3.1 焊缝的成分、组织与性能
- 格式:ppt
- 大小:363.00 KB
- 文档页数:34
金属材料焊接练习题库及答案一、判断题(共100题,每题1分,共100分)1、焊接是通过加热或加压 ,或两者并用,并且用或不用填充材料 ,使焊件达到原子结合的一种加工方法。
()A、正确B、错误正确答案:A2、起重机械是指用于垂直升降或者垂直升降并水平移动重物的机电设备。
()A、正确B、错误正确答案:A3、熔化极氩弧焊的供气系统和钨极氩弧焊不同。
()A、正确B、错误正确答案:B4、螺柱焊焊接时,应保持焊枪与工件表面垂直。
( )A、正确B、错误正确答案:A5、低合金高强钢焊接时,适当提高预热温度和增加焊接线能量可以防止产生冷裂纹。
A、正确B、错误正确答案:A6、镍和铜可以无限互溶,所以镍铜合金不存在晶间腐蚀问题。
( )A、正确B、错误正确答案:A7、射线照相底片上的白色宽带表示焊缝,白色宽带中的黑色斑点或条纹就表示焊接缺陷。
()A、正确B、错误正确答案:A8、等离子弧是压缩电弧。
( )A、正确B、错误正确答案:A9、采用接触引弧法是手工钨极氩弧焊最好的引弧方法。
( )A、正确B、错误正确答案:B10、电渣焊时熔化金属表面覆盖一层熔渣,因此氧化现象不严重。
( )A、正确B、错误正确答案:B11、工业纯钛可采用焊条电弧焊方法进焊接。
( )A、正确B、错误正确答案:B12、焊缝金属的力学性能和焊接热输入量无关。
()A、正确B、错误正确答案:B13、“J422”是结构钢焊条牌号完整的表示方法,其中“42”表示焊缝金属的主要化学成分等级。
()A、正确B、错误正确答案:B14、钨极氩弧焊接头起弧时, 应注意形成熔池后, 再填加焊丝。
( )A、正确B、错误正确答案:A15、奥氏体不锈钢主要的腐蚀形式是晶间腐蚀。
()A、正确B、错误正确答案:A16、焊接时,焊接电流越大,越有利于熔渣的悬浮和分离,越不易产生夹渣,因此,焊接电流越大越好。
( )A、正确B、错误正确答案:B17、严禁在尚有压力的容器或管道上进行焊接。
1、焊接接头的组成,影响焊接接头组织和性能的因素。
(1)接头组成:包括焊缝、熔合区和热影响区。
(2)组织1)焊缝区接头金属及填充金属熔化后,又以较快的速度冷却凝固后形成。
焊缝组织是从液体金属结晶的铸态组织,晶粒粗大,成分偏析,组织不致密。
但是,由于焊接熔池小,冷却快,化学成分控制严格,碳、硫、磷都较低,还通过渗合金调整焊缝化学成分,使其含有一定的合金元素,因此,焊缝金属的性能问题不大,可以满足性能要求,特别是强度容易达到。
2)熔合区熔化区和非熔化区之间的过渡部分。
熔合区化学成分不均匀,组织粗大,往往是粗大的过热组织或粗大的淬硬组织。
其性能常常是焊接接头中最差的。
熔合区和热影响区中的过热区(或淬火区)是焊接接头中机械性能最差的薄弱部位,会严重影响焊接接头的质量。
3)热影响区被焊缝区的高温加热造成组织和性能改变的区域。
低碳钢的热影响区可分为过热区、正火区和部分相变区。
(1)过热区最高加热温度1100℃以上的区域,晶粒粗大,甚至产生过热组织,叫过热区。
过热区的塑性和韧性明显下降,是热影响区中机械性能最差的部位。
(2)正火区最高加热温度从Ac3至1100℃的区域,焊后空冷得到晶粒较细小的正火组织,叫正火区。
正火区的机械性能较好。
(3)部分相变区最高加热温度从Ac1至Ac3的区域,只有部分组织发生相变,叫部分相变区。
此区晶粒不均匀,性能也较差。
在安装焊接中,熔焊焊接方法应用较多。
焊接接头是高温热源对基体金属进行局部加热同时与熔融的填充金属熔化凝固而形成的不均匀体。
根据各部分的组织与性能的不同,焊接接头可分为三部分。
,在焊接发生熔化凝固的区域称为焊缝,它由熔化的母材和填充金属组成。
而焊接时基体金属受热的影响(但未熔化)而发生金相组织和力学性能变化的区域称为热影响区。
熔合区是焊接接头中焊缝金属与热影响区的交界处,熔合区一彀很窄,宽度为0.1~0.4mm。
(3)影响焊接接头性能的因素焊接材料焊接方法焊接工艺2、减少焊接应力常采用的措施有哪些?(1)选择合理的焊接顺序(2)焊前预热(3)加热“减应区”(4)焊后热处理3焊接变形的基本形式有哪些?消除焊接变形常用的措施有哪些?(1)焊接变形1)收缩变形2)角变形3)弯曲变形4)波浪形变形5)扭曲变形(2)措施1)合理设计焊接构件2)采取必要的技术措施①反变形法②加裕量法③刚性夹持法④选择合理的焊接顺序⑤采用合理的焊接方法4、为什么要对焊接冶金过程进行保护?采用的保护技术措施有哪些?焊接冶金过程特点:电弧焊时,被熔化的金属、熔渣、气体三者之间进行着一系列物理化学反应,如金属的氧化与还原,气体的溶解与析出,杂质的去除等。
焊缝组织特点
焊缝由焊缝金属和热影响区组成。
焊缝组织特点如下:
一、焊缝金属
焊接加热时,焊缝处的温度在液相线以上,母材与填充金属形成共同熔池,冷凝后成为铸态组织。
在冷却过程中,液态金属自熔合区向焊缝的中心方向结晶,形成柱状晶组织。
由于焊条芯及药皮在焊接过程中具有合金化作用,焊缝金属的化学成分往往优于母材,只要焊条和焊接工艺参数选择合理,焊缝金属的强度一般不低于母材强度。
二、热影响区
在焊接过程中,焊缝两侧金属因焊接热作用而产生组织和性能变化的区域。
一、填空题1.将加工好的零、部件,采用适当的工艺方法,按生产图样和技术要求连接成部件或整个产品的工艺过程,称为()。
装配2.焊接生产中常用热处理法来消除焊接残余应力,常用的热处理方法有()和局部热处理。
整体热处理3.板厚小于6mm的薄板焊接时,易发生()变形。
波浪变形4.焊接应力按产生的原因分为热应力、相变应力和()。
塑变应力5.焊接结构装配的三个基本条件是()、夹紧和测量。
定位6.焊接接头的基本形式有四种:()、()、T形接头和角接接头等。
对接接头;搭接接头7.焊接变形有五种基本形式有()、()、弯曲变形、波浪变形和扭曲变形。
收缩变形;角变形8.焊接接头的两个基本属性是()和()。
不均匀性;应力集中10.焊接时加热那些阻碍焊接区自由伸缩的部位(称)使之与焊接区同时膨胀和同时收缩,起到减小焊接残余应力的作用,此法称为()。
加热减应区法11.焊接结构生产中常见的测量项目有()、平行度测量、垂直度测量、同轴度测量和角度测量。
线性尺寸的测量12.钢材除锈有时用化学除锈法,化学除锈法一般分为()和碱洗法。
酸洗法13.矫正焊接变形的方法有手工矫正法、机械矫正法和()。
火焰加热矫正14.焊接结构的疲劳强度,在很大程度上决定于构件中的()情况。
应力集中15.刚性固定法、反变形法主要用来预防焊接梁焊后产生的()变形和()变形。
弯曲;角16.调节焊接应力的主要措施有()措施、()措施、焊后()措施。
设计、工艺、热处理17.对接接头静载强度计算时,不考虑焊缝()。
余高18.根据应力作用方向,焊接应力可分为()向应力和()向应力。
纵;横19.影响弯曲变形的主要因素是压缩塑性变形区的()、焊缝()、焊件()。
宽度;位置;刚性20.角变形与焊接(),接头(),坡口()等因素有关。
参数;形式;角度21.火焰加热矫正法常用的加热方式有()加热、()加热、和()加热三种形式。
点状;线状;三角形22.反变形法主要用来消除焊件的()变形和()变形。
第二节:常用熔焊方法3 焊条:指涂有药皮的供焊条电弧焊用的熔化电极3.1 焊条的组成及作用组成:焊条由焊芯(金属芯)和药皮组成,如图6-2-5。
图6-2-5 焊条3.1.1 焊芯作用:(1)作为电极,传导焊接电流,产生电弧;(2)作为填充金属,与熔化的母材金属共同组成焊缝金属,占整个焊缝金属的50~70%。
(3)添加合金元素焊芯是采用焊接专用纲丝制成,是经过特殊冶炼而成,该焊接专用钢丝称为焊丝。
焊丝的牌号,:“H××元素符号×符号”,其中H表示焊接用钢丝,××表示钢丝中平均含碳量的万分之几,元素符号表钢丝中的合金元素,×表示合金元素的百分含量,小于1%不标出,最后符号表示其质量,A表示优质,E表示高级优质。
如:H08Mn2SiA表示含C为0.08%,含Mn为2%,含Si为1%的优质焊丝常用焊芯直径(即为焊条直径),最小为0.4mm,最大为9mm(如:1.6、2.0、2.5、3.2、4、5mm等),以直径为3.2~5mm的应用最广,长度常在200~450mm之间;根据被焊金属,可选用相应的焊丝作为焊芯。
3.1.2 药皮作用:(1)改善焊接工艺性棗易于引弧和再引弧,稳弧性好,减少飞溅,使焊缝成形美观。
(2)机械保护作用──气保护和渣保护。
(3)冶金处理作用──去除有害杂质(如O.H.S.P等),添加有益元素。
常有焊条药皮原料的种类、名称和作用如下表:3.2 焊条的分类、牌号及型号3.2.1 焊条的分类:(1)按用途分可分为:碳钢焊条,低合金钢焊条、不锈钢焊条、堆焊焊条、铸铁焊条、镍及镍合金焊条、铝及铝合金焊条、铜及铜合金焊条,特殊用途焊条等。
(2)按熔渣性质分可分为:酸性焊条和碱性焊条酸性焊条:指熔渣以酸性氧化物(如SiO2、TiO2等)为主的焊条。
碱性焊条:指熔渣以碱性氧化物(如CaO、FeO、MgO等)和萤石(CaF2)为主的焊条。
酸性焊条和碱性焊条相比,碱性焊条具有以下特点:1)机械性能好──碱性焊条的焊缝金属中,有益元素(如Mn)比酸性焊条多,有害元素(如S.H.O.P.N等)比酸性焊条少。
奥氏体不锈钢焊缝金相组织概述及解释说明1. 引言1.1 概述奥氏体不锈钢焊缝金相组织是在焊接过程中形成的一种重要结构性特征。
通过对奥氏体不锈钢焊缝金相组织的研究,可以深入了解这种材料的性能、强度和耐蚀性等方面。
本文旨在概述和解释奥氏体不锈钢焊缝金相组织的相关内容。
1.2 文章结构本文共分为五个部分:引言、奥氏体不锈钢焊缝金相组织概述、焊缝金相组织的影响因素解释说明、常见奥氏体不锈钢焊缝金相组织类型解析以及结论及未来展望。
每个部分将逐步展开,并提供相关背景知识和详细阐述。
1.3 目的本文旨在对奥氏体不锈钢焊缝金相组织进行全面的概述和解释,明确其形成过程和相关特征。
此外,文章还将探讨影响焊缝金相组织形成的关键因素,并对常见的奥氏体不锈钢焊缝金相组织类型进行详尽分析。
最后,文章将总结主要观点和发现,并提出未来研究方向的展望。
注意:以上是根据给定的大纲所撰写的引言部分,供参考。
具体内容可根据实际需要进行调整和修改。
2. 奥氏体不锈钢焊缝金相组织概述:2.1 奥氏体不锈钢介绍奥氏体不锈钢是一种常见的不锈钢类型,其主要合金元素为铬和镍,同时含有较低的碳含量。
这种合金具有优异的耐腐蚀性能、高强度和良好的可塑性,广泛应用于各个领域,如化工、海洋工程、航空航天等。
2.2 焊缝形成过程在奥氏体不锈钢焊接过程中,由于高温下熔融状态的存在,原材料经过热处理产生了焊缝区域。
在焊接完成后,在焊缝区域会形成一定的金相组织结构。
2.3 金相组织概念及重要性说明金相组织是指材料内部或表面存在的显微结构和相态分布。
对于奥氏体不锈钢焊缝来说,其金相组织决定了焊缝区域的性能特点和使用寿命。
通过对金相组织进行观察和分析,可以评估焊接质量、检测是否存在缺陷和预测材料的性能。
金相组织对奥氏体不锈钢焊缝的重要性主要表现在以下几个方面:- 影响焊接接头的力学性能:金相组织中晶粒尺寸、形状和分布对焊接接头的强度、韧性以及抗拉伸和压缩等力学性能有直接影响。