水塔水位控制器
- 格式:doc
- 大小:94.50 KB
- 文档页数:9
水塔水位控制系统设计、水塔水位控制系统硬件设计 、水塔水位控制系统设计要求水塔水位控制装置如图所示图 水塔水位控制装置水塔水位的工作方式:当水池液位低于下限液位开关,此时为,水阀打开(为),开始往水池里注水,定时器开始定时,秒以后,若水池液位没有超过水池下限液位开关时(还不为),则系统发出报警(阀指示灯闪烁),表示阀没有进水,出现故障。
若系统正常,此时水池下限液位开关为,表示水位高于下限水位。
当水位液面高于上限水位,则为,阀关闭(为)。
当为时,且水塔水位低于水塔下限水位时(水塔下限水位开关为),电机开始工作,向水塔供水,当为时,表示水塔水位高于水塔下限水位。
当水塔液面高于水塔上限水位时(水塔上限水位开关为),电机停止。
(注:当水塔水位低于下限水位,同时水池水位也低于下限水位时,水泵不能启动) 水塔水位控制系统主电路水塔水位控制系统主电路如图所示:M 3~L1L2L3SQ FUKMFR图 水塔水位控制系统主电路、接口分配水塔水位控制系统的接口分配如表所示。
表 水塔水位控制系统的接口分配表符号地址 绝对地址 数据类型说明表示水塔的水位上限,表示水塔的水位下限,表示水池水位上限,表示水池水位下限,为抽水电机,为水阀。
水塔上限水位 水塔下限水位 水池上限水位 水池下限水位 控制开关 水阀 抽水电机 水池下限指示灯 水池上限指示灯 水塔下限指示灯 水塔上限指示灯 报警指示灯 、水塔水位控制系统的接线图这是一个单体控制小系统,没有特殊的控制要求,它有个开关量,开关量输出触点数有个,输入、输出触点数共有个,只需选用一般中小型控制器即可。
据此,可以对输入、输出点作出地址分配,水塔水位控制系统的接线图如图所示。
1M~220VI0.0I0.1I0.2I0.3I0.4Q0.1Q0.2Q0.3Q0.4Q0.5Q0.6Q0.7KMI KMSB 传感器1传感器2传感器3传感器4水池下位指示灯水池上位指示灯水塔下位指示灯水塔下位指示灯报警指示灯图 水塔水位控制系统的接线图、水塔水位控制系统软件设计 程序流程图水塔水位控制系统的控制流程图,根据设计要求,控制流程图如图所示。
水塔水位P L C自动控制系统(总33页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除电气工程学院课程设计说明书设计题目:水塔水位PLC自动控制系统系别:电气工程及其自动化年级专业: 13级应电2班组员:贾猛、孟令军、修圣虎、李晶指导教师:郭忠南摘要随着现代社会生产的发展和技术进步,现代工业自动化生产水平的日益提高,微电子技术的飞速发展,在继电器控制系统的基础上产生了一种新型的工业控制装置——可编程控制器(PLC)。
随着科技的发展和现实暴露的一些问题,以便能更快捷更方便的完成一些任务,在工农业生产过程中,经常需要对水位进行测量和控制。
水位控制在日常生活中应用也相当广泛,比如水塔、地下水、水电站等情况下的水位控制。
而水位检测可以有多种实现方法,如机械控制、逻辑电路控制、机电控制等。
本文采用PLC进行主控制,在水箱上安装一个自动测水位装置。
利用水的导电性连续地全天候地测量水位的变化,把测量到的水位变化转换成相应的电信号,主控台对接收到的信号进行数据处理,完成相应的水位显示、故障报警信息显示、实时曲线和历史曲线的显示,使水位保持在适当的位置。
关键词:PLC(Programmable Logic Controller) 自动化水塔水位三菱PLC目录第一章研究背景 (1)1.1可编程控制器的产生及发展 (1)1.2PLC的基本结构 (2)1.3PLC的特点 (5)1.4PLC的工作原理 (6)1.5梯形图程序设计及工作过程分析 (8)第二章水塔水位自动控制系统方案设计 (10)第三章水塔水位自动控制系统硬件设计 (12)3.1水塔水位控制系统设计要求 (12)3.2水塔水位控制系统主电路 (12)3.3水泵电机的选择 (13)3.4水位传感器的选择 (13)3.5可编程序控制器的选择 (14)3.6PLC I/O口分配 (14)3.7PLC控制电路原理图 (16)第四章水塔水位自动控制系统软件设计 (17)4.1程序流程图 (17)4.2梯形图 (18)第五章设计总结 (24)第一章研究背景1.1 可编程控制器的产生及发展可编程控制器是二十世纪七十年代发展起来的控制设备,是集微处理器、储存器、输入/输出接口与中断于一体的器件,已经被广泛应用于机械制造、冶金、化工、能源、交通等各个行业。
水塔自动上水控制器的原理
水塔自动上水控制器的原理是利用传感器和控制器实现对水位的监测和控制。
一般情况下,水塔自动上水控制器会安装在水塔的进水管道上。
它首先通过水位传感器或者压力传感器检测水塔中的水位或者水压,并将检测到的信号传递给控制器。
控制器对传感器检测到的信号进行处理,并根据预设的水位或者水压设定值与实际检测值进行比较。
根据比较结果,如果水位或者水压低于设定值,则控制器会打开水泵,让水泵开始工作,将水从供水管道输送到水塔中。
当水位或者水压达到设定值时,控制器会关闭水泵,停止向水塔中注水。
此外,控制器一般还会具备一些附加功能,如故障保护、报警功能等。
如果出现水泵故障或其他异常情况,控制器会发出警报或者停止工作,保护水泵和水塔的安全运行。
总的来说,水塔自动上水控制器可根据水位或者水压的变化自动控制水泵的启停,实现稳定的水位或水压控制,提高供水系统的自动化程度和运行效率。
目录:第一章目录 (1)第二章摘要 (2)第三章设计方案及设计原理 (2)第四章电路总图 (8)第五章元器件清单 (9)第六章总结 (10)第七章参考文献 (11)第八章附录 (11)第二章摘要水塔水位自动控制器主要用途是配合水泵,根据水塔水位高低的变化来启动及停止。
适用于工农业及民用自动供水。
本电路包括水位检测电路,水位范围测量电路,水泵开关电路,显示电路和电源电路5部分。
水位测量电路的功能是利用水的导电性检测水位的变化,水位范围测量电路的功能是利用比较器的原理实现水位范围的确定,应根据水井涌水量来调节中水位探头及高水位探头之间的距离,应调节在水塔水满后,而水泵不应离水工作为宜,同时利用迟滞比较器的迟滞特性避免跳闸现象。
水泵开关电路的功能是完成控制电路和水泵是否工作,显示电路的功能是显示水泵是否在工作。
电源电路则为以上电路提供直流电源。
本控制器适用于家庭住宅、学校、工厂、宾馆、办公、楼宇的自来水水塔(水池)式增压供水与江河井水控制,以及供水、消防、轻工、印染、化纤、造纸、化工、食品、饮料、酿造、制糖、养殖、工矿、农业、水处理等行业的给排水和其它生产用液体供给排放自动化控制或上、下限位报警。
第三章设计方案及设计原理:第一节综合图:由电源电路给各个电路提供直流电源,通过检测电路对水塔水位及范围的测量,产生不同的电位Vs,利用迟滞比较器的特性,控制继电器的工作状态,从而实现对水泵工作状态的自动控制。
第二节主要单元电路设计:一水位测量电路和水位范围测量电路置来实现水位范围的控制。
水位测量电路如图中右边所示,它由两部分组成:1.电阻R1,R2和稳压管D1、D2构成的参考电压产生电路:2.由迟滞比较器构成的水位范围测量电路。
参考电压产生电路产生两个稳定的电压,分别代表水位范围的上限值S2和下限值S1。
由于参考电源产生电路输出端接入比较器的输入,为了防止出现输出电流不稳导致参考电源不稳定的情况,电路采用电阻和稳压管相结合的方式构成。
扬州工业职业技术学院2009 —2010学年第二学期毕业论文课题名称:水塔水箱水位自动控制设计时间:系部:电子信息工程系班级:姓名:指导教师:总目录第一部分任务书第二部分开题报告第三部分毕业设计正文第一部分任务书扬州工业职业技术学院毕业设计任务书第二部分开题报告扬州工业职业技术学院电子信息工程系10届毕业设计(论文)开题报告书(表1)第三部分毕业设计正文目录第一章引言 (10)第二章单片机水塔水箱水位控制器的原理 (11)2.1 单片机概述 (11)2.1.1 单片机的发展概况 (11)2.1.2 80C51系列单片机 (12)2.2 水塔水箱给水设备原理 (12)2.3 80C51单片机控制系统原理 (13)2.3.1 80C51单片机控制部分结构说明 (13)2.3.2 单片机水箱控制系统工作原理 (14)第三章单片机水塔水箱水位控制器硬件设计 (15)3.1 单片机水塔水箱水位控制器系统硬件简介 (15)3.1.1 数据采集及处理模块 (15)3.1.2 光电隔离简介 (20)3.1.3 给水泵电机主控回路介绍 (21)3.2 80C51水箱控制系统主控硬件部署方案 (21)3.2.1 80C51单片机实现控制功能说明 (22)3.2.2 74LS373芯片实现系统功能说明 (22)3.2.3 EPROM2764芯片实现系统功能说明 (23)第四章单片机水塔水箱水位控制器程序设计 (27)4.1 程序概要设计 (27)4.2 控制器程序原理 (27)4.2.1 系统主程序原理以及流程框图 (27)4.2.2 自动模式子程序原理以及流程框图 (27)4.2.3手动模式子程序原理框图以及流程框图 (29)结束语 (32)致谢 (33)参考文献 (33)[摘要] 大型水塔水箱是很多公司生产过程中必不可少的部件,它的性能和工作质量的优良不仅仅对生产有着巨大的影响,而且也关系着生产的安全。
在过去,大量的对水箱操作是由相应的人员进行操作的,这样的人工方式带来了很大的弊端,比如水位的控制,时刻监控水箱的环境,夜间的监控等等,操作员稍有疏忽,或者简易的监则器件损坏,将带来无法弥补的损失,更严重的会危机到生产人员的人身安全等。
摘要随着科技的发展,无论在日常生活中,还是在工农业发展中,PLC具有广泛的应用。
PLC的一般特点:抗干扰能力强,可靠性极高、编程简单方便、使用方便、维护方便、设计、施工、调试周期短、易于实现机电一体化。
PLC总的发展趋势是:高功能、高速度、高集成度、大容量、小体积、低成本、通信组网能力强。
目前,大量的高位生活用水和工作用水逐渐增多。
利用人工控制水位会造成供水时有时无的不稳定供水情况。
后来,使用水位控制装置使供水状况有了改变,但常使用浮标或机械水位控制装置,由于机械装置的故障多,可靠性差,给维修带来很大的麻烦。
因此为更好的保证供水的稳定性和可靠性,传统的供水控制方法已难以满足现在的要求。
本课题设计和实现了一种采用可编程序控制器为主控制机的供水控制系统。
该控制系统是一种PLC控制的自动调节控制系统,在传统水塔供水的基础上,采用PLC为控制核心、变频器等器件组成,利用水的导电性连续地全天候地测量水位的变化,把测量到的水位变化转换成相应的电信号,主控台对接收到的信号进行数据处理,完成相应的水位显示、故障报警信息显示,同时具备开启和全部停止功能,能够实现水塔水位的供水,应用此控制系统能显著提高劳动效率,减少劳动强度。
[关键词] 水位控制、PLC fx2n 自动控制目录摘要1第一章绪论 (3)1.1概述 (3)1.2可编程序控制器(PLC)简介 (3)1.3PLC工作原理 (3)1.4PLC特点 (4)1.5PLC选择 (5)第二章水塔水位系统PLC硬件设计 (6)2.1水塔水位控系统构成及其控制要求 (6)2.1.1水塔水位系统控制装置图 (6)2.1.2 水塔水位系统的输入/输出设备 (6)2.2水塔水位系统电机控制电路的设计 (7)2.3水塔水位系统水位传感器的选择 (8)2.4水塔水位系统PLC的输入/输出分配 (10)2.4.1水塔水位控制系统PLC的输入/输出接口分配表 (10)2.4.2水塔水位控制系统PLC的输入/输出接口接线图 (11)2.5水塔水位系统的元件器件 (12)第三章水塔水位控制系统PLC软件设计 (13)3.1工作过程 (13)3.2程序流程图 (14)3.3梯形图 (15)第四章总结 (16)参考文献 (17)第一章绪论1.1 概述在工业生产中,电流、电压、温度、压力、液位、流量、和开关量等都是常用的主要被控参数。
水塔水位控制系统水塔水位控制系统是一种能够监测和控制水塔水位的智能化系统。
水塔作为储存和供给水源的设施,其水位的控制和管理对于保证正常的供水是至关重要的。
传统的水塔水位控制方式主要依靠人工监测和控制,但这种方式存在人力资源浪费、不够高效和容易出现人为错误等问题。
所以,采用水塔水位控制系统能够实现智能化的水位监测和控制,提高供水管理的效率和质量。
水塔水位控制系统主要由水位传感器、单片机控制器、执行器和数据处理单元组成。
水位传感器用于感知水位的高低,传输给控制器;单片机控制器负责接收并处理传感器传过来的数据,并根据预设的监测参数和逻辑,控制执行器进行相应的调节操作;执行器则根据控制器的指令,控制水流进出水塔,从而调节水位;数据处理单元则负责对监测数据进行存储和分析。
水塔水位控制系统的工作原理如下:首先,水位传感器通过测量水位的高低,将信号传输给控制器。
控制器接收到信号后,通过单片机处理器进行数据处理,并根据事先设定好的监测参数和逻辑进行判断和决策。
例如,当水位过低时,控制器会通过执行器控制阀门打开,让水流进入水塔,增加水位;当水位过高时,控制器则会通过执行器控制泵站排水,降低水位。
这样,系统就能够自动调节水位,保持在合适的范围内。
水塔水位控制系统具有以下几个优点:首先,它能够实现实时监测和控制水位,不需要人工干预,避免了人为错误的发生。
其次,系统具有高度的智能性,可以根据事先设定的参数和逻辑进行自动调节和控制,提高了供水管理的效率和质量。
再次,系统具有较高的可靠性和准确性,传感器精准地测量水位,数据处理单元对监测数据进行存储和分析,保证了数据的准确性和稳定性。
最后,系统结构简单、维护容易,降低了维护成本和管理难度。
水塔水位控制系统的应用范围广泛,可以用于城市供水系统、建筑工地、农田灌溉等多个领域。
在城市供水系统中,水塔水位控制系统能够自动控制和调节水位,保证正常供水,解决人工监测和调节不及时的问题。
6.水塔水位控制器要求:通过对水位下限开关K1和水位上限开关K2的检测,控制抽水电机的运转,实现水塔水位控制在水位上下限之间的目的。
控制功能:利用拨动开关K1和K2模拟水位的上下限检测开关。
利用继电器控制绿色LED的亮与灭代表抽水电机的启动与停止。
系统首次运行时,由于水塔内没有水,因此K1和K2均发出低电平,电机运转(表示电机通电的绿色LED点亮)。
当水位达到水位下限(K1=1)时,电机继续运转,直到水位上升到水位上限(K2=1,K1=1),电机停止运转(表示电机通电的绿色LED熄灭)。
这时,单片机点亮黄色的LED,表示系统处于正常状态。
随着水的使用,水位逐渐下降,当水位下降到水位下限(K1=0,K2=0)时,系统启动抽水电机向水塔内加水,直到水位达到水位上限(K2=1,K1=1)。
在抽水电机向水塔内加水的过程中,若电机启动60秒水位还未达到水位上限,说明电机出现故障,系统应立即关闭抽水电机,同时使红色LED以0.5秒的间隔进行闪动,表示系统出现故障。
当故障排除后,人工搬动拨动开关K3发出一正脉冲,启动系统继续运行。
注意:K1和K2状态的采样,采用20mS定时中断来查询。
使用的主要元器件:8031、6MHz的晶振、74LS373、2764、7407、74LS240、发光二极管L1-L3、拨动开关K1-K3、继电器等。
结果的验证:按照功能要求搬动拨动开关K1-K3,模仿实际运行中的情况,查看系统是否按照要求动作。
同时分析系统中不完善的地方,提出改进建议。
二、课程设计内容:1、硬件设计(1)用80C51设计一个单片机最小控制系统。
其中P1.0接水位下限传感器,P1.1接水位上限传感器,P1.2输出经反相器后接光电耦合器,通过继电器控制水泵工作,P1.3输出经反相器后接LED,当出现故障时LED闪烁;P1.4输出经反相器后接蜂鸣器,当出现故障时报警。
(2)用塑料尺、导线等设计一个水塔水位传感器。
其中A电级置于水位10CM处,接5V电源的正极,B级置于水位15CM处,经4.7K下拉电阻接单片机的P1.0口,C 电级置于水位的20CM处,经4.7K下拉电阻接单片机的P1.1口。
(3)设计一个单片机至水泵的控制电路。
要求单片机与水泵之间用反相器、光电耦合器和继电器控制,计算出LED限流电阻,接好继电器的续流二极管。
2、软件设计(1)根据功能要求画出控制程序流程图。
(2)根据控制程序流程图编写80C51汇编语言或C51程序。
三、功能要求:1、水塔水位下降至下限水位时,启动水泵,水塔水位上升至上限水位则关闭水泵。
2、水塔水位在上、下限水位之间时,水泵保持原状态。
3、供水系统出现故障时,自动报警。
四、调试1、在Kerl-uvision上单步调试,观察累加器寄存器存储器的运行之间是否正常。
2、将程序下载到仿真仪上,进行模拟仿真,检查程序工作是否正常。
3、将模拟水塔、传感器、控制电路和水泵联成一个完整的系统,进行整机调试,观察系统工作是否正常。
摘要供水是一个关系国计民生的重要产业。
近年来随着科技的飞速发展,自动控制水位已经成为了这个领域的发展方向。
本水塔水位控制系统是以80C51单片机为核心设计的系统,首先单片机循环采集传感器的信号并经过处理,然后再发出相应的控制信号,信号经过NPN三极管放大,以及光电耦合,最后使继电器吸合,达到弱电控制强电的效果,让电机运转或停止。
同时,在出现故障时,单片机产生报警信号,控制LED灯的闪烁和蜂鸣器的启动。
关键词:上限下限报警目录一、课程设计题目水塔水位控制系统 (2)二、课程设计的要求 (1)三、课程设计用仪器和器件 (1)四、课程设计的内容 (1)1、水塔水位控制原理 (1)2、硬件设计 (2)3、软件流程 (4)五、课程设计心得体会 (4)六、参考文献 (4)附录:源代码 (5)一、课程设计的目的计算机控制系统课程设计是《计算机控制系统》课程与实验结束后的一门综合性实践课。
所选题目《水塔水位控制》紧密结合所学的主要内容,加深巩固所学知识,同时对所学内容进行扩展,有一定的深度和广度,能充分发挥学生的能动性和想象力。
通过电路设计、安装、调试等一系列环节的实施,提高学生的计算机控制应用系统的设计能力。
二、课程设计的要求1、水塔水位下降至下限水位时,启动水泵上水。
2、水塔水位上升至上限水位时,关闭水泵。
3、水塔水位在上、下限水位之间时,水泵保持原状态。
4、供水系统出现故障时,自动报警。
三、课程设计用仪器和器件硬件:1、塑料桶一个(Φ25-30cm)2、塑料尺30cm 一个3、微型水泵一个4、塑料管2米5、光电耦合器4N25 一个6、12V微型继电器(TWTMP-53) 一个7、电路板(6*4cm)一块8、薄铜片2cm*10cm *o.5mm 一块9、直流稳压电源一台、PC机一台、XL1000/XL2000仿真仪一台。
10、其它:导线2米、二极管一个、PNP三极管一个、4.7K电阻2个、300欧电阻2个,12针排针1片。
软件:keil软件四、课程设计的内容1、水塔水位控制原理图1 水塔水位检测原理图水塔水位控制原理图见图(1),图中两条虚线表示正常工作情况下水位升降的上下限,在正常供水时,水位应控制在两条虚线代表的水位之间。
B测量水位下限,C测量水位上限,A接+5V,B、C接地。
在水塔无水或水位低于下限水位时,B、C为断开,B、C两点电位为零(低电平“0” ),需要水泵供水,单片机输出低电平,控制电机工作供水。
水位上升到B点,B接通,B点电位变为高电平“1”,C开关仍断开,C点仍为低电平,维持现状水泵继续供水。
当水位上升到C点时,C接通。
这时B、C均接通,B、C两点都为高电平,表示水塔水位已满,需水泵停止供水,单片机输出高电平,电机断电停止供水。
水塔水位开始下降,水位在降到B点之前,B点电位为高、C点电位为低,单片机输出控制电平维持不变,仍为高。
当水位降到B 点以下,B、C两点电平都为低时,单片机输出控制电平又变低.水泵供水。
2、硬件设计图2 水塔水位控制硬件图(1)如图:用80C51设计一个单片机最小控制系统。
其中P1.0接水位下限传感器;P1.1接水位上限传感器;P1.2输出经Q0电流放大后接光电耦合器,接通继电器,带动电机控制水泵工作;P1.3输出经反相器后接LED,当出现故障时LED 闪烁;P1.4输出经反相器后接蜂鸣器,当出现故障时报警。
(2)用塑料尺、导线等设计一个水塔水位传感器。
其中A电极置于水位10cm 处,接5V电源的正极;B电极置于水位15cm处,经5.1K的下拉电阻接单片机的P1.0口;C电极置于水位20cm处,经5.1K的下拉电阻接单片机的P1.1口。
(3)两个水位信号由P1.0和P1.1输入,这两个信号共有四种组合状态。
如表1所示。
其中第三种组合(b=1、c=0)正常情况下是不能发生的,但在设计中还C(P1.1) B(P1.0) 操作0 0 电机运转0 1 维持原状1 0 故障报警1 1 电机停转表1 水塔水位信号状态表(4)光电耦合器4N25光电耦合器是以光为媒介传输电信号的一种电一光一电转换器件。
它由发光源和受光器两部分组成。
把发光源和受光器组装在同一密闭的壳体内,彼此间用透明绝缘体隔离。
发光源的引脚为输入端,受光器的引脚为输出端,常见的发光源为发光二极管,受光器为光敏二极管、光敏三极管等等。
在光电耦合器输入端加电信号使发光源发光,光的强度取决于激励电流的大小,此光照射到封装在一起的受光器上后,因光电效应而产生了光电流,由受光器输出端引出,这样就实现了电一光一电的转换。
图2 光电耦合器4N25引脚图(5)继电器继电器是一种电控制器件。
它具有控制系统(又称输入回路)和被控制系统(又称输出回路)之间的互动关系。
通常应用于自动化的控制电路中,它实际上是用小电流去控制大电流运作的一种“自动开关”。
故在电路中起着自动调节、安全保护、转换电路等作用。
3、软件流程图3 软件流程图源代码:见附录五、课程设计心得体会这次的课程设计,使我得到了一次用专业知识、专业技能分析和解决问题全面、系统的锻炼。
使我在单片机的基本原理、计算机控制系统开发过程,以及在常用编程设计思路技巧的掌握方面都能向前迈了一大步。
在这个课程的过程中,给我留下最深印象的是,一个系统的设计和焊接或许很容易,但是在不能实现其功能时如何检查出错误才是一门真正的艺术,这里凝聚了我们所学的所有技能。
与此同时我还学会了如何去培养我们的创新精神,从而不断地战胜自己,超越自己,为日后成为合格的应用型人才打下良好的基础,这将是我求职道路上一笔重要的财富。
六、参考文献[1]李全利. 单片机原理及接口技术. 北京:高等教育出版社,2009.[2]盛珣华,李润梅. 计算机控制系统. 北京:清华大学出版社,北京交通大学出版社,2007.附录:源代码#include <reg52.h>sbit b=P1^0;sbit c=P1^1;sbit d=P1^2;sbit led=P1^3;sbit fly=P1^4;void delay(void) //误差0us {unsigned char a,b,c;for(c=167;c>0;c--)for(b=171;b>0;b--)for(a=16;a>0;a--); }void main(){while(1){P1=0xfc;if(c==0)d=0;if(c==1){led=0;fly=0;}if(b==1&&c==1){d=1;led=1;fly=1;}delay();}}。