所指示的电机停止工作。
1)I/O 分配表:输入输出SB1:X0 L1:Y0SB2:X1 L2:Y1SB3:X2SB4:X32)输入下图的梯形图。
用plc控制水位的自动控制原理3)调试并运行程序,观察结果。
四、编程练习1)当水池水位低于水位界时(S4 为ON),电磁阀Y 打开进水(S4 为OFF 表示水池水位高于水池低水界)。
当水位高于水池高水位界(S3 为ON 表示),阀门关闭。
当S4 为OFF 时,且水塔水位低于水塔低位界时,S2 为ON,电动机M 运转,开始抽水。
当水塔水位高于水塔高水位界时,电动机M 停止。
根据上述控制要求编制水塔水位自动控制程序,并上机调试运行。
2)当水池水位低于水位界时(S4 为ON 表示),电磁阀Y 打开进水(Y 为ON)定时器开始定时,2S 以后,如果S4 还不为OFF,那么阀Y 指示灯闪烁,表示阀Y 没有进水,出现故障,S3 为ON 后,阀Y 关闭(Y 为OFF)。
水塔水位P L C自动控制系统(总33页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除电气工程学院课程设计说明书设计题目:水塔水位PLC自动控制系统系别:电气工程及其自动化年级专业: 13级应电2班组员:贾猛、孟令军、修圣虎、李晶指导教师:郭忠南摘要随着现代社会生产的发展和技术进步,现代工业自动化生产水平的日益提高,微电子技术的飞速发展,在继电器控制系统的基础上产生了一种新型的工业控制装置——可编程控制器(PLC)。
随着科技的发展和现实暴露的一些问题,以便能更快捷更方便的完成一些任务,在工农业生产过程中,经常需要对水位进行测量和控制。
水位控制在日常生活中应用也相当广泛,比如水塔、地下水、水电站等情况下的水位控制。
而水位检测可以有多种实现方法,如机械控制、逻辑电路控制、机电控制等。
本文采用PLC进行主控制,在水箱上安装一个自动测水位装置。
利用水的导电性连续地全天候地测量水位的变化,把测量到的水位变化转换成相应的电信号,主控台对接收到的信号进行数据处理,完成相应的水位显示、故障报警信息显示、实时曲线和历史曲线的显示,使水位保持在适当的位置。
关键词:PLC(Programmable Logic Controller) 自动化水塔水位三菱PLC目录第一章研究背景 (1)1.1可编程控制器的产生及发展 (1)1.2PLC的基本结构 (2)1.3PLC的特点 (5)1.4PLC的工作原理 (6)1.5梯形图程序设计及工作过程分析 (8)第二章水塔水位自动控制系统方案设计 (10)第三章水塔水位自动控制系统硬件设计 (12)3.1水塔水位控制系统设计要求 (12)3.2水塔水位控制系统主电路 (12)3.3水泵电机的选择 (13)3.4水位传感器的选择 (13)3.5可编程序控制器的选择 (14)3.6PLC I/O口分配 (14)3.7PLC控制电路原理图 (16)第四章水塔水位自动控制系统软件设计 (17)4.1程序流程图 (17)4.2梯形图 (18)第五章设计总结 (24)第一章研究背景1.1 可编程控制器的产生及发展可编程控制器是二十世纪七十年代发展起来的控制设备,是集微处理器、储存器、输入/输出接口与中断于一体的器件,已经被广泛应用于机械制造、冶金、化工、能源、交通等各个行业。
水塔水位的PLC控制的设计PLC课程设计说明书姓名班级学号专业机电一体化技术教师组别日期 2012.1.10成绩目录一概述 (1)二水塔供水自动控制系统方案设计 (2)设计方案 (2)三水塔水位自动控制系统设计 (2)1水泵电动机控制电路的设计 (2)2水位传感器的选择 (4)四水位自动控制系统的组成 (6)1、系统构成及其控制要求 (6)2系统框图 (7)五 PLC的设计 (8)1可编程序控制器(PLC)简介 (8)2PLC工作原理 (8)3PLC的编程语言--梯形图 (9)4SYSMAC-C系列P型机概述 (11)5水塔水位自动控制系统的软件设计 (12)六结束语(系统总结分析) (17)1系统的优点 ............................................................................ 错误!未定义书签。
2结束语 .................................................................................... 错误!未定义书签。
参考文献 (19)致谢 (20)水塔供水自动控制系统的设计一概述水塔水位控制系统采用交流电压检测水位,在控制系统启动后,若水槽水位低于水槽最低水位S2时液位传感器将水位信号转化为电信号向PLC发出信号,PLC根据此信号打开补水泵向水槽补水,当水位达到水槽最高水位S4时液位传感器将水位信号转化为电信号向PLC发出信号停止补水泵的工作,当水塔水位达到最低水位S2时,液位传感器将水位信号转化为电信号向PLC输出,PLC在收到信号后启动水泵向水塔加水,当水塔水位达到最高水位S1时传感器将水位信号转化为电信号向PLC发出信号停止水泵的工作。
二水塔供水自动控制系统方案设计设计方案PLC和传感器构成的水塔水位恒定的控制系统原理。
在控制系统启动后,若水槽水位低于水槽最低水位时液位传感器将水位信号转化为电信号向PLC发出信号,PLC根据此信号打开补水泵向水槽补水,当水位达到水槽最高水位时液位传感器将水位信号转化为电信号向PLC发出信号停止补水泵的工作,当水塔水位达到最低水位时,液位传感器将水位信号转化为电信号向PLC输出,PLC在收到信号后启动水泵向水塔加水,当水塔水位达到最高水位时传感器将水位信号转化为电信号向PLC发出信号停止水泵的工作。
水塔水位控制毕业设计水塔水位控制毕业设计水塔是城市供水系统中重要的设备之一,其主要功能是储存和供应清洁饮用水。
水塔水位的控制是保证供水系统正常运行的关键环节。
在本文中,将探讨水塔水位控制的毕业设计方案。
1. 设计背景随着城市人口的增加和用水需求的不断增长,水塔的水位控制变得尤为重要。
传统的水位控制方法主要依靠人工操作,存在人为疏忽和效率低下的问题。
因此,设计一个自动化的水塔水位控制系统势在必行。
2. 设计目标本设计的目标是实现水塔水位的自动控制,确保水位在安全范围内波动,避免水位过高或过低的情况发生。
同时,设计要具备稳定性、可靠性和高效性,能够适应不同规模的水塔。
3. 设计原理本设计采用传感器、控制器和执行器等组件构建水位控制系统。
传感器负责测量水位,将水位信号传送给控制器;控制器根据设定的水位范围,判断是否需要启动或停止水泵;执行器控制水泵的启停,以实现水位的自动调节。
4. 系统组成4.1 传感器传感器是水位控制系统的重要组成部分,常用的传感器有浮球式、超声波式和压力式等。
浮球式传感器通过浮球的上下浮动来感知水位变化,超声波式传感器则利用超声波的反射原理测量水位,压力式传感器则通过测量水压来间接判断水位。
根据实际需求选择合适的传感器。
4.2 控制器控制器是水位控制系统的核心部件,负责接收传感器信号并进行处理。
控制器需要具备高精度、高稳定性和高可靠性,能够实时监测水位变化,并根据预设的水位范围做出相应的控制决策。
4.3 执行器执行器是控制器的输出部分,负责根据控制器的指令控制水泵的启停。
水泵的启停需要根据水位的高低来决定,当水位过低时启动水泵,当水位过高时停止水泵。
5. 系统设计在系统设计中,需要考虑传感器的安装位置、控制器的算法设计和执行器的控制方式。
传感器应安装在水塔内部,以便准确测量水位。
控制器的算法设计可以采用PID控制或模糊控制等方法,以实现对水位的精确控制。
执行器可以采用继电器或可编程逻辑控制器等方式,实现对水泵的启停控制。
目录摘要 (I)第1章绪论 (1)1.1选题的背景与意义 (1)1.2可编程逻辑控制器简述 (1)第2章系统总体设计 (2)2.1水塔水位控制系统设计 (2)2.2水塔水位控制系统基本工作原理 (3)2.3水塔水位控制系统主电路设计 (4)第3章系统硬件设计 (5)3.1 硬件选型 (5)3.1.1 PLC的选择 (5)3.1.2水泵的选择 (6)3.1.3液位开关的选择 (6)3.1.4电气保护器件选择 (7)3.2 I/O口的分配及PLC外围接线 (8)第4章软件设计 (12)第5章仿真 (14)结论 (18)参考文献 (19)附录 (20)摘要目前,大量的高位生活用水和工作用水逐渐增多。
因此,不少单位自建水塔储水来解决高层楼房的用水问题。
最初,大多用人工进行控制,由于人工无法每时每刻对水位进行准确的定位监测,很难准确控制水泵的起停。
要么水泵关停过早,造成水塔缺水;要么关停过晚,造成水塔溢出,浪费水资源,给用户造成不便。
利用人工控制水位会造成供水时有时无的不稳定供水情况。
后来,使用水位控制装置使供水状况有了改变,但常使用浮标或机械水位控制装置,由于机械装置的故障多,可靠性差,给维修带来很大的麻烦。
因此为更好的保证供水的稳定性和可靠性,传统的供水控制方法已难以满足现在的要求。
本文采用的是三菱FXZN型PLC可编程控制器作为水塔水位自动控制系统核心,对水塔水位自动控制系统的功能性进行了需求分析。
主要实现方法是通过传感器检测水塔的实际水位,将水位具体信息传至PLC构成的控制模块,来控制水泵电机的动作,同时显示水位具体信息,若水位低于或高于某个设定值时,就会发出危险报警的信号,最终实现对水塔水位的自动。
关键词:水位自动控制、三菱FX2N 、传感器第1章绪论1.1选题的背景与意义在社会经济飞速发展的今天,水在人们正常生活和生产中起着越来越重要的作用。
一旦断了水,轻则给人民生活带来极大的不便,重则可能造成严重的生产事故及损失。
水塔水位自动控制电路设计-毕业设计说明书四川信息职业技术学院毕业设计说明书设计(论文)题目:________________________水塔水位自动控制电路设计专业: 应用电子技术班级:学号:姓名:指导教师:二〇一三年十二月五日目录摘要 (1)绪论 (2)第1章方案论证与分析 (3)1.1系统功能要求 (3)1.2整体方案 (3)1.2.1方案比较与论证 (3)1.2.2方案论证 (5)第2章硬件设计与分析 (6)2.1单片机最小系统 (6)2.1.1芯片介绍 (6)2.1.2单片机时钟电路设计 (8)2.1.3单片机复位电路设计 (9)2.2超声波测水位电路 (10)2.3指示电路 (11)2.3.1显示电路 (11)2.4报警电路 (12)2.5交流接触器工作原理 (12)2.6整机电路工作原理 (13)第3章软件设计 (14)3.1主程序流程图 (14)3.2中断流程图 (14)第4章系统仿真与调试 (16)4.1常用调试工具 (16)4.1.1Keil 软件 (16)4.1.2Proteus软件 (16)4.2系统调试 (17)第5章实物制作与调试 (18)5.1PCB板的制作 (18)5.2元件的装配 (19)5.3调试与性能检测 (20)参考文献 (22)附录1 整机电路原理图 (23)附录2 源程序 (24)附录3 元器件清单 (27)摘要采用低功耗单片机为控制核心、辅以超声波水位状态采集模块、二极管指示模块、电源供电模块、扬声器报警模块设计的自动水塔水位控制系统,通过一只中间继电器来接通大功率的交流接触器,控制水泵的运行成功实现水塔水位控制功能,它具有电路简单、功能齐全、制作成本低、性价比高等特点,是一种经济、实用的自动水塔水位控制系统。
硬件部分主要由单片机指示灯、继电器、蜂鸣器等基本外围电子电路组成。
它设计的优点是当水位达到一定的位置时报警器开始报警。
因此在生活实践应用中具有一定的价值。
安康学院可编程逻辑控制PLC设计报告书课题名称:水塔水位自动控制系统姓名:学号:院系:专业:指导教师:时间:设计项目成绩评定表设计报告书目录一、设计目的 (1)二、设计思路 (1)三、设计过程 (1)3.1、系统论证 (1)3.2、模块设计 (3)四、系统结果 (5)五、课程设计体会与建议 (6)5.1、设计体会 (6)5.2、设计建议 (6)六、参考文献 (6)一、设计目的1、了解PLC实验箱结构及其接线方法。
2、利用PLC构成水塔水位自动控制系统。
3、了解自动控制原理在日常生活中的应用4、熟悉水塔自动控制系统的设计与制作。
二、设计思路1、按水塔水位的控制要求,设计PLC外部电路;2、连接PLC外部(输入、输出)电路,编写用户程序;3、输入、编辑、编译、下载、调试用户程序;4、运行用户程序,观察程序运行结果。
三、设计过程水塔水位控制系统是我国住宅小区、工厂企业广泛应用的供水系统。
为了达到节能的目的,提高供水系统的质量,考虑采用可编程控制器(PLC)、继电器、传感器技术和数据采集,设计一套实用水位控制方案,使系统实现自动控制,以提高控制精度、可靠性和供水质量。
并通过模拟仿真来验证程序编写的正确性。
3.1、系统方案其工作原理为:按下启动按钮,当水槽水位低于下限,补水阀答开。
高于上限时,补水阀关闭,同时,当水塔水位低于下限时,并且水槽水位高于下限时,抽水泵打开,当水塔水位高于上限时,抽水泵关闭。
水塔自动控制总体方框图如图1所示:图1 总体控制方框图3.2、模块设计水塔水位模拟图如图2所示:图2 水塔水位模拟图该电路完成两个功能:一是为水池补水;二是为水塔注水。
I/O分配表如表1所示:表1 I/O分配表输入继电器输入变量名输出继电器输出变量名X0 控制开关Y0 电磁阀X1 水塔上限液位开关Y1 电动机MX2 水塔下限液位开关X3 水池下限液位开关X4 水池上限液位开关工作过程:1)初始状态:水箱没有水,液位开关S4断开(S4为OFF)。
扬州工业职业技术学院2009 —2010学年第二学期毕业论文课题名称:水塔水箱水位自动控制设计时间:系部:电子信息工程系班级:姓名:指导教师:总目录第一部分任务书第二部分开题报告第三部分毕业设计正文第一部分任务书扬州工业职业技术学院毕业设计任务书第二部分开题报告扬州工业职业技术学院电子信息工程系10届毕业设计(论文)开题报告书(表1)第三部分毕业设计正文目录第一章引言 (10)第二章单片机水塔水箱水位控制器的原理 (11)2.1 单片机概述 (11)2.1.1 单片机的发展概况 (11)2.1.2 80C51系列单片机 (12)2.2 水塔水箱给水设备原理 (12)2.3 80C51单片机控制系统原理 (13)2.3.1 80C51单片机控制部分结构说明 (13)2.3.2 单片机水箱控制系统工作原理 (14)第三章单片机水塔水箱水位控制器硬件设计 (15)3.1 单片机水塔水箱水位控制器系统硬件简介 (15)3.1.1 数据采集及处理模块 (15)3.1.2 光电隔离简介 (20)3.1.3 给水泵电机主控回路介绍 (21)3.2 80C51水箱控制系统主控硬件部署方案 (21)3.2.1 80C51单片机实现控制功能说明 (22)3.2.2 74LS373芯片实现系统功能说明 (22)3.2.3 EPROM2764芯片实现系统功能说明 (23)第四章单片机水塔水箱水位控制器程序设计 (27)4.1 程序概要设计 (27)4.2 控制器程序原理 (27)4.2.1 系统主程序原理以及流程框图 (27)4.2.2 自动模式子程序原理以及流程框图 (27)4.2.3手动模式子程序原理框图以及流程框图 (29)结束语 (32)致谢 (33)参考文献 (33)[摘要] 大型水塔水箱是很多公司生产过程中必不可少的部件,它的性能和工作质量的优良不仅仅对生产有着巨大的影响,而且也关系着生产的安全。
在过去,大量的对水箱操作是由相应的人员进行操作的,这样的人工方式带来了很大的弊端,比如水位的控制,时刻监控水箱的环境,夜间的监控等等,操作员稍有疏忽,或者简易的监则器件损坏,将带来无法弥补的损失,更严重的会危机到生产人员的人身安全等。
目录:
第一章目录 (1)
第二章摘要 (2)
第三章设计方案及设计原理 (2)
第四章电路总图 (8)
第五章元器件清单 (9)
第六章总结 (10)
第七章参考文献 (11)
第八章附录 (11)
第二章摘要
水塔水位自动控制器主要用途是配合水泵,根据水塔水位高低的变化来启动及停止。
适用于工农业及民用自动供水。
本电路包括水位检测电路,水位范围测量电路,水泵开关电路,显示电路和电源电路5部分。
水位测量电路的功能是利用水的导电性检测水位的变化,水位范围测量电路的功能是利用比较器的原理实现水位范围的确定,应根据水井涌水量来调节中水位探头及高水位探头之间的距离,应调节在水塔水满后,而水泵不应离水工作为宜,同时利用迟滞比较器的迟滞特性避免跳闸现象。
水泵开关电路的功能是完成控制电路和水泵是否工作,显示电路的功能是显示水泵是否在工作。
电源电路则为以上电路提供直流电源。
本控制器适用于家庭住宅、学校、工厂、宾馆、办公、楼宇的自来水水塔(水池)式增压供水与江河井水控制,以及供水、消防、轻工、印染、化纤、造纸、化工、食品、饮料、酿造、制糖、养殖、工矿、农业、水处理等行业的给排水和其它生产用液体供给排放自动化控制或上、下限位报警。
第三章设计方案及设计原理:
第一节综合图:
由电源电路给各个电路提供直流电源,通过检测电路对水塔水位及范围的测量,产生不同的电位Vs,利用迟滞比较器的特性,控制继电器的工作状态,从而实现对水泵工作状态的自动控制。
第二节主要单元电路设计:
一水位测量电路和水位范围测量电路
置来实现水位范围的控制。
水位测量电路如图中右边所示,它由两部分组成:
1.电阻R1,R2和稳压管D1、D2构成的参考电压产生电路:
2.由迟滞比较器构成的水位范围测量电路。
参考电压产生电路产生两个稳定的电压,分别代表水位范围的上限值S2和下限值S1。
由于参考电源产生电路输出端接入比较器的输入,为了防止出现输出电流不稳导致参考电源不稳定的情况,电路采用电阻和稳压管相结合的方式构成。
其中稳压管的稳定电压均为+8V,而输出
Vref1=+8V
Vref2=12V-8V=4V
水位范围测量电路的功能有两个:
1.确定实际水位和水位控制范围的大小关系;
2.防止出现跳闸现象。
首先,Vref1和Vref2分别输入到运算放大器的同相输入端,而Vs则同时输入到这两个运算放大器的反相输入端。
当水位低于S1时,Vs=13V>Vp2=4V,V1和V2输出都为高电平;当水位高于S1低于S2时,Vp2(4V)<Vs(6V)<Vp1(8V),V1输出为高电平,V2输出为低电平;当水位高于S2时,Vs(0V)<Vp1(8V),V1和V2输出都为高电平。
由于Vs、Vref1和Vref2分别代表S、S2和S1,实际水位和水位控制范围的大小关系就确定了。
本电路通过迟滞比较器代替单门限比较器来防止跳闸现象的出现。
迟滞比较器U1的特性表达式为
V1t+=Vp1=R5*Vref1/(R3+R5)+R3*V1/(R3+R5)=8.4V
V1t-=Vp1=R8*Vref2/(R3+R5)+0=7.3V
由上式可得到回差范围△Vt=V1t+ -V1t-=1.1V,即1.1V从高电平转换为低电平和从低电平转换为高电平的分界点电压值有了1.1V的差别,从而就可以防止跳闸现象的出现。
同理迟滞比较器U2的特性表达式为
V2t+=Vp2=R8*Vref2/(R7+R8)+R7*V2/(R7+R8)=4.7V
V2t-=Vp2=R8*Vref2/(R7+R8)+0=3.6V
由上式可求的迟滞比较器U2的V2t+ - V2t-之差(4.7V-3.6V)同样具有1.1V的回差范围。
二水泵开关电路和显示电路
电路中的开关采用继电器电路。
而一般运算放大器的输出电流无法驱动继电器,因此需要加入由三极管电路构成的电流放大电路,它是一种比较典型的和简单的电路。
其中R9和R10为限流电阻,防止输入电流过大烧毁三极管。
三极管接为共集电极电路,当输入电压为高电平时,三极管导通饱和,可以将输入电流放大β倍;当输入电压为低电平时,三极管截止,无电流通过。
继电器连接三极管的发射极,当有电流驱动时,开关吸合,对应的水泵断开,发光二极管熄灭;当无电流驱动时,开关断开对应的水泵通电,发光二极管亮,同时在继电器两端并联入二极管进行保护。
显示电路如图中虚线右边电路所示,通过发光二极管亮灭来表示电阻丝是否同通电,同时由于继电器的驱动电流过大,需要加入限流电阻。
第四章电路总图
第五章元器件清单
第六章总结
通过这次电子课程设计,我学到了很多东西,基本上学会了Protel软件的常用作图方法,对课本上的一些公式及其应用有了进一步的理解,增强了我的动手能力,为以后的毕业设计跟工作后的各种工程设计打下了坚实的基础,而且在一定程度上了解了一些常用元件的使用方法及其特性,而且使我更深刻的明白了理论一定要和实践结合起来,现在所学知识就是为了实践,如果只懂得理论知识,学习效果就会大打折扣。
另外还培养了我的思维能力,在设计电路时一定要全盘考虑到各种可能出现的问题,并进行解决。
这次课程设计还让我看到了自己平时学习时的很多不足与缺点,以后还要加以改正。
另外这次设计还充分体现了团队合作的重要性,能大量的节省时间,群众的力量就是大,在以后的学习中我会注意和同学的探讨和交流,达到事半功倍的效果。
第七章参考资料
1.何小艇,电子系统设计,浙江大学出版社,2001年6月
2.姚福安,电子电路设计与实践,山东科学技术出版社,2001年10月
3.王澄非,电路与数字逻辑设计实践,东南大学出版社,2005年6月
4.李银华,电子线路设计指导,北京航空航天大学出版社,2005年6月
5.康华光,电子技术基础,高教出版社,2003年
附录基本电子器件简介。