第四章 非晶态固体
- 格式:ppt
- 大小:626.00 KB
- 文档页数:11
第四章⾮晶态结构与性质第四章⾮晶态结构与性质内容提要熔体和玻璃体是物质另外两种聚集状态。
相对于晶体⽽⾔,熔体和玻璃体中质点排列具有不规则性,⾄少在长距离范围结构具有⽆序性,因此,这类材料属于⾮晶态材料。
从认识论⾓度看,本章将从晶体中质点的周期性规则形排列过渡到质点微观排列的⾮周期性、⾮规则性来认识⾮晶态材料的结构和性质。
熔体特指加热到较⾼温度才能液化的物质的液体,即较⾼熔点物质的液体。
熔体快速冷却则变成玻璃体。
因此,熔体和玻璃体是相互联系、性质相近的两种聚集状态,这两种聚集状态的研究对理解⽆机材料的形成和性质有着重要的作⽤。
传统玻璃的整个⽣产过程就是熔体和玻璃体的转化过程。
在其他⽆机材料(如陶瓷、耐⽕材料、⽔泥等)的⽣产过程中⼀般也都会出现⼀定数量的⾼温熔融相,常温下以玻璃相存在于各晶相之间,其含量及性质对这些材料的形成过程及制品性能都有重要影响。
如⽔泥⾏业,⾼温液相的性质(如粘度、表⾯张⼒)常常决定⽔泥烧成的难易程度和质量好坏。
陶瓷和耐⽕材料⾏业,它通常是强度和美观的有机结合,有时希望有较多的熔融相,⽽有时⼜希望熔融相含量较少,⽽更重要的是希望能控制熔体的粘度及表⾯张⼒等性质。
所有这些愿望,都必须在充分认识熔体结构和性质及其结构与性质之间的关系之后才能实现。
本章主要介绍熔体的结构及性质,玻璃的通性、玻璃的形成、玻璃的结构理论以及典型玻璃类型等内容,这些基本知识对控制⽆机材料的制造过程和改善⽆机材料性能具有重要的意义。
4.1 熔体的结构⼀、对熔体的⼀般认识⾃然界中,物质通常以⽓态、液态和固态三种聚集状态存在。
这些物质状态在空间的有限部分则称为⽓体、液体和固体。
固体⼜分为晶体和⾮晶体两种形式。
晶体的结构特点是质点在三维空间作规则排列,即远程有序;⾮晶体包括⽤熔体过冷⽽得到的传统玻璃和⽤⾮熔融法(如⽓相沉积、真空蒸发和溅射、离⼦注⼊等)所获得的新型玻璃,也称⽆定形体,其结构特点是近程有序,远程⽆序。
非晶态固体物理学非晶态固体物理学(Amorphous Solid Physics),是材料科学中一个很重要的分支研究领域。
其研究范围涉及从非晶态材料的制备、表征、低温物理性质,到非晶态固体的应用等。
今天,我将围绕着这个话题,向大家介绍非晶态固体物理学的相关知识。
第一步:概念介绍所谓非晶态固体,指的是在结晶和液态之间的一种状态。
它的特点是具有高度无序的原子排列结构,因而也被称为无序固体。
非晶态固体没有明确的晶格结构,大多数都是在高温状态下制备而成。
而非晶态固体物理学则是研究这种材料的物理性质和相关应用的学科。
第二步:制备方法目前,在制备非晶态材料方面,主要使用的是快速冷却技术。
其核心思想是将高温合金明显过冷却到玻璃态,如此可以使材料的制备工艺不受约束,并将许多性质调制成很宽的范畴。
快速冷却即是通过超过数十万度每秒的速率将材料从液态快速冷却到固态。
这种制备方式的优点是可以制备出具有复杂原子结构的非晶材料,并且可以得到很高的玻璃形态。
第三步:性质研究非晶态固体物理学的核心之一是探究非晶态材料与其它材料之间的相互作用。
非晶态固体的物理性质主要表现在两个方面:第一,非晶态固体的各向异性性质较差,这使得它在接触中其他物质时具有良好的适应性,减少了晶体材料表面上的晶行导致的断口;第二,非晶态固体的强度和塑性特性均较高,使其在工程材料中具有广泛的应用前景。
第四步:应用领域除了了解非晶态固体的基础物理特性之外,它还有许多重要的应用领域。
其中之一是聚类基础的功能性玻璃,可以应用在光电子设备、传感器、存储器,以及生物医药等领域。
此外,非晶态固体还被广泛应用于意大利NASA天主教大学等地的研究中,以探究类似恒星形成、物质相互作用及类似气溶胶的物理过程。
总之,非晶态固体物理学是一个广泛而有趣的领域,涉及到多个方面的理论和实践知识。
十分值得科研工作者和材料科学家去探究和挖掘。
第四章非晶态结构与性质4-1名词解释熔体与玻璃体分化(解聚)与缩聚网络形成体网络中间体网络改变体桥与非桥氧硼反常现象单键强度晶子学说与无规则网络学说4-2试简述硅酸盐熔体聚合物结构形成的过程和结构特点。
4-3试用实验方法鉴别晶体SiO2、SiO2玻璃、硅胶和SiO2熔体。
它们的结构有什么不同?4-4 试述石英晶体、石英熔体、Na2O·2SiO2熔体结构和性质上的区别。
4-5影响熔体粘度的因素有哪些?试分析一价碱金属氧化物降低硅酸盐熔体粘度的原因。
4-6熔体粘度在727℃时是107Pa·s,在1156℃时是103 Pa·s,在什么温度下它是106 Pa·s?(用lnη=A+B/T解之)4-7 SiO2熔体的粘度在1000℃时为1014 Pa·s,在1400℃时为107 Pa·s。
SiO2玻璃粘滞流动的活化能是多少?上述数据为恒压下取得,若在恒容下获得,你认为活化能会改变吗?为什么?4-8一种熔体在1300℃的粘度是310 Pa·s,在800℃是107 Pa·s,在1050℃时其粘度为多少?在此温度下急冷能否形成玻璃?4-9试用logη=A+B/(T-T0)方程式,绘出下列两种熔体在1350~500℃间的粘度曲线(logη~1/T)。
两种熔体常数如下:4-10派来克斯(Pyrex)玻璃的粘度在1400℃时是109 Pa·s,在840℃是1013Pa·s。
请回答:(1)粘性流动活化能是多少?(2)为了易于成形,玻璃达到105Pa·s的粘度时约要多高的温度?4-11一种玻璃的工作范围是870℃(η=106Pa·s)至1300℃(η=102.5Pa·s),估计它的退火点(η=1012Pa·s)?4-12一种用于密封照明灯的硼硅酸盐玻璃,它的退火点是544℃,软化点是780℃。
⽆机材料科学基础第四章⾮晶态结构与性质第4章⾮晶态结构与性质⼀、名词解释1.熔体与玻璃体:熔体即具有⾼熔点的物质的液体。
熔体快速冷却形成玻璃体。
2.聚合与解聚:聚合:各种低聚物相互作⽤形成⾼聚物解聚:⾼聚物分化成各种低聚物3.晶⼦学说与⽆规则⽹络学说:晶⼦学说(有序、对称、具有周期性的⽹络结构):1硅酸盐玻璃中含有⽆数的晶⼦2晶⼦的互相组成取决于玻璃的化学组成3晶⼦不同于⼀般微晶,⽽是带有晶体变形的有序区域,在晶⼦中⼼质点排列较有规律,远离中⼼则变形程度增⼤4晶⼦分散于⽆定形物质中,两者没有明显界⾯⽆规则⽹络学说(⽆序不对称不具有周期性的⽹络结构)1形成玻璃态的物质与晶体结构相类似,形成三维的空间⽹格结构2这种⽹络是离⼦多⾯体通过氧桥相连进⽽向三维空间规则4.⽹络形成体与⽹络变性体:⽹络形成体:能够单独形成玻璃的氧化物⽹络变性体:不能单独形成玻璃的氧化物5.桥氧与⾮桥氧:桥氧:玻璃⽹络中作为两个成⽹多⾯体所共有顶⾓的氧⾮桥氧:玻璃⽹络中只与⼀个成⽹多⾯体相连的氧⼆、填空与选择1.玻璃的通性为:各向同性、介稳性、由熔融态向玻璃态转化是可逆与渐变的,⽆固定熔点、由熔融态向玻璃态转化时,物理、化学性质随温度的变化连续性和物理化学性质随成分变化的连续性。
2.氧化物的键强是形成玻璃的重要条件。
根据单键强度的⼤⼩可把氧化物中的正离⼦分为三类:⽹络形成体、⽹络中间体和⽹络改变体;其单键强度数值范围分别为单键强度>335KJ/mol、单键强度介于250~335KJ/mol 和单键强度<250~335KJ/mol。
3.聚合物的形成可分为三个阶段,初期:⽯英颗粒的分化;中期:缩聚与变形;后期:在⼀定时间内分化与缩聚达到平衡。
4.熔体结构的特点是:近程有序、远程⽆序。
5.熔体是物质在液相温度以上存在的⼀种⾼能量状态,在冷却的过程中可以出现结晶化、玻璃化和分相三种不同的相变过程。
6.在玻璃性质随温度变化的曲线上有⼆个特征温度Tg(脆性温度)和Tf (软化温度),与这⼆个特征温度相对应的粘度分别为1012Pa·s和108Pa·s。
第四章非晶态结构与性质4-1名词解释熔体与玻璃体分化(解聚)与缩聚网络形成体网络中间体网络改变体桥与非桥氧硼反常现象单键强度晶子学说与无规则网络学说4-2试简述硅酸盐熔体聚合物结构形成的过程和结构特点。
4-3试用实验方法鉴别晶体SiO2、SiO2玻璃、硅胶和SiO2熔体。
它们的结构有什么不同?4-4 试述石英晶体、石英熔体、Na2O·2SiO2熔体结构和性质上的区别。
4-5影响熔体粘度的因素有哪些?试分析一价碱金属氧化物降低硅酸盐熔体粘度的原因。
4-6熔体粘度在727℃时是107Pa·s,在1156℃时是103 Pa·s,在什么温度下它是106 Pa·s?(用lnη=A+B/T解之)4-7 SiO2熔体的粘度在1000℃时为1014 Pa·s,在1400℃时为107 Pa·s。
SiO2玻璃粘滞流动的活化能是多少?上述数据为恒压下取得,若在恒容下获得,你认为活化能会改变吗?为什么?4-8一种熔体在1300℃的粘度是310 Pa·s,在800℃是107 Pa·s,在1050℃时其粘度为多少?在此温度下急冷能否形成玻璃?4-9试用logη=A+B/(T-T0)方程式,绘出下列两种熔体在1350~500℃间的粘度曲线(logη~1/T)。
两种熔体常数如下:4-10派来克斯(Pyrex)玻璃的粘度在1400℃时是109 Pa·s,在840℃是1013Pa·s。
请回答:(1)粘性流动活化能是多少?(2)为了易于成形,玻璃达到105Pa·s的粘度时约要多高的温度?4-11一种玻璃的工作范围是870℃(η=106Pa·s)至1300℃(η=102.5Pa·s),估计它的退火点(η=1012Pa·s)?4-12一种用于密封照明灯的硼硅酸盐玻璃,它的退火点是544℃,软化点是780℃。
非晶态固体结构特征1.无定型性:非晶态固体没有明确的晶体结构,其原子排列没有周期性或具有短程的有序性。
与晶体中的原子或分子按照规则的方式排列形成晶胞和晶格不同,非晶态固体中的原子或分子以无规则的方式排列。
这种无定型性也使得非晶态固体具有高度的自由度和可变性。
2.局部有序性:虽然整个非晶态固体没有明显的长程有序性,但其中的局部区域可能会出现有序的结构。
这是因为在非晶态固体中,原子或分子可能会在一定距离尺度上有一定的有序性,这种有序性被称为局部有序性。
这种局部有序性可以通过X射线衍射、中子衍射等技术来观察和研究。
3.高度的随机性:与晶体中具有确定的晶格点不同,非晶态固体的原子或分子位置没有确定性规律。
原子或分子的位置和旋转是随机的,并且可以沿各个方向移动。
因此非晶态固体具有高度的随机性,并且在宏观上呈现出无规则的形态。
4.高密度:相对于晶体具有规则的、周期性的结构,非晶态固体的原子或分子排列更为紧密。
这是因为非晶态固体中的原子或分子可以在有限空间内自由移动,以最小化它们之间的能量,从而使得结构更加密集。
5.过冷液态:非晶态固体通常通过快速冷却或减小体积等方式制备而成。
在这些过程中,材料的温度往往在其熔点以下,从而形成非晶态固体。
这种特殊的制备方法使得非晶态固体具有类似液体的分子或原子运动性质。
总体来说,非晶态固体具有无定型、局部有序、高度随机、高密度和过冷液态等一系列特征。
这些特征使得非晶态固体在物理性质、力学性能、光学性质和电子性质等方面具有独特的特点,因此在许多领域有着广泛的应用。
知识点066. 玻璃的结构理论
学说要点:
520℃-590 ℃实验依据
100 T(℃)
200 400
300 500
玻璃的网络是不规则的、非周期性的,因此玻璃的内能比晶体的内能要大
缺乏对称性和周期性的重复
石英玻璃
0 0.04 0.08 0.12 0.16 0.20 0.24 λ
方石英
λ
硅胶
sinθ
优点:缺陷:
优点:均匀性、连续性及无序性
缺陷:
硼硅酸盐玻璃分相与不均匀
光学玻璃氟化物与磷酸盐玻璃分相
•两大学说的相同点:
•两大学说的不同点:
近程有序远程无序
本章知识点回顾:
知识点060. 液体的一般性状与结构
知识点061. 硅酸盐熔体的聚合物结构理论知识点062. 熔体的粘度及变化
知识点063. 熔体的表面张力及变化
知识点064. 玻璃的通性、玻璃的形成与转变知识点065. 玻璃形成的条件
知识点066. 玻璃的结构理论。