第三章 非晶态固体
- 格式:pdf
- 大小:324.08 KB
- 文档页数:5
第三章 非 晶 态 固 体3-1 试述石英晶体、石英熔体、Na 2O ·2 SiO 2熔体结构和性质上的区别。
如何用实验方法来区分它们?3-2 试证明下面两式相等;11111111K K Mo nMo Mo n αααα⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+-= ⎪⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎪⎭⎫⎝⎛-+=-Mo Mo n Mo Mo n K K N αααα111)1(1111111 3-3 熔体粘度在727℃时是108泊,在1156℃时是10`泊,在什么温度下它是104泊?(用解之)(/lg K T B A +=η) 3-4 试用0l T T FE g -+=η方程式,绘出下列两种熔体在1350~500℃间的粘性曲线(1~lg η)。
两种熔体常数如下:3-5 一种熔体在1300℃的粘度是3100泊,在800℃是108泊,在1050℃时其粘度为多少?在此粘度下急冷,是否形成玻璃?3-6 从以下两种釉式中,,你能否判断两者的熔融温度、粘度、表面张力上的差别?说明理由。
(1)32232225.01.23.03.03.02.02.0O B SiO O Al PbO CaO O Na O K ⎪⎪⎭⎪⎪⎬⎫(2)23220.101.16.02.02.0SiO O Al CaO MgO O K ⎪⎭⎪⎬⎫3-7 SiO 2熔体的粘度在1000℃时为108泊,在1400℃时为108泊。
SiO 2玻璃粘滞流动的活化能是多少?上述数据是在恒压下取得,如果在恒容下得到,你预计活化能会不同吗?为什么?3-8 名词解释(并比较其异同)(1)玻璃体和熔体(2)Tg和T f(3)玻璃分相和玻璃析晶(4)亚稳分解与不稳分解(5)硅酸盐玻璃和硼酸盐玻璃3-9 试用实验方法鉴别晶体SiO2, SiO2玻璃、硅胶和熔融二氧化硅。
并从结构角度来解释这些同质异构体。
3-10 结构上比较硅酸盐晶体与硅酸盐玻璃的区别。
非晶态固体结构特征
非晶态固体(amorphous solid)是指由无规则排列的分子、离子或
原子组成的物质,其结构特征如下:
1.无明显的晶体结构:非晶固体没有周期性的晶格结构,因此缺乏晶
体的各种晶界、晶面等表面特征。
2.高度的随机性:非晶固体的分子、离子或原子之间的排列没有规则
的周期性,呈现出高度的随机性和不对称性。
3.无法通过X射线衍射得到衍射图:非晶固体的衍射图不具有明显的
衍射峰,而是呈现出一种连续的背景。
4.动态性:非晶固体的分子、离子或原子之间存在着不断的微小振动,使得其结构不停地产生变化。
5.多样性:非晶固体的结构可以相当复杂,不同的非晶固体之间存在
着巨大的结构差异。
由于非晶固体结构特征的多样性和随机性,其研究十分复杂。
但与晶
体不同的是,非晶固体具有许多优异的物理性质,例如高强度、高刚度、
低气孔率、优异的耐腐蚀性等,因此在许多应用领域中得到了广泛的应用。
非晶态固体物理学非晶态固体物理学(Amorphous Solid Physics),是材料科学中一个很重要的分支研究领域。
其研究范围涉及从非晶态材料的制备、表征、低温物理性质,到非晶态固体的应用等。
今天,我将围绕着这个话题,向大家介绍非晶态固体物理学的相关知识。
第一步:概念介绍所谓非晶态固体,指的是在结晶和液态之间的一种状态。
它的特点是具有高度无序的原子排列结构,因而也被称为无序固体。
非晶态固体没有明确的晶格结构,大多数都是在高温状态下制备而成。
而非晶态固体物理学则是研究这种材料的物理性质和相关应用的学科。
第二步:制备方法目前,在制备非晶态材料方面,主要使用的是快速冷却技术。
其核心思想是将高温合金明显过冷却到玻璃态,如此可以使材料的制备工艺不受约束,并将许多性质调制成很宽的范畴。
快速冷却即是通过超过数十万度每秒的速率将材料从液态快速冷却到固态。
这种制备方式的优点是可以制备出具有复杂原子结构的非晶材料,并且可以得到很高的玻璃形态。
第三步:性质研究非晶态固体物理学的核心之一是探究非晶态材料与其它材料之间的相互作用。
非晶态固体的物理性质主要表现在两个方面:第一,非晶态固体的各向异性性质较差,这使得它在接触中其他物质时具有良好的适应性,减少了晶体材料表面上的晶行导致的断口;第二,非晶态固体的强度和塑性特性均较高,使其在工程材料中具有广泛的应用前景。
第四步:应用领域除了了解非晶态固体的基础物理特性之外,它还有许多重要的应用领域。
其中之一是聚类基础的功能性玻璃,可以应用在光电子设备、传感器、存储器,以及生物医药等领域。
此外,非晶态固体还被广泛应用于意大利NASA天主教大学等地的研究中,以探究类似恒星形成、物质相互作用及类似气溶胶的物理过程。
总之,非晶态固体物理学是一个广泛而有趣的领域,涉及到多个方面的理论和实践知识。
十分值得科研工作者和材料科学家去探究和挖掘。
第三章熔体与非晶态固体知识点:1.黏度与组成的关系答:组成是通过改变熔体结构而影响黏度的。
①一价金属氧化物碱金属氧化物R2O引入到硅酸盐熔体中,使熔体黏度降低。
在简单碱金属硅酸盐系统(R2O—SiO2)中,碱金属离子R+对黏度的影响与其本身的含量有关。
当R2O含量较低时(O/Si比值较低),加入的正离子的半径越小,降低黏度的作用就越大,起次序是:L i+>Na+>K+;当熔体中R2O含量较高(O/Si比值较高)时,R2O对黏度影响的次序是:L i+>Na+>K+。
②二价金属氧化物二价碱土金属氧化物对黏度的影响比较复杂,综合各种效应,R2+降低黏度的次序是:Pb2+>Ba2+>Sr2+>Cd2+>Ca2+>Zn2+>Mg2+.③高价金属氧化物一般地,在熔体中引入SiO2、Al2O3、B2O3、ZrO2等高价氧化物时,会导致黏度升高。
2.硼反常现象:当数量不多的碱金属氧化物同B2O3一起熔融时,碱金属所提供的氧不像熔融SiO2玻璃中作为非桥氧出现在结构中,而是使硼氧三角体转变为由桥氧组成的硼氧四面体,致使B2O3玻璃从原来两度空间的层状结构部分转变为三度空间的架状结构,从而加强了网络结构,并使玻璃的各种物理性能变好。
这与相同条件下的硅酸盐玻璃相比,其性能随碱金属或碱土金属加入量的变化规律相反,所以称之为硼反常现象。
3.非晶态固体——玻璃的通性①各项同性:无内应力存在的均质玻璃在各个方向的物理性质,如折射率、硬度、导电性、弹性模量、热膨胀系数、导热系数等都是相同的;②热力学介稳性:玻璃具有析晶不稳定性与析晶困难相对稳定性的统一;③熔融态向玻璃态转化的可逆性与渐变性:熔体向玻璃体转化的过程是在较宽的温度范围内完成得,随着温度的下降,熔体的黏度越来越大,且变化是连续的,最后形成固相的玻璃,其间没有新相出现,因此具有渐变性;由玻璃加热变为熔体的过程也是渐变的,因此具有可逆性。
④熔融态向玻璃态转化时物理、化学性质随温度变化的连续性⑤物理、化学性质随成分变化的连续性。