裂隙岩体表征单元体及尺寸效应研究进展_王晓明
- 格式:pdf
- 大小:808.74 KB
- 文档页数:9
岩体结构面抗剪强度尺寸效应试验技术与系统研制
岩体结构面抗剪强度尺寸效应试验技术与系统研制是指针对岩体结构面(如节理、裂隙等)的抗剪强度进行尺寸效应试验的技术与系统的开发工作。
岩体结构面的抗剪强度是指岩体结构面在受到剪切作用时能够承受的最大剪应力。
由于不同尺寸的结构面具有不同的力学性质,因此岩体结构面的抗剪强度会随着尺寸的变化而改变,即存在尺寸效应。
为了研究岩体结构面的抗剪强度尺寸效应,需要开发相应的试验技术与系统。
其中,试验技术包括确定试验方案、制作试样、测量试验数据等;而试验系统则包括试验设备、数据采集系统、数据处理与分析软件等。
研制岩体结构面抗剪强度尺寸效应试验技术与系统需要结合岩石力学、土木工程、计算机科学等多个学科的知识,以保证试验结果的准确性和可靠性。
岩体结构面抗剪强度尺寸效应试验技术与系统的研制对于深入理解岩体结构面力学行为,提高岩体力学模型的可靠性和精度具有重要意义。
它可以为岩石力学研究、岩土工程设计、地质灾害预测与评估等领域提供有效的技术支持。
基于CT的岩石三维裂隙定量表征及扩展演化细观研究一、本文概述随着科学技术的发展,尤其是计算机断层扫描(CT)技术的广泛应用,岩石内部细微结构的研究进入了全新的阶段。
岩石作为一种典型的非均质材料,其内部存在着大量复杂的裂隙结构,这些结构对岩石的物理力学性质具有重要的影响。
因此,对岩石裂隙进行定量表征及扩展演化的细观研究,对于理解岩石的力学行为、预测地质灾害、优化岩石工程设计等都具有重要的理论和实践意义。
本文旨在通过基于CT的岩石三维裂隙定量表征及扩展演化细观研究,深入探讨岩石内部裂隙的三维几何特征、分布规律以及在外界条件作用下的扩展演化过程。
研究内容包括但不限于:利用CT技术获取岩石内部裂隙的三维图像数据,通过图像处理和分析技术提取裂隙的几何参数,建立裂隙的三维模型;分析裂隙在不同尺度下的分布规律和统计特性,揭示裂隙网络的复杂性;研究在外部应力、温度、渗流等条件下,裂隙的扩展演化规律和机制,预测岩石的破坏行为。
本文的研究方法和技术手段包括CT扫描技术、图像处理技术、三维建模技术、统计分析方法以及数值模拟技术等。
通过这些方法的综合运用,期望能够实现对岩石裂隙的精确表征和深入理解,为岩石力学和相关领域的研究提供新的思路和方法。
本文的研究结果也将为岩石工程的实践提供有益的参考和指导。
二、岩石三维裂隙CT扫描技术与数据处理岩石的三维裂隙定量表征首先依赖于高精度的CT扫描技术。
CT 扫描技术,即计算机断层扫描技术,以其非破坏性、高分辨率和强大的三维重建能力,在岩石力学、地质工程和其他相关领域得到了广泛应用。
CT扫描通过获取物体内部不同角度的射线投影图像,再经过特定的算法重构出物体的内部三维结构,为岩石内部裂隙的精细观察提供了有力手段。
在岩石CT扫描过程中,首先需要对岩石样品进行预处理,如表面清洁、固定和标记等,以确保扫描结果的准确性和可对比性。
随后,将岩石样品置于CT扫描设备中,通过精确控制扫描参数,如射线能量、曝光时间、扫描角度等,获取高质量的投影图像数据。
《裂隙岩体渗流—损伤—断裂耦合理论及应用研究》篇一裂隙岩体渗流-损伤-断裂耦合理论及应用研究摘要:本文旨在探讨裂隙岩体中渗流、损伤和断裂之间的耦合关系,并对其理论及应用进行深入研究。
文章首先介绍了裂隙岩体的基本特性及研究背景,然后详细阐述了渗流-损伤-断裂的耦合机制,接着分析了国内外研究现状,并给出了实际工程中的应用案例,最后总结了该研究的意义及未来研究方向。
一、引言随着能源开发、地下工程及地质灾害防治等领域的快速发展,裂隙岩体的稳定性问题愈发突出。
岩体中的渗流、损伤及断裂现象,对工程安全和环境保护具有重要意义。
裂隙岩体中渗流、损伤与断裂之间的相互作用机制十分复杂,三者的耦合关系直接关系到岩体的整体稳定性。
因此,对裂隙岩体渗流-损伤-断裂耦合理论及应用进行研究具有重要的理论价值和实际意义。
二、裂隙岩体基本特性与研究背景裂隙岩体是具有多尺度、多相性和非均匀性的地质介质。
岩体中的裂隙不仅影响岩体的渗流特性,还对岩体的强度和稳定性产生重要影响。
因此,理解裂隙岩体的基本特性及其对外部因素(如渗流、荷载等)的响应机制,是研究渗流-损伤-断裂耦合关系的基础。
三、渗流-损伤-断裂的耦合机制1. 渗流对岩体损伤与断裂的影响:岩体中的渗流会导致岩体内部应力分布的改变,进而引发或加速岩体的损伤与断裂。
2. 损伤对渗流特性的影响:岩体发生损伤后,其内部结构发生变化,导致渗流路径和渗流速度发生改变。
3. 断裂与渗流的相互影响:岩体中的断裂面往往成为渗流的通道,而渗流也会对断裂面的扩展和稳定性产生影响。
四、国内外研究现状及分析近年来,国内外学者在裂隙岩体渗流-损伤-断裂耦合关系方面取得了显著的进展。
在理论方面,建立了基于连续介质和离散介质的多尺度模型,为研究提供了理论支持。
在应用方面,已将该理论成功应用于地下工程、能源开发及地质灾害防治等领域。
然而,仍存在一些挑战和问题需要进一步研究,如模型参数的确定、复杂环境下的实验验证等。
不同岩石巴西劈裂强度的尺寸效应徐燕飞;赵伏军;王国举;周升民【期刊名称】《矿业工程研究》【年(卷),期】2012(027)004【摘要】通过对3种厚度在20-50mm不等的圆柱形岩石试样进行巴西劈裂试验,采用统计和回归的方法分析了试样厚度对岩石劈裂强度的影响,得出单轴抗压强度越大的岩石,巴西劈裂强度的尺寸效应越明显;不同岩石劈裂强度的尺寸效应各有不同,白色大理石劈裂强度随试样厚度增加呈线性减小,硅质砂岩劈裂强度随试样厚度增加呈线性增大,炭质泥岩劈裂强度随厚度增加呈指数增大.拟合这3种岩石劈裂强度与厚度关系的函数,相关系数都在0.99以上.试验结果还表明,不同岩石劈裂时横向应变和轴向应变也受试样厚度的影响,存在明显的应变尺寸效应.【总页数】6页(P7-12)【作者】徐燕飞;赵伏军;王国举;周升民【作者单位】湖南科技大学能源与安全工程学院,湖南湘潭411201;湖南科技大学能源与安全工程学院,湖南湘潭411201 湖南科技大学煤矿安全开采技术湖南省重点实验室,湖南湘潭411201;湖南科技大学能源与安全工程学院,湖南湘潭411201;山西潞安集团左权佳瑞煤业有限公司,山西晋中032600【正文语种】中文【中图分类】TD315【相关文献】1.岩石巴西劈裂强度与裂纹扩展颗粒尺寸效应研究 [J], 黄彦华;杨圣奇;鞠杨;周小平;赵坚2.红砂岩巴西劈裂强度和极限应变的尺寸效应 [J], 李颖;王贾博3.固井水泥石巴西劈裂强度尺寸效应试验 [J], 温曹轩;陈美杰;吴羿君;潘博翔;杨婷娟;高源;贾善坡4.砂岩巴西劈裂抗拉强度的尺寸效应研究 [J], 徐快乐; 刘聪颖; 倪鑫; 朱余; 宛良朋; 邓华锋5.基于颗粒流的巴西劈裂抗拉强度的尺寸效应研究 [J], 窦浩宇因版权原因,仅展示原文概要,查看原文内容请购买。
岩体表征单元体与岩体力学参数岩体表征单元体与岩体力学参数是岩石力学领域中的两个重要概念,它们的理解和应用对于岩石力学的研究和应用具有重要的作用。
本文将从以下几个步骤分别进行阐述。
第一步,解释岩体表征单元体的概念。
岩体表征单元体是指在岩石力学研究中所采用的岩石试件形状和尺寸。
在实际应用中,岩体表征单元体的形状和尺寸应当与实际岩体形态和尺寸相符,以尽可能地保证试验结果的可靠性和适用性。
因此,选择合适的岩体表征单元体形状和尺寸是进行岩石力学研究的基本前提。
第二步,说明岩体力学参数的意义。
岩体力学参数是指描述岩体力学特性的物理量。
它们反映了岩石的强度、变形、破坏等方面的特性。
岩体力学参数的获取和测试对于岩石力学研究以及工程应用有着非常重要的意义。
例如,在岩石开采工程中,需要通过岩体力学参数的测试来预测岩石的破坏模式、确定开采工作面的稳定性等。
第三步,阐述岩体表征单元体对岩体力学参数的影响。
岩体表征单元体形状和尺寸的不同会对岩体力学参数的测试结果产生明显的影响。
例如,岩体表征单元体尺寸较小时,试样内部所承受的应力大,破坏模式更倾向于直接破坏,导致强度参数较高;而岩体表征单元体尺寸较大时,试验结果更符合岩体整体特性。
因此,选择合适的岩体表征单元体形状和尺寸,有助于准确获取岩体力学参数。
第四步,介绍常用的岩体表征单元体和岩体力学参数测试方法。
常见的岩体表征单元体有直径为50mm的圆形试样、50mm×100mm的矩形试样、50mm×100mm×100mm的长方体试样等。
而岩体力学参数的测试方法包括拉伸试验、压缩试验、剪切试验等。
在实际工程应用中,选择合适的岩体表征单元体和测试方法非常重要。
综上所述,岩体表征单元体和岩体力学参数是岩石力学领域的两个重要概念。
选择合适的岩体表征单元体形状和尺寸以及测试方法,对于准确获取并应用岩体力学参数具有重要的意义。
在进一步的岩石力学研究和应用中,我们需要更深入地探究这些概念以及它们之间的关系。