科大讯飞数学题标注
- 格式:docx
- 大小:16.52 KB
- 文档页数:2
函蜘郎长芒邻茶栩2023"-'2024学年安徽县中联盟高二10月联考数学试题考生注意:l.满分150分,考试时间120分钟。
2.考生作答时,请将答案答在答题卡上。
选择题每小题选出答案后,用2B铅笔把答超卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效。
3.本卷命题范困:人教版必修第一册、第二册,选择性必修笫一册2.2结束。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的.L已知i是虚数单位,-a+bi=2b-i,a,bER,则la一如=A.我B.戎 C.22.已知直线l的一个方向向批为(烈,-3),则直线l的倾斜角a=A. 30•B. so· c. 120° o. 1so03.在棱长为2的正方体ABCD-A心C1D1中,E、F,G、H分别为AIBl、B心、A1D1、BB1的中.盲盲点,则IGF+GH+2EGI=A../6B.2屈D../5C.月D.2我l4.已知直线l1y=-工+1与y轴交千点P,将l绕点P逆时针旋转45°后与工轴交千点Q,要使2直线l平移后经过点Q,则应将直线l1A.向左平移一个单位长度 16B.向右平移一个单位长度65C.向左平移一个单位长度 53 D.向右平移一个单位长度3一酝• 盲• • 5.巳知向批OA=(0,1,2),0B=(一1,0,l),0C=(2,1,入),若O,A,B,C共而,则0C在OB上的投影向址的桢为A.q B.我c.孚过6.光线通过点A(2,3),在直线l,工+y+l=O上反射,反射光线经过点B(2,2),则反射光线所.(f: ·1'[线方程为A. 6:r-5y-2=0C. 5:r-6y+2=0认6.1·+Sy-22=0D.釭+6y-22=0[抖二J O丿l联打·数学卷第1页(共4页)RJ】4048B7.已知向俅a=(2,1),b= (0,2),c=(一1,1),集合A={,m m=a+入b},B={nl n=b+入2c},其中入1山ER,则A.AnB=0B.An B={2,0}C.若d EAn B,则(a,心为钝角D.若dEA nB,则l b=d2&已知a=/1了一』了,b=6斗,c=logs3-¾log克则9A.a<b<cB. b<c<aC. b<a<cD. c<a<b二、选择题:本题共4小题,每小题5分,共20分。
沪科版2024~2025安徽(合肥)七上第一次月考数学作业试卷(含答案)(本试卷系2024~2025学年安徽省合肥市瑶海区名校中考一模数学猜想作业试卷)沪科1.1~26.3、共4页八大题23小题,满分150分,时间120分钟一、选择题(本大题共10小题,每小题4分,满分40分)1.在有理数(3)--、2(2)-、0、23-、2--、13-中,负数的个数是( )A .6个B .5个C .4个D .3个2.下列说法中,正确的有( )①0是最小的整数;②若a b =,则a b =;③互为相反数的两数之和为零:④数轴上表示两个有理数的点,较大的数表示的点离原点较远.A .0个B .1个C .2个D .3个3.据统计,2023年的前三季度,合肥市生产总值(GDP )9218.6亿元,按不变价格计算,同比增长6.1%.用科学记数法表示9218.6亿是( )A .109.218610´B .1092.18610´C .119.218610´D .1192.18610´4.如图所示,圆的周长为4个单位长度,在圆的4等分点处标上字母A ,B ,C ,D ,先将圆周上的字母A 对应的点与数轴的数字1所对应的点重合,若将圆沿着数轴向左滚动,则圆周上字母所对应的点与数轴上表示2024-所对应的点重合的是( )A .AB .BC .CD .D5.下列各组的两个数中,运算后结果相等的是( )A .32和23B .33-和()33-C .22-和()22-D .323æö-ç÷èø和323-6.下列计算中:(1)()055--=-;(2)()()3912-+-=;(3)363--=- ; (4)54331345¸´=¸=;(5)242-=-; (6)()224--=;(7)()236-=;正确的个数是( )A .1个B .2个C .3个D .0个7.已知||5a =,||2=b ,且0a b +<,则ab 的值是( )A .10B .10-C .10或10-D .3-或7-8.在数轴上,点A 、点B 分别表示数a ,b ,则线段AB 的长表示为||-a b ,例如:在数轴上点A 表示5,点B 表示2,则线段AB 的长表示为|52-|3=,数轴上的任意一点P 表示的数是x ,且||||x a x b -+-的最小值为7,若2a =,则b 的值为()A .5-或5B .9-或9C .5-或9D .5或99.“!”是一种运算符号,并且1!1=,2!12=´,3!123=´´,4!1234=´´´,则20252024!!的值是( )A .1B .2023C .2024D .202510.我们常用的十进制数,如3212639=210+610+310+9´´´,我国古代《易经》一书记载,远古时期,人们通过在绳子上打结来记录数量,如图,一位母亲在从右到左依次排列的绳子上打结,并采用七进制(如3212513=27+57+17+3´´´),用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是( )A .1435天B .510天C .365天D .13天二、填空题(本大题4小题,每小题5分,满分20分)11.把有理数53.1210´按四舍五入法近似数精确到位.12.按照如图所示的计算程序,若2x =-,则输出的结果是.13.若0ab ¹,则||||||a b ab a b ab++的所有可能值= .14.对于数a ,用(]a 表示小于a 的最大整数,例如(]2.1=2,(]3=4--,(]9=8.(1)填空:(]2024-=;(2)若(](]0x y +=,则x y +的最大值为.三、(本大题2小题,每小题8分,满分16分)15.计算:(1)()32524438æö-+´-ç÷èø(2)()()23411832--¸-´-16.把下列各数填在相应的表示集合的大括号里.3-,2.5,1,0.58-,0,139,0.3g, 1.01001000-L ;整数集合{ ⋯} 分数集合{ ⋯}正有理数集合{ ⋯} 负有理数集合{ ⋯}四、(本大题2小题,每小题8分,满分16分)17.某一出租车一天下午以鼓楼为出发地在东西方向营运,向东走为正,向西走为负,行车里程(单位:km )依先后次序记录如下:8636510-+---+,,,,,.(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼的什么方向(2)若每千米的价格为2.4元,司机一个下午的营业额是多少?18.已知m ,n 互为相反数,且m n ¹,p ,q 互为倒数,数轴上表示数a 的点距原点的距离恰为6个单位长度.求122m n mpq a a n++--的值.五、(本大题2小题,每小题10分,满分20分)19.用大小一样的黑白两种颜色的小正方形纸片,按如图的规律摆放:(1)第5个图案有 张白色小正方形纸片;(2)第n 个图案有 张白色小正方形纸片;(3)第几个图案中白色纸片有2023张?20.如果规定符号“*”的意义是22()*()a b a b a b b a a b ì-³=í+<î,比如231318*=-=,232112*3=+=.求下列各式的值:(1)()51*-(2)()33-*六、(本大题2小题,满分12分)21.某食品厂上周日生产100袋食品,下表是这周的生产情况(注:用正数记生产袋数比前一日上升数,用负数记生产袋数比前一日下降数):星期一星期二星期三星期四星期五星期六星期日+5-1-7+11-9+5+9(1)根据记录的数据可知该厂星期三生产食品多少袋?(2)根据记录的数据可知该厂本周内生产袋数最高是多少袋?最低是多少袋?(3)已知这周生产的所有食品成本3000元,现规定本周食品售价为每袋5元,在卖出所有袋数时,需收取成交额10%的交易税,则食品厂这周的收益情况如何?七、(本大题2小题,满分12分)22.若111122-=-,11113223-=-,11114334-=- , ···,照此规律试求:(1)111918-= ,(2)计算:111111112324354-+-+-+-;(3)计算:11111111 (2324320252024)-+-+-++-八、(本大题2小题,满分14分)23.数轴上两点间的距离等于这两个点所对应的数的差的绝对值.例:点A 、B 在数轴上对应的数分别为a 、b ,则A 、B 两点间的距离表示为AB a b =-.根据以上知识解题:(1)点A 在数轴上表示3,点B 在数轴上表示2,那么AB = .(2)在数轴上表示数a 的点与2-的距离是3,那么a = .(3)如果数轴上表示数a 的点位于表示4-和2的点之间,那么()42||a a --+-=(4)对于任何有理数x ,36x x -+-是否有最小值?如果有,直接写出最小值;如果没有,请说明理由.1.D【分析】本题考查了有理数的乘方,化简绝对值和负数的判断,先将各数化简,再判定负数的个数.【详解】解:∵(3)3--=, 2(2)4-=,239-=-,2=2---,∴在有理数(3)--、2(2)-、0、23-、2--、13-中,负数有23-、2--、13-这3个,故选:D .2.C【分析】根据有理数的大小比较及相反数的概念进行判断【详解】解:①没有最小的整数;故①说法错误;②若a b =,则a b =,正确;③互为相反数的两数之和为零,正确:④数轴上表示两个有理数的点,绝对值较大的数表示的点离原点较远,故④说法错误正确的说法共2个故选:C .【点睛】本题考查有理数的大小比较及相反数,绝对值的概念,题目比较简单,正确理解相关概念是解题关键.3.C【分析】本题主要考查了科学记数法,科学记数法的表现形式为10n a ´的形式,其中£<110a ,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案.【详解】解:9218.6亿119218600000009.218610==´,故选C .4.B【分析】本题主要考查数字规律探索,找出规律是解题的关键.根据题意找出规律即可得到答案.【详解】解:Q 圆的周长为4个单位长度,故该圆向左滚动一周,A ,B ,C ,D 循环一次后又回到A 点,2024-与1之间有2025个单位长度,202545061¸=L ,故与所对应的点重合的是B .故选:B .5.B【分析】本题考查了有理数的大小比较,乘方运算,根据乘方的意义计算后比较即可.【详解】解:A .322839=¹=,故不符合题意;B .()332733=-=--,故符合题意;C .()222424-=-¹-=,故不符合题意;D .3388293323=-æö-ç¹-=-÷èø,故不符合题意;故选B .6.A【分析】本题考查了有理数的运算,根据有理数的运算法则逐个进行计算即可判断求解,掌握有理数的运算法则是解题的关键.【详解】解:(1)()05055--=+=,故(1)错误;(2)()()3912-+-=-,故(2)错误;(3)369--=-,故(3)错误;(4)54444833455525¸´=´´=,故(4)错误;(5)242-=-,故(5)正确;(6)()224--=-,故(6)错误;(7)()239-=,故(7)错误;∴正确的个数为1个,故选:A .7.C【分析】根据绝对值的意义和有理数的加法筛选合适的取值,再代入计算乘法即可.【详解】解:5||a =Q ,||2=b ,5a \=±,2b =±.又0a b +<,5a \=-,2b =-;或5a =-,2b =.则10ab =±.故选:C .【点睛】本题考查了绝对值的意义,有理数的加法和乘法,解题的关键是熟练理解运算法则,据此得出正确取值.8.C【分析】本题考查了数轴上的点表示的数,如何表示数轴上两点之间的距离及绝对值的化简,得出7a b -=是解题的关键.根据x a -表示点P 到点A 的距离,x b -表示点P 到点B 的距离,当点P 在点A 、点B 两点之间时,||||x a x b -+-的值最小,且2a =,可得绝对值方程,从而求出b 的值.【详解】解:x a -表示点P 到点A 的距离,x b -表示点P 到点B 的距离,当点P 在点A 、点B 两点之间时,||||x a x b -+-的值最小,∴7a b -=,∵2a =,∴27b -=,∴5b =-或9.故选C .9.D【分析】此题主要考查了有理数的乘法和除法,注意看懂例题所表示的意思,再进行计算.根据“!”的含义列式,再约分计算即可.【详解】解:20252025202420232021 (1)20252024202420232021 (1)´´´´´==´´´´!!,故选D .10.B【分析】考查了有理数的混合运算,本题是以古代“结绳计数”为背景,按满七进一计算自孩子出生后的天数,运用了类比的方法,根据图中的数学列式计算类比于十进制“满十进一”,可以表示满七进一的数为:千位上的数37´+百位上的数27´+十位上的数7´+个位上的数.【详解】解:3211737276343147146510´+´+´+=+++=天,故选:B .11.千【分析】本题考查近似数,对于用科学记数法表示的数,精确到哪一位是需要识记的内容,经常会出错.近似数精确到哪一位,应当看末位数字实际在哪一位.【详解】解:∵53.1210312000´=,∴53.1210´按四舍五入法近似数精确到千位.故答案为:千.12.26-【分析】先把2x =-代入式子210x -中进行计算,若结果大于0,则把结果继续当做x 的值进行代入210x -中进行计算,直至计算的结果小于0进行输出即可.【详解】解:当输入2x =-时,则()221010210460x -=--=-=>,当输入6x =时,则22101061036260x -=-=-=-<,∴输出的结果为26-,故答案为:26-.【点睛】本题主要考查了与程序流程图有关的有理数计算,正确理解题意并正确计算是解题的关键.13.3或1-【分析】本题主要考查绝对值的化简,有理数的除法,分类讨论是解题的关键.分为0,0a b >>;0,0a b ><;0,0a b <>;0,0a b <<四种情况讨论即可.【详解】解:当0,0a b >>时,原式1113=++=;当0,0a b ><时,原式1111=--=-;当0,0a b <>时,原式1111=-+-=-;当0,0a b <<时,原式1111=--+=-;故答案为:3或1-.14.2025-2【分析】本题主要考查了相反数的意义:(1)根据(]a 的意义进行求解即可;(2)分x 、y 均为小数;x 与y 中有一个是小数,一个是整数以及x 、y 都是整数三种情况解答即可.【详解】解:(1)由题意得(]20242025-=-,故答案为:2025-;(2)当x y 、都为整数时,则(](]11x x y y =-=-,,∵(](]0x y +=,∴110x y -+-=,∴2x y +=,当x 、y 中有一个整数,一个小数时,不妨设x 为整数,y 的小数部分为z ,∴(](]1x x y y z =-=-,,∵(](]0x y +=,∴10x y z -+-=,∴12x y z +=+<;当x 、y 都为小数时,设x 的小数部分为m ,y 的小数部分为n ,∴(](]x x m y y n =-=-,,∵(](]0x y +=,∴0x m y n -+-=,∴2x y m n +=+<;综上所述,2x y +£,∴x y +的最大值为2,故答案为:2.15.(1)17-(2)15【分析】(1)根据乘法分配律计算即可;(2)根据有理数的混合运算法则,先算乘方,再算乘除,最后算加减即可.【详解】(1)解:()32524438æö-+´-ç÷èø()()()325=242424438æö´-+-´-+´-ç÷èø=181615-+-17=-;(2)解:()()23411832--¸-´-()11898=--¸´-116=-+15=.【点睛】本题主要考查了含有乘方的有理数混合运算以及运算律,熟练掌握有理数的混合运算法则是解题的关键.16.3-,1,0;2.5,0.58-,139,0.3g ;2.5,1,139,0.3g;3-,0.58-【分析】根据有理数的分类将个数填在相应的表示集合的大括号里.【详解】解:整数集合{3-,1,0,…}分数集合{2.5,0.58-,139,0.3g,…}正有理数集合{2.5,1,139,0.3g,…}负有理数集合{3-,0.58-,…}【点睛】本题考查了有理数的分类,熟练掌握有理数的分类是解题的关键.17.(1)将最后一名乘客送到目的地,出租车离鼓楼出发点6千米,在鼓楼西边(2)91.2元【分析】本题考查了正数和负数,有理数的加法运算是解(1)的关键,路程的和乘单价是解(2)的关键.(1)根据有理数的加法运算,可得计算结果,根据正数和负数,可得方向;(2)利用行程总里程乘以每千米单价,可得营业额.【详解】(1)解:86365106-+---+=-(千米),答:将最后一名乘客送到目的地,出租车离鼓楼出发点6千米,在鼓楼西边;(2)解:()8636510 2.491.2-++-+-+-+´=(元),答:若每千米的价格为3元,司机一个下午的营业额是91.2元.18.6或0【分析】先根据题意可得0m n =+、1m n -=、16pq a ±=,=,再分6a =和6a =-两种情况计算即可.【详解】解:由题意得:0m n =+,1m n -=,16pq a ±=,=,当6a =-时,12023162m n m pq a a n ++--=+++=;当6a =时,12023102m n m pq a a n ++--=+-+=.所以122m n m pq a a n++--的值为6或0.【点睛】本题主要考查了代数式求值、相反数、倒数、数轴相关知识,根据题意得到0m n =+、1m n-=、16pq a ±=,=是解答本题的关键.19.(1)16(2)(31)n +(3)674【分析】本题考查规律型:图形的变化类,解题时必须仔细观察规律,通过归纳得出结论.注意由特殊到一般的分析方法,此题的规律为:第n 个图案中有31n +张白色纸片.(1)观察图形,发现:白色纸片在4的基础上,依次多3个;(2)根据(1)中的规律,用字母表示即可;(3)根据(2)的规律,得出312023n +=,解之得出n 的值即可作出判断.【详解】(1)∵第1个图形中白色纸片的数量4131=+´,第2个图形中白色纸片的数量7132=+´,第3个图形中白色纸片的数量10133=+´,……,∴第5个图片中白色纸片的数量为13516+´=,故答案为:16;(2)由(1)知,第n 个图案中白色纸片的数量为31n +,故答案为:(31)n +;(3)设第n 个图案中白色纸片有2023张,由312023n +=,解得:674n =,即第674个图案中共有2023张纸片.20.(1)26(2)6【分析】(1)根据新定义计算即可求出值;(2)根据新定义计算即可求出值.【详解】(1)解:根据题中的新定义得:()2515(1)26*-=--=;(2)解:()2333(3)6-*=+-=.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.21.(1)该厂星期三生产食品是97袋;(2)产量最高的一天是星期日,是114袋,最低的一天是星期三,是97袋;(3)这周的收益294元.【分析】(1)根据题意和表格可以求得该厂星期三生产食品多少袋;(2)根据题意和表格可以求得该厂产量最高的一天的产量和产量最低一天的产量,从而可以解答本题;(3)根据题意列式计算即可.【详解】(1)由题意可得,该厂星期三生产食品是:100+5-1-7=97(袋)即该厂星期三生产食品是97袋;(2)由表格可知,星期一生产食品是袋数:100+5=105袋;星期二生产食品是袋数:105-1=104袋;星期三生产食品是袋数:104-7=97袋;星期四生产食品是袋数:97+11=108袋;星期五生产食品是袋数:108-9=99袋;星期六生产食品是袋数:99+5=105袋;星期日生产食品是袋数:105+9=114袋;故产量最高的一天是星期日,是114袋,最低的一天是星期三,是97袋;(3)由题意可得,该厂本周实际共生产食品的数量是:7×100+(5+4-3+8-1+5+14)=732袋,∴这周的收益:732×5×(1-10%)-3000=294元.【点睛】本题考查正数和负数,解答本题的关键是明确题意找出所求问题需要的条件.22.(1)11 1819-(2)4 5(3)2024 2025【分析】本题考查了绝对者的意义,有理数的加减混合运算,理解规律是解答本题的关键.(1)根据规律化简即可;(2)先根据规律化简,再算加减;(3)先根据规律化简,再算加减.【详解】(1)∵111122-=-,11113223-=-,11114334-=-,···,∴1111 19181819-=-.故答案为:11 1819-;(2)∵111122-=-,11113223-=-,11114334-=-,···,∴1111111 12324354 -+-+-+-1111111 12233445=-+-+-+-115=-45=;(3)∵111122-=-,11113223-=-,11114334-=-,···,∴11111111... 2324320252024 -+-+-++-11111111 (2233420242025)=-+-+-++-112025=-20242025=.23.(1)1(2)1或5-(3)6(4)是,3【分析】本题考查数轴、绝对值的定义和有理数的加减运算,熟知数轴上两点间的距离公式是解题关键.(1)根据两点间距离公式解答即可;(2)根据两点间距离公式求出a 值即可;(3)根据两点间的距离公式解答即可;(4)根据两点间的距离公式解答即可.【详解】(1)321AB =-=,故答案为:1;(2)∵数轴上表示数a 的点与2-的距离是3,∴()23a --=,解得:5a =-或1.故答案为:1或5-;(3)数a 位于4-与2之间,42a a ++-表示a 到4-与a 到2的距离的和,∴|4||2||2(4)|6a a ++-=--=,故答案为6(4)∵36x x -+-表示x 到3与x 到6的距离的和,∴当36x ££时,36633x x -+-=-=,当6x >或3x <时,363x x -+->,∴36x x -+-有最小值,最小值为3.。
初中生用科大讯飞的真实分享稿子一:嘿,大家好呀!今天我要来和你们唠唠我用科大讯飞的那些事儿。
我是个初中生,学习任务那叫一个重。
自从有了科大讯飞,真的像是找到了学习的好帮手。
先说英语这门课吧,以前背单词可费劲了,总是记不住。
但科大讯飞能帮我科学规划单词记忆,还能通过有趣的方式让我加深印象。
就像玩游戏一样,不知不觉中就记住了好多单词。
还有语文的文言文和古诗词,以前理解起来简直是一头雾水。
科大讯飞会有详细的解释和朗读,让我仿佛置身于古代文学的世界,理解起来轻松多啦。
而且哦,它的错题整理功能简直绝绝子!我以前自己整理错题,又慢又容易出错。
现在用了科大讯飞,拍照就能把错题收录进去,还能按照知识点分类,复习的时候特别方便。
数学方面也很棒!遇到难题不会做,只要拍一拍,就能给出详细的解题思路和方法。
再也不用因为一道题纠结半天,浪费好多时间啦。
科大讯飞在我的初中学习生活中,就像是一个贴心的小老师,时刻陪伴着我,帮助我解决各种难题。
真的超爱它!稿子二:亲爱的小伙伴们,今天我要和你们好好聊聊我用科大讯飞的感受。
你们懂的,初中学习可不轻松。
但自从有了科大讯飞,感觉轻松了不少呢。
比如说英语口语,我以前总是不敢开口说,怕说错。
但是科大讯飞可以和我对话,纠正我的发音,让我越来越有自信。
另外,它里面的学习资源特别丰富。
不管是课堂上没听懂的知识点,还是想要拓展的课外知识,都能在上面找到。
对啦,它还能根据我的学习情况制定个性化的学习计划。
就好像它特别懂我,知道我哪里薄弱,需要重点加强。
反正我觉得,科大讯飞就是我的学习神器,有了它,学习变得有趣又高效。
你们要是还没用过,真的可以试试看哦!。
科大讯飞七年级上册课件第一课:科学素养1.1 什么是科学素养?科学素养是指学生对科学的基本概念、科学思维、科学方法和科学精神的理解和掌握。
它是培养学生科学思维和创新能力的基础,也是学生走向科学研究和创新的桥梁。
1.2 科学素养的培养方法•培养观察力和实验能力:学生通过观察和实验探究事物的规律。
•培养科学问题解决能力:学生通过解决科学问题提高自己的科学素养。
•培养理论联系实际的能力:学生将所学的科学理论运用到实际生活中,理论联系实际。
1.3 科学素养的意义科学素养的提高可以帮助学生更好地理解世界,培养学生的科学思维能力,提高学生的创新能力,为学生未来的学术研究和职业发展打下基础。
第二课:数学思维2.1 数学思维的特点数学思维是指通过数学的思维方式来解决问题的能力。
数学思维具有以下特点:•抽象思维:能够从具体事物中抽取出共性规律。
•精确思维:注重推理过程的准确性和严密性。
•归纳思维:能够从具体实例中归纳出一般的结论。
•演绎思维:能够按照一定的规则推导出结论。
2.2 培养数学思维的方法•培养逻辑思维:通过逻辑推理来解决数学问题。
•培养分析思维:从整体中找出局部,通过分析局部来推导整体。
•培养想象思维:通过想象来帮助解决复杂的数学问题。
2.3 数学思维的应用领域数学思维不仅在数学学科中有广泛的应用,还在其他学科和日常生活中有着重要的作用。
数学思维能够培养学生的逻辑思维能力和创新能力,提高学生的问题解决能力和决策能力。
第三课:语言文字运用3.1 语言文字运用的基本知识•拼音与汉字:学习汉字的读音和写法。
•词语搭配:学习合适的词语搭配和用法。
•句子成分:学习句子结构和各个成分的作用。
3.2 语言文字运用的技巧•表述清楚:避免用词不准确或模糊的表达。
•语法正确:注意句子的语法规则,避免语法错误。
•文章结构:注意文章的逻辑结构和段落之间的衔接。
3.3 语言文字运用的培养方法•多读多写:通过阅读和写作来提高自己的语言文字运用能力。
巧用信息技术助力初中数学精准教学探究精准教学从其诞生之日起就与信息技术的发展息息相关。
近年来流行的计算机辅助教学(Computer Assisted Instruction,简称CAI),即教学方式与信息技术的结合,也就是利用计算机输入、贮存、记忆、提取的优点助力精准教学,有了计算机强大的计算和统计能力的助力,现有的教学各阶段才能更好地进行精准优化,也为探究与建构初中数学精准教学模式提供了重要的保障。
标签:信息技术助力精准教学数学课题我校数学学科教研组依赖于科大讯飞的智慧课堂平台,利用希沃5、班级优化大师、智学网及洋葱数学平台,于2020年申请并成功立项合肥市教育信息技术“人工智能与大数据在初中数学课堂精准教学的创新模式”课题。
信息技术与初中数学精准教学的深度融合就是把信息技术深入渗透到教学的各个环节中,与之融合并相互促进。
因此,笔者作为课题组主要成员之一及一名专业的信息技术教师,从以下几个方面助力课题探究。
一、助力课前任务设计新課程教学理念要求在课堂教学实施过程中以“学生为主体,教师为主导”,突出先学后教,以学定教。
因此,教师精准、科学地设计课前任务非常重要。
(一)辅助设计课前任务课前任务设计既要体现科学性、趣味性,又要体现学科特点,数学学科概念复杂抽象,信息技术可提供声、图、文并茂的多媒体技术,让其可视化,直观易学。
例如,用PowerPoint2013软件、Flash、快剪辑或CS等制作出科学、有趣的导学案和微课,或选用洋葱数学平台的预习视频作为课前学习任务,可以激发学生的学习兴趣,而“兴趣是最好的老师”。
课题组的老师们刚刚着手本课题的探索时,其信息技术技能掌握程度参差不齐,为此我先对他们进行培训,辅导其使用各种教学软件,直至每个老师都能灵活自如地制作各种多媒体课件、微课或导学案。
信息技术的融入让原本枯燥无味的数学知识变得生动、有趣,学生们乐于学习、接受,极大地保障了课前预习的效果。
(二)提供网络教室辅助学生实现在线学习、练习无论是直接推送课前学习导学案、微课,还是利用洋葱数学平台、智学网平台在线观看、练习课前任务,都离不开互联网、计算机或手机等的支持。
2024年湖北云学名校联盟高二年级10月联考数学试卷命题学校:武汉二中 命题人:李凯丰 陈莉 张鹄 审题人:夷陵中学 王方 杨晓璐考试时间:2024年10月15日 15:00-17:00 时长:120分钟 满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知i 为虚数单位,20253i 1i ++的虚部为( )A. i −B. iC. 1−D. 12. 已知一组数据:2,5,7,x ,10平均数为6,则该组数据的第60百分位数为( ) A. 7B. 6.5C. 6D. 5.53. 直线1l :20250ax y −+=,2l :()3220a x ay a −+−=,若12l l ⊥,则实数a 值为( ) A. 0B. 1C. 0或1D.13或1 4. 为了测量河对岸一古树高度AB 的问题(如图),某同学选取与树底B 在同一水平面内的两个观测点C 与D ,测得15BCD ∠=°,30BDC ∠=°,48m CD =,并在点C 处测得树顶A 的仰角为60°,则树高AB 约为( )1.4≈1.7≈)A. 100.8mB. 33.6mC. 81.6mD. 57.12m5. 如果直线ax +by =4与圆x 2+y 2=4有两个不同的交点,那么点P (a ,b )与圆的位置关系是( ) A. P 在圆外 B. P 圆上 C. P 在圆内D. P 与圆的位置关系不确定6. 在棱长为6的正四面体ABCD 中,点P 与Q 满足23AP AB = ,且2CD CQ =,则PQ 的值为( )的的在A.B.C.D.7. 下列命题中正确的是( )A. 221240z z +=,则120z z ==;B 若点P 、Q 、R 、S 共面,点P 、Q 、R 、T 共面,则点P 、Q 、R 、S 、T 共面; C. 若()()1P A P B +=,则事件A 与事件B 是对立事件;D. 从长度为1,3,5,7,9的5条线段中任取3条,则这三条线段能构成一个三角形的概率为310; 8. 动点Q 在棱长为3的正方体1111ABCD A B C D −侧面11BCC B 上,满足2QA QB =,则点Q 的轨迹长度为( ) A 2πB.4π3C.D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 在平面直角坐标系中,下列说法正确的是( ) A. 若两条直线垂直,则这两条直线的斜率的乘积为1−;B. 已知()2,4A ,()1,1B ,若直线l :20kx y k ++−=与线段AB 有公共点,则21,32k∈−; C. 过点()1,2,且在两坐标轴上截距互为相反数的直线l 的方程为10x y −+=; D. 若圆()2214x y −+=上恰有3个点到直线y x b =+的距离等于1,则1b =−±.10. 如图所示四面体OABC 中,4OB OC ==,3OA =,OB OC ⊥,且60AOB AOC ∠=∠=°,23CD CB =,G 为AD 的中点,点H 是线段OA 上动点,则下列说法正确的是( )A. ()13OG OA OB OC =++; B. 当H 是靠近A 的三等分点时,DH ,OC ,AB共面;..C. 当56OH OA = 时,GH OA ⊥ ;D. DH OH ⋅的最小值为1−.11. 已知()2,3P 是圆C :22810410x y x y a +−−−+=内一点,其中0a >,经过点P 的动直线l 与C 交于A ,B 两点,若|AAAA |的最小值为4,则( ) A. 12a =;B. 若|AAAA |=4,则直线l 的倾斜角为120°;C. 存在直线l 使得CA CB ⊥;D. 记PAC 与PBC △的面积分别为PAC S ,PBC S ,则PAC PBC S S ⋅△△的最大值为8.三、填空题:本题共3小题,每小题5分,共15分.12. 实数x 、y 满足224x y +=,则()()2243x y −++的最大值是______.13. 记ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,已知()cos 2cos a B c b A =−,其中π2B ≠,若ABC 的面积S =,2BE EC = ,且AE = BC 的长为______.14. 如图,已知四面体ABCD 的体积为9,E ,F 分别为AB ,BC 的中点,G 、H 分别在CD 、AD 上,且G 、H 是靠近D 的三等分点,则多面体EFGHBD 的体积为______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 在对某高中1500名高二年级学生的百米成绩的调查中,采用按学生性别比例分配的分层随机抽样抽取100人,已知这1500名高二年级学生中男生有900人,且抽取的样本中男生成绩的平均数和方差分别为13.2秒和13.36,女生成绩的平均数和方差分别为15.2秒和17.56. (1)求抽取的总样本的平均数;(2)试估计高二年级全体学生的百米成绩的方差.16. 在平面直角坐标系xOy 中,ABC 的顶点A 的坐标为()4,2−,ACB ∠的角平分线所在的直线方程为10x y −+=,AC 边上中线BM 所在的直线方程为220x y +−=.(1)求点C 的坐标; (2)求直线BC 的方程.17. 直三棱柱111ABC A B C −中,12AB AC AA ===,其中,,E F D 分别为棱111,,BC B A B C 的中点,已知11AF A C ⊥,(1)求证:AF DE ⊥;(2)设平面EFD 与平面ABC 的交线为直线m ,求直线AC 与直线m 所成角的余弦值. 18. 已知圆C :22430x y y +−+=,过直线l :12y x =上的动点M 作圆C 的切线,切点分别为P ,Q .(1)当π3PMQ ∠=时,求出点M 的坐标; (2)经过M ,P ,C 三点的圆是否过定点?若是,求出所有定点的坐标; (3)求线段PQ 的中点N 的轨迹方程.19. 四棱锥P ABCD −中,底面ABCD 为等腰梯形,224AB BC CD ===,侧面PAD 为正三角形;(1)当BD PD ⊥时,线段PB 上是否存在一点Q ,使得直线AQ 与平面ABCD 所成角的正弦值为若存在,求出PQ QB 的值;若不存在,请说明理由.(2)当PD 与平面BCD 所成角最大时,求三棱锥P BCD −的外接球的体积.2024年湖北云学名校联盟高二年级10月联考数学试卷命题学校:武汉二中 命题人:李凯丰 陈莉 张鹄 审题人:夷陵中学 王方 杨晓璐考试时间:2024年10月15日 15:00-17:00 时长:120分钟 满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知i 为虚数单位,20253i 1i ++的虚部为( )A. i −B. iC. 1−D. 1【答案】C 【解析】【分析】根据复数乘方、乘法、除法运算法则结合复数的概念运算即可得出结果. 【详解】根据复数的乘方可知()50620254i i i i =⋅=,则()()()()20253i 1i 3i 3i 32i 12i 1i 1i 1i 1i 2+−++−+====−+++−,其虚部为1−. 故选:C2. 已知一组数据:2,5,7,x ,10的平均数为6,则该组数据的第60百分位数为( ) A. 7 B. 6.5C. 6D. 5.5【答案】B 【解析】【分析】先根据平均数求x 的值,然后将数据从小到大排列,根据百分位数的概念求值. 【详解】因为2571065x ++++=⇒6x =.所以数据为:2,5,6,7,10.又因为560%3×=,所以这组数据的第60百分位数为:676.52+=. 故选:B3. 直线1l :20250ax y −+=,2l :()3220a x ay a −+−=,若12l l ⊥,则实数a 的值为( ) A 0 B. 1 C. 0或1 D.13或1 【答案】C.【分析】根据两直线垂直的公式12120A A B B +=求解即可.【详解】因为1l :20250ax y −+=,2l :()3220a x ay a −+−=垂直, 所以()()3210a a a −+−=, 解得0a =或1a =,将0a =,1a =代入方程,均满足题意, 所以当0a =或1a =时,12l l ⊥. 故选:C .4. 为了测量河对岸一古树高度AB 的问题(如图),某同学选取与树底B 在同一水平面内的两个观测点C 与D ,测得15BCD ∠=°,30BDC ∠=°,48m CD =,并在点C 处测得树顶A 的仰角为60°,则树高AB 约为( )1.4≈1.7≈)A. 100.8mB. 33.6mC. 81.6mD. 57.12m【答案】D 【解析】【分析】先在BCD △中,利用正弦定理求出BC ,再在Rt ABC △中求AB 即可.【详解】在BCD △中,15BCD ∠=°,30BDC ∠=°,所以135CBD ∠=°,又48CD =,由正弦定理得:sin sin CD CBCBD CDB=∠∠⇒12CB=⇒CB =在Rt ABC △中,tan 60AB BC =°=24 1.4 1.7≈××57.12=. 故选:D5. 如果直线ax +by =4与圆x 2+y 2=4有两个不同的交点,那么点P (a ,b )与圆的位置关系是( ) A. P 在圆外 B. P 在圆上D. P 与圆的位置关系不确定 【答案】A 【解析】224a b ∴+,所以点(),a b 在圆外考点:1.直线与圆的位置关系;2.点与圆的位置关系6. 在棱长为6的正四面体ABCD 中,点P 与Q 满足23AP AB = ,且2CD CQ =,则PQ 的值为( )A.B.C.D.【答案】D 【解析】【分析】以{},,AB AC AD 为基底,表示出PQ,利用空间向量的数量积求模.【详解】如图:以{},,AB AC AD 为基底,则6AB AC AD ===,60BAC BAD CAD ∠=∠=∠=°,所以66cos 6018AB AC AB AD AC AD ⋅=⋅=⋅=××°=.因为()1223PQ AQ AP AC AD AB =−=+− 211322AB AC AD =−++. 所以22211322PQ AB AC AD =−++222411221944332AB AC AD AB AC AB AD AC AD =++−⋅−⋅+⋅169912129=++−−+19=.所以PQ =故选:D7. 下列命题中正确的是( )A. 221240z z +=,则120z z ==;B. 若点P 、Q 、R 、S 共面,点P 、Q 、R 、T 共面,则点P 、Q 、R 、S 、T 共面;C. 若()()1P A P B +=,则事件A 与事件B 是对立事件;D. 从长度为1,3,5,7,9的5条线段中任取3条,则这三条线段能构成一个三角形的概率为310; 【答案】D 【解析】【分析】举反例说明ABC 不成立,根据古典概型的算法判断D 是正确的.【详解】对A :若1i z =,22z =,则221240z z +=,但120z z ==不成立,故A 错误;对B :如图:四面体S PRT −中,Q 是棱PR 上一点,则点P 、Q 、R 、S 共面,点P 、Q 、R 、T 共面,但点P 、Q 、R 、S 、T 不共面,故B 错误; 对C :掷1枚骰子,即事件A :点数为奇数,事件B :点数不大于3, 则()12P A =,()12P B =,()()1P A P B +=,但事件A 、B 不互斥,也不对立,故C 错误; 对D :从长度为1,3,5,7,9的5条线段中任取3条,有35C 10=种选法, 这三条线段能构成一个三角形的的选法有:{}3,5,7,{}3,7,9,{}5,7,9共3种, 所以条线段能构成一个三角形的的概率为:310P =,故D 正确. 故选:D8. 动点Q 在棱长为3的正方体1111ABCD A B C D −侧面11BCC B 上,满足2QA QB =,则点Q 的轨迹长度为( )A. 2πB.4π3C.D.【解析】【分析】结合图形,计算出||BQ =,由点Q ∈平面11BCC B ,得出点Q 的轨迹为圆弧 EQF,利用弧长公式计算即得.【详解】如图,易得AB ⊥平面11BCC B ,因BQ ⊂平面11BCC B ,则AB BQ ⊥,不妨设||BQ r =,则||2AQ r =, ||3AB ===,解得r =又点Q ∈平面11BCC B ,故点Q 的轨迹为以点B EQF,故其长度为π2=. 故选:D.二、选择题:本题共36分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 在平面直角坐标系中,下列说法正确的是( ) A. 若两条直线垂直,则这两条直线的斜率的乘积为1−;B. 已知()2,4A ,()1,1B ,若直线l :20kx y k ++−=与线段AB 有公共点,则21,32k∈−; C. 过点()1,2,且在两坐标轴上截距互为相反数的直线l 的方程为10x y −+=;D. 若圆()2214x y −+=上恰有3个点到直线y x b =+的距离等于1,则1b =−±. 【答案】BD 【解析】【分析】根据直线是否存在斜率判断A 的真假;数形结合求k 的取值范围判断B 的真假;根据截距的概念判断真假;转化为点(圆心)到直线的距离求b 判断D 的真假.【详解】对A :“若两条直线垂直,则这两条直线的斜率的乘积为1−”成立的前提是两条直线的斜率都存若两条直线1条不存在斜率,另一条斜率为0,它们也垂直.故A 是错误的. 对B :如图:对直线l :20kx y k ++−=⇒()21y k x −=−+,表示过点()1,2P −,且斜率为k −的直线, 且()422213AP k −==−−,()121112BP k −==−−−, 由直线l 与线段AB 有公共点,所以:203k ≤−≤或102k −≤−<,即203k −≤≤或102k <≤,进而得:2132k −≤≤.故B 正确; 对C :过点()1,2,且在两坐标轴上截距互为相反数的直线l 的方程为10x y −+=或2y x =,故C 错误; 对D :“圆()2214x y −+=上恰有3个点到直线y x b =+的距离等于1”可转化为“圆心(1,0)到直线y x b =+的距离等于1”.1⇒1b =−.故D 正确.故选:BD10. 如图所示四面体OABC 中,4OB OC ==,3OA =,OB OC ⊥,且60AOB AOC ∠=∠=°,23CD CB =,G 为AD 的中点,点H 是线段OA 上动点,则下列说法正确的是( )A. ()13OG OA OB OC =++ ;B. 当H 是靠近A 的三等分点时,DH ,OC ,AB共面;C. 当56OH OA = 时,GH OA ⊥ ; D. DH OH ⋅ 的最小值为1−.【答案】BCD【解析】【分析】以{},,OA OB OC 为基底,表示出相关向量,可直接判断A 的真假,借助空间向量共面的判定方法可判断B 的真假,利用空间向量数量积的有关运算可判断CD 的真假.【详解】以{},,OA OB OC 为基底,则3OA = ,4OB OC == ,6OA OB OA OC ⋅=⋅= ,0OB OC ⋅= . 对A :因为23AD AC CD AC CB =+=+ ()23AC AB AC =+− 2133AB AC =+ ()()2133OB OA OC OA =−+− 2133OA OB OC =−++ . 所以12OG OA AG OA AD =+=+ 121233OA OA OB OC =+−++ 111236OA OB OC =++ ,故A 错误;对B :当H 是靠近A 的三等分点,即23OH OA = 时, DH AH AD =− 121333OA OA OB OC =−−−++221333OA OB OC =−− , 又AB OB OA =−,所以13DH AB OC =− .故DH ,AB ,OC 共面.故B 正确; 对C :因为HG OG OH OA AG OH =−=+− 1526OA AD OA =+− 12152336OA OA OB OC OA =+−++− 111336OA OB OC =−++ , 所以:HG OA ⋅= 111336OA OB OC OA −++⋅2111336OA OB OA OC OA =−+⋅+⋅ 1119660336=−×+×+×=, 所以HG OA ⊥ ,故GH OA ⊥ ,故C 正确;对D :设OH OA λ= ,()01λ≤≤.因为:DH OH OD =− ()OA OA AD λ=−+ 2133OA OA OA OB OC λ =−−++2133OA OB OC λ=−− . 所以DH OH ⋅ 2133OA OB OC OA λλ =−−⋅ ()2233OA OA OB OA OC λλλ=−⋅−⋅ 296λλ=−,()01λ≤≤. 当13λ=时,DH OH ⋅ 有最小值,为:1196193×−×=−,故D 正确. 故选:BCD11. 已知()2,3P 是圆C :22810410x y x y a +−−−+=内一点,其中0a >,经过点P 的动直线l 与C 交于A ,B 两点,若|AAAA |的最小值为4,则( )A. 12a =;B. 若|AAAA |=4,则直线l 的倾斜角为120°;C. 存在直线l 使得CA CB ⊥;D. 记PAC 与PBC △的面积分别为PAC S ,PBC S ,则PAC PBC S S ⋅△△的最大值为8.【答案】ACD【解析】【分析】根据点()2,3P 在圆内,列不等式,可求a 的取值范围,在根据弦|AAAA |的最小值为4求a 的值,判断A 的真假;明确圆的圆心和半径,根据1l CP k k ⋅=−,可求直线AB 的斜率,进而求直线AB 的倾斜角,判断B 的真假;利用圆心到直线的距离,确定弦长的取值范围,可判断C 的真假;由三角形面积公式和相交弦定理,可求PAC PBC S S ⋅△△的最大值,判断D 的真假.【详解】对A :由222382103410a +−×−×−+<⇒8a >.此时圆C :()()2245x y a −+−=.因为过P 点的弦|AAAA |的最小值为4,所以CP =又CP ===⇒12a =.故A 正确;对B :因为53142CP k −==−,1l CP k k ⋅=−,所以直线l 的斜率为1−,其倾斜角为135°,故B 错误; 对C :当|AAAA |=4时,如图:sin ACP ∠==cos ACP ∠==,所以41cos 1033ACB ∠=−=>, 所以ACB ∠为锐角,又随着直线AB 斜率的变化,ACB ∠最大可以为平角,所以存在直线l 使得CA CB ⊥.故C 正确;对D :如图:直线CP 与圆C 交于M 、N 两点,链接AM ,BN ,因为MAP BNP ∠=∠,APM NPB ∠=∠,所以APM NPB .所以AP MPNP BP =⇒(4AP BP MP NP ⋅=⋅=+=.又1sin 2PAC S PA PC APC APC =⋅⋅∠=∠ ,PBC S BPC =∠ , 且sin sin APC BPC ∠=∠. 所以22sin PAC PBC S S PA PB APC ⋅=⋅⋅∠ 28sin APC =∠8≤,当且仅当sin 1APC ∠=,即AB CP ⊥时取“=”.故D 正确.故选:ACD【点睛】方法点睛:在求PAC PBC S S ⋅△△的最大值时,应该先结合三角形相似(或者蝴蝶定理)求出AP BP ⋅为定值,再结合三角形的面积公式求PAC PBC S S ⋅△△的最大值.三、填空题:本题共3小题,每小题5分,共15分.12. 实数x 、y 满足224x y +=,则()()2243x y −++的最大值是______.【答案】49【解析】【分析】根据()()2243x y −++几何意义为圆上的点(),x y 与()4,3−距离的平方,找出圆上的与()4,3−的最大值,再平方即可求解.【详解】解:由题意知:设(),p x y ,()4,3A −,则(),p x y 为圆224x y +=上的点,圆224x y +=的圆心OO (0,0),半径2r =,则()()2243x y −++表示圆上的点(),p x y 与()4,3A −距离的平方,又因为max27PA AO r =+=+=, 所以22max749PA ==; 故()()2243x y −++的最大值是49.故答案为:49.13. 记ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,已知()cos 2cos a B c b A =−,其中π2B ≠,若ABC 的面积S =,2BE EC = ,且AE = BC 的长为______.【解析】【分析】利用正弦定理对()cos 2cos a B c b A =−化简,可得π3A =,再由三角形面积公式求出8bc =,根据题意写出1233AE AB AC =+ ,等式两边平方后,可求出,b c 的值,由余弦定理2222cos a b c bc A =+−,求出BC 的长.【详解】()cos 2cos a B c b A =−,由正弦定理可得:sin cos 2sin cos sin cos A B C A B A =−, sin cos cos sin 2sin cos A B A B C A +=,()sin 2sin cos A B C A +=,()sin πC 2sin cos C A −=,sin 2sin cos (sin 0)C C A C =>,即1cos 2A =,π3A =,1sin 2ABC S bc A == ,得8bc =, ∵2BE EC = ,∴1233AE AB AC =+ ,221233AE AB AC =+, 即2228144cos 3999c b bc A =++,由8bc =,解得42b c = = 或18b c = = , 根据余弦定理2222cos a b c bc A =+−,当42b c = =时,a =,此时π2B =,不满足题意, 当18b c = =时,a =.14. 如图,已知四面体ABCD 的体积为9,E ,F 分别为AB ,BC 的中点,G 、H 分别在CD 、AD 上,且G 、H 是靠近D 的三等分点,则多面体EFGHBD 的体积为______.【答案】72##3.5 【解析】 【分析】多面体EFGHBD 的体积为三棱锥G DEH −与四棱锥E BFGD −的体积之和,根据体积之比与底面积之比高之比的关系求解即可.【详解】连接ED,EG,因为H为AAAA上的靠近D的三分点,所以13DH AD=,因为E为AAAA的中点,所以点E到AAAA的距离为点B到AAAA的距离的一半,所以16DEH BADS S=,又G为CCAA上靠近D的三分点,所以点G到平面ABD的距离为点C到平面ABD的距离的13,所以111119663182G DEH G BAD C BADV V V−−−==×=×=,1233BCD FCG BCD BCD BCD BFGDS S S S S S=−=−=四边形,所以2211933323E BFGD E BCD A BCDV V V−−−==×=×=,所以多面体EFGHBD的体积为17322 G DEH E BFGDV V−−+=+=.故答案为:7 2 .【点睛】关键点点睛:将多面体转化为两个锥体的体积之和,通过体积之比与底面积之比高之比的关系求解.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 在对某高中1500名高二年级学生的百米成绩的调查中,采用按学生性别比例分配的分层随机抽样抽取100人,已知这1500名高二年级学生中男生有900人,且抽取的样本中男生成绩的平均数和方差分别为13.2秒和13.36,女生成绩的平均数和方差分别为15.2秒和17.56.(1)求抽取的总样本的平均数;(2)试估计高二年级全体学生的百米成绩的方差.【答案】(1)14 (2)16【解析】【分析】(1)先确定样本中男生、女生的人数,再求总样本的平均数.(2)根据方差的概念,计算总样本的方差.【小问1详解】样本中男生的人数为:100900601500×=;女生的人数为:1006040−=.所以总样本的平均数为:6013.24015.214100x×+×==.【小问2详解】记总样本的方差为2s , 则()(){}22216013.3613.2144017.5615.214100s =×+−+×+− 16=. 所以,估计高二年级全体学生的百米成绩的方差为16.16. 在平面直角坐标系xOy 中,ABC 的顶点A 的坐标为()4,2−,ACB ∠的角平分线所在的直线方程为10x y −+=,AC 边上中线BM 所在的直线方程为220x y +−=.(1)求点C 的坐标;(2)求直线BC 的方程.【答案】(1)(3,4)C ;(2)72130x y −−=【解析】【分析】(1)设(,1)C m m +,则43(,)22m m M −+,代入220x y +−=,求解即可; (2)设直线BC 的方程为:340x ny n +−−=,在直线10x y −+=取点(0,1)P ,利用点P 到直线AC 的距离等于点P 到直线BC 的距离,求解即可.【小问1详解】解:由题意可知点C 在直线10x y −+=上,所以设(,1)C m m +,所以AC 中点43(,)22m m M −+, 又因为点43(,)22m m M −+在直线220x y +−=上, 所以34202m m +−+−=,解得3m =, 所以(3,4)C ;【小问2详解】解:因为(3,4)C ,设直线BC 的方程为:340x ny n +−−=,又因为(4,2)A −,所以直线AC 的方程为:27220x y −+=,.又因为ACB ∠的角平分线所在的直线方程为10x y −+=,在直线10x y −+=取点(0,1)P ,则点P 到直线AC 的距离等于点P 到直线BC 的距离,=21453140n n ++=, 解得:72n =−或27n =−, 当72n =−时,所求方程即为直线AC 的方程, 所以27n =−, 所以直线BC 的方程为: 72130x y −−=.17. 直三棱柱111ABC A B C −中,12AB AC AA ===,其中,,E F D 分别为棱111,,BC B A B C 的中点,已知11AF A C ⊥,(1)求证:AF DE ⊥;(2)设平面EFD 与平面ABC 的交线为直线m ,求直线AC 与直线m 所成角的余弦值.【答案】(1)证明见解析(2【解析】【分析】(1)取AB 的中点G ,连接1,EG A G 证得四边形ADEG 为平行四边形,得到1//DE A G ,利用1A AG ABF ≌,证得90AHG ∠= ,得到1AF A G ⊥,即可证得AF DE ⊥;(2)根据题意,证得11A C ⊥平面11ABB A ,得到1111A C A B ⊥,以A 为原点,建立空间直角坐标系,求得(0,2,0)AC = ,再取AC 的中点M ,延长,MB DF 交于点N ,得到直线AC 与直线m 所成角,即为直线AC 与直线EN 所成角,求得(4,1,0)N −,得到(3,2,0)EN =− ,结合向量的夹角公式,即可求解.【小问1详解】证明:取AB 的中点G ,连接1,EG A G ,因为E 的中点,可得//EG AC ,且12EG AC =, 又因为1//A D AC ,且112A D AC =,所以1//EG A D ,且1EG A D =, 所以四边形ADEG 平行四边形,所以1//DE A G ,在正方形11ABB A 中,可得1A AG ABF ≌,所以1A GA AFB ∠=∠,因为90AFB AFB ∠+∠= ,所以190AFB A GA ∠+∠= ,AGH 中,可得90AHG ∠= ,所以1AF A G ⊥,又因为1//DE A G ,所以AF DE ⊥.【小问2详解】解:在直三棱柱111ABC A B C −中,可得1AA ⊥平面111A B C ,因为11AC ⊂平面111AB C ,所以111AA AC ⊥, 又因为11AF A C ⊥,且1AA AF A ∩=,1,AA AF ⊂平面11ABB A ,所以11A C ⊥平面11ABB A , 因为11A B ⊂平面11ABB A ,所以1111A C A B ⊥,即直三棱柱111ABC A B C −的底面为等腰直角三角形,以A 为原点,以1,,AB AC AA 所在的直线分别为,,x y z 轴,建立空间直角坐标系,如图所示,因为12AB AC AA ===,可得(0,0,0),(0,2,0)A C ,则(0,2,0)AC = ,为在取AC 的中点M ,连接,MB DM ,可得1//DM CC 且1DM CC =,因为11//BB DD 且11BB DD =,所以//BF DM ,且12BF DM =, 延长,MB DF 交于点N ,可得B 为MN 的中点,连接EN ,可得EN 即为平面DEF 与平面ABC 的交线,所以直线AC 与直线m 所成角,即为直线AC 与直线EN 所成角,又由(0,1,0),(2,0,0),(1,1,0)M B E ,设(,,)N x y z ,可得MB BN =,即(2,1,0)(2,,)x y z −=−, 可得4,1,0x y z ==−=,所以(4,1,0)N −,可得(3,2,0)EN =− ,设直线EN 与直线AC 所成角为θ,可得cos cos ,AC EN AC EN AC EN θ⋅==== , 即直线AC 与直线m18. 已知圆C :22430x y y +−+=,过直线l :12y x =上的动点M 作圆C 的切线,切点分别为P ,Q .(1)当π3PMQ ∠=时,求出点M 的坐标; (2)经过M ,P ,C 三点的圆是否过定点?若是,求出所有定点的坐标; (3)求线段PQ 的中点N 的轨迹方程.【答案】(1)(0,0)或84(,)55(2)过定点(0,2)或42(,)55(3)22173042x y x y +−−+= 【解析】【分析】(1)点M 在直线l 上,设(2,)M m m ,由对称性可知30CMP ∠= ,可得2MC =,从而可得点M 坐标.(2)MC 的中点,12m Q m+,因为MP 是圆P 的切线,进而可知经过C ,P ,M 三点的圆是以Q 为圆心,以MC 为半径的圆,进而得到该圆的方程,根据其方程是关于m 的恒等式,进而可求得x 和y ,得到结果;(3)结合(2)将两圆方程相减可得直线PQ 的方程,且得直线PQ 过定点13,42R,由几何性质得MN RN ⊥,即点N 在以MR 为直径的圆上,进而可得结果.【小问1详解】(1)直线l 的方程为20x y −=,点M 在直线l 上,设(2,)M m m , 因为π3PMQ ∠=,由对称性可得:由对称性可知30CMP ∠= , 由题1CP =所以2MC =,所以22(2)(2)4+−=m m , 解之得:40,5==m m 故所求点M 的坐标为(0,0)或84(,)55. 【小问2详解】设(2,)M m m ,则MC 的中点(,1)2m E m +,因为MP 是圆C 的切线, 所以经过,,C P M 三点的圆是以Q 为圆心,以ME 为半径的圆,故圆E 方程为:2222()(1)(1)22m m x m y m −+−−=+−化简得:222(22)0x y y m x y +−−+−=,此式是关于m 的恒等式,故2220,{220,x y y x y +−=+−=解得02x y = = 或4525x y = =, 所以经过,,C P M 三点的圆必过定点(0,2)或42(,)55.【小问3详解】 由()22222220,430x y mx m y m x y y +−−++= +−+= 可得PQ :()22320mx m y m +−+−=,即()22230m x y y +−−+=,由220,230x y y +−= −= 可得PQ 过定点13,42R . 因为N 为圆E 的弦PQ 的中点,所以MN PQ ⊥,即MN RN ⊥,故点N 在以MR 为直径的圆上,点N 的轨迹方程为22173042x y x y +−−+=. 19. 四棱锥P ABCD −中,底面ABCD 为等腰梯形,224AB BC CD ===,侧面PAD 为正三角形;(1)当BD PD ⊥时,线段PB 上是否存在一点Q ,使得直线AQ 与平面ABCD所成角的正弦值为若存在,求出PQ QB 的值;若不存在,请说明理由. (2)当PD 与平面BCD 所成角最大时,求三棱锥P BCD −的外接球的体积.【答案】(1)存在;1.(2【解析】【分析】(1)先证平面PAD ⊥平面ABCD ,可得线面垂直,根据垂直,可建立空间直角坐标系,用空间向量,结合线面角的求法确定点Q 的位置.(2)根据PD 与平面BCD 所成角最大,确定平面PAD ⊥平面ABCD ,利用(1)中的图形,设三棱锥P BCD −的外接球的球心,利用空间两点的距离公式求球心和半径即可.【小问1详解】因为底面ABCD 为等腰梯形,224AB BC CD ===,所以60BAD ∠=°,120BCD ∠=°,30CBD ABD ∠=∠=°,所以90ADB ∠=°.所以BD AD ⊥,又BD PD ⊥,,AD PD ⊂平面PAD ,且AD PD D = ,所以BD ⊥平面PAD .又BD ⊂平面ABCD ,所以平面PAD ⊥平面ABCD .取AD 中点O ,因为PAD △是等边三角形,所以PO AD ⊥,平面PAD ∩平面ABCD AD =,所以⊥PO 平面ABCD .再取AB 中点E ,连接OE ,则//OE BD ,所以OE AD ⊥.所以可以O 为原点,建立如图空间直角坐标系.则()0,0,0O ,()1,0,0A ,()1,0,0D −,()E ,()1,B −,(P ,()C −.(1,PB =− .设PQ PB λ= ,可得)()1Q λλ−−所以)()1,1AQ λλ=−−− ,取平面ABCD 的法向量()0,0,1n = .因为AQ 与平面ABCD ,所以AQ nAQ n ⋅==⋅ ,解得12λ=或5λ=(舍去). 所以:线段PB 上存在一点Q ,使得直线AQ 与平面ABCD ,此时1PQ QB =. 【小问2详解】当平面PAD ⊥平面ABCD 时, PD 与平面BCD 所成角为PDA ∠.当平面PAD 与平面ABCD 不垂直时,过P 做PH ⊥平面ABCD ,连接HD ,则PDH ∠为PD 与平面BCD 所成角,因为PH PO <,sin PH PDH PD ∠=,sin PO PDA PD∠=,s s n i i n PDA PDH ∠∠<,所以A PDH PD ∠∠<. 故当平面PAD ⊥平面ABCD 时,PD 与平面BCD 所成角最大.此时,设棱锥P BCD −的外接球球心为(),,G x y z ,GP GB GC GD R====,所以(()(()(()2222222222222222121x y z R x y z R x y z R x y z R ++= ++−+= +++=+++=,解得20133x y z R = = = = 所以三棱锥P BCD −的外接球的体积为:34π3V R ==. 【点睛】方法点睛:在空间直角坐标系中,求一个几何体的外接球球心,可以利用空间两点的距离公式,根据球心到各顶点的距离相等列方程求解..。
人工智能赋能教学在小学数学课堂中的实际应用---以科大讯飞“畅言智慧课堂”为例发布时间:2021-12-17T07:12:32.883Z 来源:《教育学文摘》2021年第36卷22期作者:欧阳钰娟[导读] 随着时代的发展和进步,传统教学课堂正在以全新的方式呈现在学生面前,课堂与人工智能的结合实现“智慧课堂”的打造,让学生的知识学习过程更加立体化、高效化,为学生更好掌握知识提供强大的支撑和支持。
欧阳钰娟武汉市汉南区子林小学摘要:随着时代的发展和进步,传统教学课堂正在以全新的方式呈现在学生面前,课堂与人工智能的结合实现“智慧课堂”的打造,让学生的知识学习过程更加立体化、高效化,为学生更好掌握知识提供强大的支撑和支持。
科大讯飞“智慧课堂”以建构主义学习理论为依据,从“互联网+”理念出发,将大数据、云计算等信息技术融入其中,实现了“智慧课堂”的打造。
小学数学作为基础教学的重要组成部分,借助科大讯飞智能工具的使用,更有利于数学高质量课堂的打造,为学生的全面发展奠定扎实根基。
本文就科大讯飞“畅言智慧课堂”的应用进行研究,探索智能工具与数学课堂的有效结合路径,希望可以为数学教学质量的提升提供借鉴。
关键词:科大讯飞;人工智能;小学数学;数学教学;智慧课堂引言:随着现代化科学技术的发展,诸多辅助工具应用到教学中来,带动课堂教学质量不仅提升,而且实现了“智慧课堂”的打造,有效弥补传统课堂教学之不足。
在众多教育技术系统中,由科大讯飞所研发的“畅言智慧课堂”人工智能工具,通过广覆盖性、高易用性教学资源平台的搭建,实现了教育资源的共享,满足了教师课堂教学的需要,让传统课堂教学与网络结合起来,让人工智能成为“智慧课堂”教学的重要辅助。
数学作为基础教学的重要学科,更加需要从学生的实际情况出发,对“畅言智慧课堂”客户端予以充分利用,让该人工智能技术辅助具有抽象性特点的数学予以更好具象化教学开展,让学生对数学学习的兴趣更为浓厚,带动数学课堂教学质量上升到新的台阶。
科大讯飞学习机里的作文素材范文没有了全文共8篇示例,供读者参考篇1哇,真是糟糕透了!前两天,我打开科大讯飞学习机准备写作文的时候,发现里面的作文素材范文全部不见了!我顿时傻了眼,这可怎么办啊?大家都知道,每次写作文之前,我都会先看看学习机里的范文,学习一下写作技巧和写作方法。
有了范文的借鉴和指导,写出来的作文水平就会高一些。
可是现在范文没了,我就只能完全凭自己的力量去写作文了,这可难倒我了。
不过,转念一想,或许这也是一个机会,让我独立思考,独立创作,锻炼自己的写作能力。
有了范文去临摹,固然可以写出不错的作文,但离开了范文,我是否就写不出好作文了呢?我决定勇敢地迎接这个挑战!从现在开始,我要靠自己的努力写好每一篇作文。
首先,我会认真观察生活中的人和事,用心感受这世界的Point 景和Point 物。
只有丰富的生活阅历和真挚的感受,才能为写作提供源源不断的素材。
其次,我还要多阅读名家名作,学习优秀作家的写作技巧和文字功底。
从他们的佳作中,我可以领略到精湛的文字魅力,熏陶自己的写作素养。
再者,我会认真听从老师的点拨,虚心请教同学。
每一次批改作文,老师都会指出我的不足,提出中肯的意见。
只要我认真吸收,定能不断进步。
同学们也会从不同角度评点我的作文,让我时刻保持警惕,避免走入误区。
最后,也是最重要的,我要勤加练习,熟能生巧。
写作就像练习射箭一样,只有持之以恒地练习,技艺才能日臻完美。
每一次动笔,都是一次宝贵的实践机会,让我在写作的道路上阔步向前。
没有了范文的借鉴,我想我未来的写作之路会更加崎岖和荆棘。
但只要我肯努力,定能创造出属于自己的写作风格,绽放出耀眼的才华光芒。
我对此很有信心,因为我并非一路孤军奋战- 前人的经典著作会化作我的止渴,老师和同伴就是我的终身伙伴。
有他们的支持和鞭策,我定能勇往直前,在写作的大道上越走越远!总之,虽然科大讯飞学习机里的作文素材范文没有了,这对我来说或许是一个挑战,但我并不惧怕。
科大讯飞数学题标注
(原创版)
目录
1.科大讯飞是什么
2.数学题标注的意义
3.科大讯飞的数学题标注功能
4.如何使用科大讯飞的数学题标注功能
5.科大讯飞数学题标注的优点和局限性
正文
科大讯飞是一家专注于语音技术和人工智能(AI)领域的高科技企业。
该公司的语音合成技术和语音识别技术处于世界领先水平,被广泛应用于智能家居、智能客服、语音翻译等多个领域。
其中,科大讯飞的数学题标注功能是一项非常实用的功能,它可以帮助学生和老师快速、准确地完成数学题的标注工作。
数学题标注对于学生和老师来说非常重要。
准确的标注可以帮助学生更好地理解题目,找出自己的错误和不足,从而提高学习效果。
同时,对于老师来说,标注工作可以帮助他们快速批改作业,节省时间和精力。
科大讯飞的数学题标注功能可以通过以下几个步骤来实现。
首先,用户需要打开科大讯飞的相应软件,并导入需要标注的数学题。
然后,软件会自动识别题目中的文字和符号,并进行标注。
最后,用户可以根据标注结果进行修改和保存。
科大讯飞的数学题标注功能具有许多优点,比如速度快、准确率高、操作简单等。
它可以大大提高学生和老师的工作效率,节省时间和精力。
但是,这项功能也存在一些局限性,比如对于一些复杂的数学符号和公式,它的识别准确率可能会有所下降。
总的来说,科大讯飞的数学题标注功能是一项非常实用的功能,它可以帮助学生和老师快速、准确地完成数学题的标注工作。