微积分考试试题
- 格式:doc
- 大小:228.00 KB
- 文档页数:7
微积分下试题及答案一、选择题(每题3分,共30分)1. 函数 \( f(x) = \frac{1}{x} \) 在区间 \( (0, \infty) \) 上是:A. 有界函数B. 无界函数C. 单调递增函数D. 单调递减函数答案:B2. 若函数 \( g(x) = x^3 - 6x^2 + 11x - 6 \) 在 \( x = 3 \) 处取极值,则 \( g(x) \) 在 \( x = 3 \) 处为:A. 极大值B. 极小值C. 不是极值D. 不确定答案:A3. 曲线 \( y = x^2 \) 与直线 \( y = 2x \) 在第一象限内的交点个数为:A. 0B. 1C. 2D. 3答案:B4. 已知 \( \lim_{x \to 0} \frac{\sin x}{x} = 1 \),则\( \lim_{x \to 0} \frac{\sin 2x}{x} \) 等于:A. 1B. 2C. 4D. 无法确定答案:C5. 若函数 \( h(x) = \sin x + \cos x \) 的导数 \( h'(x) \) 在区间 \( [0, \frac{\pi}{2}] \) 上为:A. 非正函数B. 非负函数C. 正值函数D. 负值函数答案:B6. 函数 \( F(x) = \int_0^x e^t dt \) 的值域是:A. \( (-\infty, 1] \)B. \( [1, \infty) \)C. \( (0, \infty) \)D. \( (-\infty, 0] \)答案:C7. 已知 \( \frac{dy}{dx} = 3x^2 - 2x \),且 \( y(2) = 4 \),则 \( y \) 的一个可能表达式是:A. \( y = x^3 - \frac{4}{3}x^3 + 4 \)B. \( y = x^3 - x^2 + C \)C. \( y = x^3 - 2x + C \)D. \( y = x^3 - \frac{10}{3}x^3 + C \)答案:A8. 函数 \( G(x) = e^x \) 的 \( n \) 阶导数 \( G^{(n)}(x) \) 是:A. \( e^x \)B. \( ne^x \)C. \( n!e^x \)D. \( 0 \)答案:A9. 曲线 \( y = \ln x \) 的水平渐近线方程是:A. \( y = 0 \)B. \( y = 1 \)C. \( y = -1 \)D. \( x = 1 \)答案:C10. 若 \( \int_{-1}^{1} x^2 dx = \frac{2}{3} \),则\( \int_{-1}^{1} x^3 dx \) 等于:A. \( -\frac{2}{4} \)B. \( \frac{2}{4} \)C. \( -\frac{1}{4} \)D. \( \frac{1}{4} \)答案:C二、填空题(每题4分,共20分)11. 函数 \( f(x) = \sqrt{x} \) 的最小值是 ________。
初级微积分测试题1. 计算下列函数的导数:a) f(x) = 3x^2 + 4x - 2b) g(x) = 4sin(x) + 2cos(x)c) h(x) = e^x - ln(x^2)解答:a) f'(x) = 6x + 4b) g'(x) = 4cos(x) - 2sin(x)c) h'(x) = e^x - 2/x2. 求下列函数的不定积分:a) ∫(2x^3 + 3x^2 - 5x + 1)dxb) ∫(5sin(x) + 2cos(x))dxc) ∫(e^x + 1/x)dx解答:a) ∫(2x^3 + 3x^2 - 5x + 1)dx = (1/2)x^4 + x^3/3 - 5x^2/2 + x + Cb) ∫(5sin(x) + 2cos(x))dx = -5cos(x) + 2sin(x) + Cc) ∫(e^x + 1/x)dx = e^x + ln|x| + C3. 计算下列定积分:a) ∫[0,1] (x^2 - 3x + 2)dxb) ∫[π/2,π] (2sin(x) + 3cos(x))dxc) ∫[1,e] (ln(x) + x)dx解答:a) ∫[0,1] (x^2 - 3x + 2)dx = (1/3)x^3 - (3/2)x^2 + 2x |[0,1] = (1/3) - (3/2) + 2 = -1/6b) ∫[π/2,π] (2sin(x) + 3cos(x))dx = -2cos(x) + 3sin(x) |[π/2,π] = -2cos(π) + 3sin(π) - (-2cos(π/2) + 3sin(π/2)) = -2c) ∫[1,e] (ln(x) + x)dx = xln(x) + (1/2)x^2 |[1,e] = e - 1 + (1/2)e^2 - (1/2) = (1/2)e^2 + e - (3/2)4. 求下列函数的极限:a) lim(x→3) (2x^2 - 5x + 3)b) lim(x→0) (3sin(x)/x)c) lim(x→∞) ((2x^2 + 3x + 1)/(x^2 + x))解答:a) lim(x→3) (2x^2 - 5x + 3) = 18b) lim(x→0) (3sin(x)/x) = 3c) lim(x→∞) ((2x^2 + 3x + 1)/(x^2 + x)) = 25. 解以下微分方程:a) dy/dx = 3x^2 + 2x - 1, y(0) = 1b) dy/dx + y = e^x, y(0) = 2c) d^2y/dx^2 + y = 0解答:a) dy/dx = 3x^2 + 2x - 1∫dy = ∫(3x^2 + 2x - 1)dxy = x^3 + x^2 - x + C将y(0) = 1代入得C = 1因此,y = x^3 + x^2 - x + 1b) dy/dx + y = e^x这是一个一阶线性非齐次微分方程解齐次方程dy/dx + y = 0得y = Ce^(-x)令特解为y = Ae^x,代入方程得 A = 1因此,y = Ce^(-x) + e^x将y(0) = 2代入得C + 1 = 2,解得C = 1因此,y = e^(-x) + e^xc) d^2y/dx^2 + y = 0这是一个二阶线性齐次微分方程特征方程r^2 + 1 = 0有两个虚根r = ±i因此通解为y = C1cos(x) + C2sin(x)通过以上测试题,我们可以巩固初级微积分的知识,包括函数的导数、不定积分、定积分、极限和微分方程的解法。
微积分试题及答案微积分试题及答案第⼀章函数极限与连续⼀、填空题1、已知x x f cos 1)2(sin +=,则=)(cos x f 。
2、=-+→∞)1()34(lim22x x x x 。
3、0→x 时,x x sin tan -是x 的阶⽆穷⼩。
4、01sin lim 0=→xx kx 成⽴的k 为。
5、=-∞→x e xx arctan lim 。
6、≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b 。
7、=+→xx x 6)13ln(lim 0 。
8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________。
9、函数)2ln(1++=x y 的反函数为_________。
10、设a 是⾮零常数,则________)(lim =-+∞→xx ax a x 。
11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价⽆穷⼩,则常数________=a 。
12、函数xxx f +=13arcsin )(的定义域是__________。
13、lim ____________x →+∞=。
14、设8)2(lim =-+∞→xx ax a x ,则=a ________。
15、)2)(1(lim n n n n n -++++∞→=____________。
⼆、选择题1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则中所给的函数必为奇函数。
(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。
2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有。
(A)α是⽐β⾼阶的⽆穷⼩;(B)α是⽐β低阶的⽆穷⼩;(C )α与β是同阶⽆穷⼩;(D )βα~。
微积分试题及答案在高等数学中,微积分是一门重要的学科。
它研究函数的极限、导数、积分等概念,通过对这些概念的理解和应用,可以帮助我们解决各种实际问题。
本文将提供一些微积分的试题,并附带相应的答案,供读者参考。
一、查找函数的极限1. 计算函数f(x) = (2x^2 + 3x - 1) / (3x^2 - 2x + 1)的极限lim(x->1) f(x)。
解答:首先,我们将x代入函数f(x)中,得到:f(x) = (2(1)^2 + 3(1) - 1) / (3(1)^2 - 2(1) + 1)= 4 / 2= 2因此,lim(x->1) f(x) = 2。
二、求函数的导数2. 求函数f(x) = 3x^4 - 8x^3 + 6x^2 - 12x + 2的导数f'(x)。
解答:对于多项式函数,求导的规则是将指数乘以系数,并降低指数1。
根据这个规则,我们对函数f(x)进行求导:f'(x) = 4(3x^3) - 3(8x^2) + 2(6x) - 1(12)= 12x^3 - 24x^2 + 12x - 12三、计算定积分3. 计算积分∫(0,1) x^2 dx。
解答:根据定积分的定义,我们需要计算被积函数x^2在0到1之间的面积。
∫(0,1) x^2 dx = [x^3/3] (0,1)= 1/3 - 0= 1/3四、求解微分方程4. 求微分方程 dy/dx = 2x 的通解。
解答:根据微分方程的性质,我们可以对方程两边同时积分,得到:∫dy = ∫2x dxy = x^2 + C其中,C为常数,代表特解的不确定常数。
这些例题涵盖了微积分中的一些基本概念和技巧。
希望通过这些试题的解答,读者能够更好地理解微积分的相关知识,并在实际应用中灵活运用。
总结:微积分是一门重要的数学学科,对解决实际问题具有广泛的应用。
本文介绍了微积分中的一些试题,并附带了详细的解答。
通过对这些试题的学习和理解,我们可以更好地把握微积分的核心概念和运算技巧。
微积分考试试题及答案一、选择题1. 下列哪个是微积分的基本定理?A. 韦达定理B. 牛顿-莱布尼兹公式C. 洛必达法则D. 极限定义答案:B. 牛顿-莱布尼兹公式2. 对于函数$f(x) = 3x^2 - 2x + 5$,求其导数$f'(x)$。
A. $3x^2 - 2x$B. $6x - 2$C. $6x - 2x$D. $6x - 2$答案:D. $6x - 2$3. 已知函数$y = 2x^3 + 4x - 1$,求其在点$(1, 5)$处的切线斜率。
A. 6B. 8C. 10D. 12答案:B. 8二、填空题1. 函数$y = \sin x$在$x = \pi/2$处的导数是\_\_\_\_\_\_。
答案:$1$2. 函数$y = e^x$的导数是\_\_\_\_\_\_。
答案:$e^x$3. 函数$y = \ln x$的导数是\_\_\_\_\_\_。
答案:$\frac{1}{x}$三、简答题1. 请解释一下微积分中的基本概念:导数和积分的关系。
答:导数和积分是微积分的两个基本概念,导数表示函数在某一点上的变化率,而积分表示函数在某一区间上的累积效果。
导数和积分互为逆运算,导数可以用来求解函数的斜率和最值,积分可以用来求解函数的面积和定积分。
2. 为什么微积分在物理学和工程学中如此重要?答:微积分在物理学和工程学中具有重要作用,因为微积分提供了一种精确的方法来描述和分析连续变化的过程。
通过微积分,可以求解物体在运动过程中的速度、加速度、轨迹等物理量,以及工程中涉及到的曲线、曲面、体积等问题。
微积分为物理学和工程学提供了丰富的数学工具,可以更准确地描述和解决实际问题。
四、计算题1. 计算定积分$\int_{0}^{1} x^2 dx$。
答:$\frac{1}{3}$2. 求函数$f(x) = 3x^2 - 2x + 5$在区间$[1, 2]$上的定积分。
答:$\frac{19}{3}$以上就是微积分考试的试题及答案,希望对你的复习有所帮助。
微积分b1期末试题及答案一、选择题(共30分,每题2分)1. 在平面直角坐标系中,曲线y=ax³+bx²+cx+d (a≠0) 的图象为抛物线,其开口方向为(A) 向上 (B) 向下 (C) 不确定2. 曲线y = |x-2|的图象关于点(3,0)对称的图象是(A) y ≥ 0 (B) y ≤ 0 (C) 不确定3. 函数y=ln(ax+b)在x=0处的导数为(A) a (B) a/b (C) -a/b4. 函数y=3x²ex在x=0处的导数为(A) 3 (B) 0 (C) 15. 函数y=ln(x/ex)的反函数为(A) ey (B) ex (C) ex/y6. 函数y=sin(ax+b)在[a, a+2π]上为奇函数,则b的取值范围是(A) (-∞, -2π] (B) [2π, +∞) (C) (-2π, 2π)7. 设函数f(x) = x²+ax+2,其中a为常数,则f(x)有唯一极值点的条件是(A) a ≠ 0 (B) a = 0 (C) a = 18. 设f(x)=sin(ax+b)在区间[0,2π]上有两个临界点,则b的取值范围是(A) [0, 2π] (B) [0, π) (C) (0, 2π)9. 函数y=ln(kcosx+1),当x∈(0,π)时关于x的导数不存在,其中k 为常数,则k的取值范围是(A) k > 1 (B) k < 1 (C) k ≠ 010. 设y=aₙxⁿ+aₙ₋₁xⁿ⁻¹+...+a₁x+a₀是n次多项式函数,其中a₀≠0,若f(1) = 0,则(A) a₀+a₁+...+aₙ = 0 (B) a₀+a₁+...+aₙ = 1 (C) a₀+a₁+...+aₙ = -111. 函数f(x) = 2x³+bx²+3x的图象经过点(1,11),则b的值为(A) 6 (B) 7 (C) 812. 函数y = aₙxⁿ+aₙ₋₁xⁿ⁻¹+...+a₀的函数值恒为0,则(A) a₀ = 0 (B) a₁ = 0 (C) a₀ = a₁ = ... = aₙ = 013. 若x为函数y = aₙxⁿ+aₙ₋₁xⁿ⁻¹+...+a₀=0的一个解,则(A) a₀≠0 (B) aₙ≠0 (C) a₀ = ... = aₙ = 014. 设直线y=kx+b与曲线y=f(x)相切,其中k是常数,则b可取下列哪一个值?(A) f'(x₀) (B) f(x₀) (C) f''(x₀)15. 设f(x) = aₙxⁿ+aₙ₋₁xⁿ⁻¹+...+a₁x+a₀是n次多项式函数,其中n≥ 2,若存在x₁ ≠ x₂,使得f(x₁) = f(x₂),则(A) a₀ = 0 (B) a₁ = 0 (C) a₀ = a₁ = ... = aₙ = 0二、填空题(共30分,每题2分)1. 若函数f(x)为奇函数,且在区间[-1,1]上可导,则f'(x)[1, 0] =______2. 若函数f(x) = 2x³-3x²+5x-7的图像在点(x₁, f(x₁))处的斜率为3,则x₁的值为______3. 设函数f(x) = x³-2ax²+ax+1的图象与x轴相切,则a的值为______4. 若函数y = ax³+bx²+cx+d有两个互异的极值点,则b的取值范围是______5. 函数y = eˣsinx的极值点个数为______6. 若函数f(x)在区间[a, b]上的某一点x₀处取得最大值和最小值,则在区间(a, b)内至少存在一点x₁,使得f'(x₁) = ______7. 若(fg)'(x) = f'(x)g'(x),则函数f(x)可以是______函数,g(x)可以是______函数8. 函数f(x) = x³+ax²+bx+c的图象在点(1, 3)处的斜率为2,则a、b、c的值分别为______9. 若函数y = (2x-1)eˣ的图象有切线经过点(0, -1),则切线的斜率为______10. 若函数y = sinh(ax+b)在x=0处有一水平切线,则a、b的值分别为______11. 若函数f(x) = 2x³+ax²+3x的导数在x=1处的值为4,则a的值为______12. 函数f(x) = x³-ax²+ax+1在x=0处有一切线,且此切线平行于直线y = x,则a的值为______三、解答题(共40分)1. 设函数f(x) = kx³+3x²+4x-1,其中k为常数,已知f(-1) = 2,求k 的值。
微积分考试试题及答案一、选择题(每题5分,共20分)1. 函数 \( f(x) = x^2 \) 在 \( x = 1 \) 处的导数是:A. 1B. 2C. 3D. 42. 定积分 \( \int_{0}^{1} x^2 dx \) 的值是:A. 1/3B. 1/2C. 2/3D. 13. 曲线 \( y = x^3 \) 与 \( x \) 轴围成的面积是:A. 1/4B. 1/3C. 1/2D. 2/34. 函数 \( y = \sin(x) \) 的不定积分是:A. \( -\cos(x) \)B. \( \cos(x) \)C. \( \sin(x) \)D. \( \ln(\sin(x)) \)二、填空题(每题5分,共20分)5. 如果 \( f'(x) = 6x \),则 \( f(x) = _______ + C \)。
6. 函数 \( y = \ln(x) \) 的导数是 _______。
7. 定积分 \( \int_{1}^{e} e^x dx \) 的值是 _______。
8. 曲线 \( y = e^x \) 与 \( x \) 轴围成的面积在 \( x = 0 \) 到 \( x = 1 \) 之间的值是 _______。
三、解答题(每题10分,共60分)9. 求函数 \( f(x) = x^3 - 3x \) 的导数。
10. 计算定积分 \( \int_{0}^{2} (2x + 1) dx \)。
11. 求曲线 \( y = x^2 \) 与直线 \( y = 4x \) 相交的点。
12. 求函数 \( y = \ln(x) \) 在 \( x = e \) 处的切线方程。
四、答案一、选择题答案1. B2. B3. B4. B二、填空题答案5. \( 3x^2 + C \)6. \( 1/x \)7. \( e^e - 1 \)8. \( e - 1 \)三、解答题答案9. \( f'(x) = 3x^2 - 3 \)10. \( \int_{0}^{2} (2x + 1) dx = x^2 + x \bigg|_{0}^{2} = 4 + 2 = 6 \)11. 令 \( x^2 = 4x \),解得 \( x = 0 \) 或 \( x = 4 \),所以交点为 \( (0, 0) \) 和 \( (4, 16) \)。
微积分试题 (A 卷)一. 填空题 (每空2分,共20分)1.已知则对于,总存在δ>0,使得当,)(lim 1A x f x =+→0>∀ε时,恒有│ƒ(x )─A│< ε。
2.已知,则a = ,b =2235lim 2=-++∞→n bn an n 。
3.若当时,α与β 是等价无穷小量,则 。
0x x →=-→ββα0limx x 4.若f (x )在点x = a 处连续,则 。
=→)(lim x f ax 5.的连续区间是 。
)ln(arcsin )(x x f =6.设函数y =ƒ(x )在x 0点可导,则______________。
=-+→hx f h x f h )()3(lim0007.曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。
8. 。
='⎰))((dx x f x d 9.设总收益函数和总成本函数分别为,,则当利润最大时产2224Q Q R -=52+=Q C 量是。
Q 二. 单项选择题 (每小题2分,共18分)1.若数列{x n }在a 的ε 邻域(a -ε,a +ε)内有无穷多个点,则()。
(A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a(C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在2.设则为函数的( )。
11)(-=x arctg x f 1=x )(x f(A) 可去间断点(B) 跳跃间断点 (C) 无穷型间断点(D) 连续点3.( )。
=+-∞→13)11(lim x x x(A) 1 (B) ∞(C)(D) 2e 3e4.对需求函数,需求价格弹性。
当价格( )时,5p eQ -=5pE d -==p 需求量减少的幅度小于价格提高的幅度。
(A) 3 (B) 5 (C) 6(D) 105.假设在点的某邻域内(可以除外)存)(),(0)(lim ,0)(lim 0x g x f x g x f x x x x ''==→→得0x 0x 在,又a 是常数,则下列结论正确的是( )。
微积分试题题库(含答案)一、单项选择题(每小题4分,共20分)1.函数24x x f -=)(有界且单调增加的区间是(B ). A .),(22- B .),(02- C .)2,0( D . ),(+∞2 2.当时,x x sin +2是关于的( D ). A .高阶无穷小量 B .低阶无穷小量 C .同阶但不等价无穷小量D .等价无穷小量3.在] ,[11-上满足罗尔定理的函数是( A ). A .2x e y -= B .32x y = C .211x y -=D .xxy sin =4. 下列等式中正确的是( D ). A .C x f dx x f +='⎰)(])([B .)()(x f x df =⎰C .)(])([x f dx x f d =⎰D .C x f dx x f +='⎰)()(5.由曲线21x y -=与直线x y =,y 轴所围平面图形绕轴旋转一周生成的旋转体体积等于( C ). A .dx x x 222021)(--⎰πB .dx x x 222021)(⎰--π C .dx x x ])[(2222021--⎰πD .dx x x ])([2222201--⎰π1.函数x x x f arctan )sin()(+=2在),(+∞-∞内是( C ).A .无界奇函数B .无界偶函数C .有界奇函数D .有界偶函数2.当0→x 时,x x arcsin -3是关于x 的( C ).A .高阶无穷小量B .低阶无穷小量C .同阶但不等价无穷小量D .等价无穷小量3.设10=')(x f ,则=∆-∆-→∆xx f x x f x )()3(lim 000( B ). A . 4- B .3-C . 2-D .1-44. 下列命题中正确的是( D ). A .极小值必小于极大值B .若)(x f 在0x x =处有00=')(x f ,则)(0x f 必为极值 C. 若)(0x f 为)(x f 的极值,则必有00=')(x f0→x x xD. 若)(0x f 为可导函数)(x f 的极值,则必有00=')(x f5.=+'⎰dx x f x f 24)]([)(( A ). A .C x f +221)(arctan B .C x f +441)(arctanC .C x f ++)(ln 221D . C x f ++)(ln 21.函数x x x f arctan )cos()(+=2在),(+∞-∞内是( D ).A .无界奇函数B .无界偶函数C .有界奇函数D .有界偶函数2.当0→x 时,x x 22tan -是关于x 的( C ).A .高阶无穷小量B .低阶无穷小量C .同阶但不等价无穷小量D .等价无穷小量3.设00=)(f ,10=')(f ,则=→xx f x 2)(lim 0( B ). A .B .21 C . 1D .不存在4. 曲线xxe x f 2)(=在)1,2(--内( B ).A .单减且凹B .单减且凸 C. 单增且凹 D. 单增且凸5.设x sin 是)(x f 一个原函数,则='⎰dx x f x )(( A ).A .C x x x +-sin cosB .C x x x +-sin cos C .C x x x +-cos sinD .C x x x +-cos sin二、填空题(每小题4分,共28分)1.若k xx e x =-→21)(lim ,则___-2__.2.设函数⎪⎩⎪⎨⎧=≠-=0021x a x x e x f x , ,)(在点连续,则__21___.3.曲线x xe y 2-=的拐点坐标是_),(211e _. 4.设yx e z =,则=∂∂∂y x z2 y xe y x y)(+-31_.5.=+⎰-dx x x x 1123 )cos ( _32__. 6.更换积分次序,=⎰⎰dx y x f dyyy1),(dy y x f dxxx ⎰⎰12),(.7.微分方程y x e dxdy-=满足初始条件01=)(y 的特解是)ln(e e y x -+=1. =k 0=x =a1.若=-→xx x 1031)(lim __3-e ___.2.设函数⎪⎩⎪⎨⎧<<≤-=10 20 3x axx x x e x f x ,tan sin ,cos )(在点0=x 连续,则=a _1____.3.曲线352)(-=x y 的拐点坐标是_____),(02_______________.4.设)sin(2+=y x z ,则=∂∂∂yx z2________)cos(2+y _________________. 5.=++⎰-dx x x x x 114231 )sin (52. 6.设平面区域D 由直线x y =,1=x 与x 轴所围,则=⎰⎰Ddxdy 21. 7.微分方程y x e dxdy+=的通解是C e e y x =+-. 1.若=--∞→n n n n )(lim 1e 1.2.设函数⎪⎩⎪⎨⎧>+-+≤+=0 ,110 ,)(2x xx x x x a x f 在点0=x 连续,则=a _1/2____.3.曲线x xe y 3-=的拐点坐标是__________),(23232-e __________.4.设2y x ez +=,则=∂∂∂yx z2_________22y x ye +________________. 5. =++⎰-dx x xxx 11 223)31cos (_____2______. 6.设平面区域D 由直线x y =,1=y 与y 轴所围,则=⎰⎰dxdy D2__1___.7.微分方程y x y x '=-)(22的通解是____________222x eCx y -=__________________.三、解答题(共52分)1.(本题5分)求极限.arctan lim2x tdt xx ⎰→ 解:.lim arctan lim arctan lim2121122002=+==→→→⎰x x x x tdt x x xx2.(本题7分)求曲线)sin(xy e e y x =-在),(00点的切线方程. 解: 方程)sin(xy e e y x =-两边同时对x 求导,可得))(cos(y x y xy y e e y x '+='⋅-化简可得yx e xy x xy y e y +-='cos cos100000000=+-='e e y cos cos ),(故曲线)sin(xy e e y x =-在),(00点的切线方程为)(010-=-x y即 x y =.3.(本题7分)设函数),(y x z z =由方程xyz z =sin 确定,求dz . 解:设xyz z z y x F -=sin ),,(,yz F x-=',,xz F y -=',cos xy z F z -=' xyz yz F F x zz x -=''-=∂∂cos ; xy z xzF F y z z y -=''-=∂∂cos ; 所以dy xyz xzdx xy z yz dz -+-=cos cos .4.(本题7分)求微分方程x y xy =-'1的通解. 解:由题意知,,)(xx P 1-=x x Q =)(, 则 )()())(()()()()(C x x C dx xe e C dx e x Q e y dx x dx x dxx P dxx P +=+=+=⎰⎰⎰⎰⎰⎰----11所以原方程通解为:.Cx x y +=25.(本题8分)求函数x x x f 2332-=)(在],[21-上的最大值和最小值. 解:求函数的一阶导数,得)()(3131311222x xxx f -=-='--因此x x x f 2332-=)(在),(21-内有不可导点01=x 和唯一的驻点12=x , 比较下列值:044325111003>-==-==)( ,)( ,)( ,)(f f f f故x x x f 2332-=)(在],[21-上的最大值为,)(51=-f 最小值为00=)(f .6.(本题9分)计算.dx e x ⎰-1解:令,x t -=则,,tdt dx t x 22==且x 从10→时,t 从10-→.ee edt e tetde tdt e dx ett tt tx42122221110111-=--=-===------⎰⎰⎰⎰)()(7.(本题9分)计算dxdy y x D⎰⎰+22sin,其中{}22224ππ≤+≤=y x y x D ),(.解:积分区域D 的图形为上图阴影所示圆环域,在极坐标下{}πππθθ220≤≤≤≤='r r D ,),(=+⎰⎰dxdy y x D22sin =⎰⎰'θdrd r r D sin ⎰⎰πππθ220rdr r d sin =.)cos (sin 2262ππππ-=-r r r1.(本题5分)求极限.limcos 212xdt e xt x ⎰-→解:.)sin (limlimcoscos ex x e x dt e xx xt x 2122221=-⋅-=-→-→⎰2.(本题7分)求曲线0=-+e e xy y 在),(10点的切线方程 解: 方程0=-+e e xy y 两边同时对x 求导,可得:0='+'+y e y x y y化简可得ye x yy +-='e ey 101110-=+-='),( 故曲线0=-+e e xy y 在),(10点的切线方程为:)0(11--=-x ey即 .exy -=13.(本题7分)设函数),(y x z z =由方程333a xyz z =-确定,求dz . 解:设333a xyz z z y x F --=),,(,yz F x3-=',,xz F y 3-=',xy z F z 332-=' xyz yz xy z yz F F x zz x -=---=''-=∂∂22333; xyz xzxy z xz F F y z z y -=---=''-=∂∂22333. 所以 )(xdy ydx xyz zdz +-=2.4.(本题7分)求微分方程xxx y y sin =+'满足初始条件1=)(πy 的特解.解:由题意可知,所求微分方程变形为一阶非齐次线性微分方程,,)(xx P 1=,sin )(x xx Q =)cos ()sin ()sin ()sin ())((ln )()(C x xC xdx x C xdx x x e C dx e xx e C dx e x Q e y x dx x dx xdx x P dxx P +-=+=+=+=+=⎰⎰⎰⎰---⎰⎰⎰⎰1111将初始条件1=)(πy 代入上式,得1-=πC故所求微分方程在初始条件11=)(y 下的特解为: )cos (x xy --=11π5.(本题8分)求函数1)(2+=x x x f 在]1,21[-的最大值和最小值.解:求函数的一阶导数,得22)1(2)(++='x x x x f因此1)(2+=x x x f 在)1,21(-内有唯一的驻点0=x .比较下列值:21)1(,0)0(,21)21(===-f f f故1)(2+=x x x f 在]1,21[-上的最大值为,21)1()21(==-f f 最小值为.0)0(=f6.(本题9分)求dx x x ⎰-123 .解:令x t 23-=,则232t x -=,.tdt dx -=0=x 时,3=t ;1=x 时,1=t ..5233102)3(21)(232331531331 4221 321 0 -=-=-=--=-⎰⎰⎰t t dtt t dt t t dx x x7.(本题9分)计算D dxdy y yD其中,sin ⎰⎰由曲线x y x y ==,所围的闭区域. 解:积分区域为右图所示阴影部分,则=⎰⎰dxdy y yDsin dyy y y dyy y y y dx y ydy yy⎰⎰⎰⎰-=-==1 021 0 1 0)sin (sin )(sin sin 21sin 1sin 1cos 1cos 1cos cos cos cos sin 10110101 01-=-+-=-+-=+=⎰⎰⎰y ydy y y y yyd ydy1.(本题5分)求极限.sin lim3x tdt t xx ⎰→解:=⎰→3sin limx tdt t xx .313sin lim 3sin lim020==→→x x x x x x x2.(本题7分)求曲线021=+-y y x sin 在),(00点的切线方程 解: 方程021=+-y y x sin 两边同时对x 求导,可得:0211='⋅+'-y y y cos 化简可得 yy cos -='22202200=-='cos ),(y故曲线021=+-y y x sin 在),(00点的切线方程为:)(020-=-x y即 .x y 2=3.(本题7分)设函数),(y x z z =由方程yx e xyz -=确定,求.dz解:设y x e xyz z y x F --=),,(,y x xe yz F --=',,y x y e xz F -+=',xy F z =' xz xz xy yz xyz xy yz e xy e yz F F x zy x y x z x -=-=-=--=''-=∂∂--; 0yyz z xy xyz xz xy e xz F F y z y x z y +-=+-=+-=''-=∂∂-.则 dy yz yz dx x zxz dz +--=.4.(本题7分)求微分方程122--='xy x y x 满足初始条件11=)(y 的特解 解:将所求微分方程变形为,212xx y x y -=+'此方程为一阶非齐次线性微分方程.,)(x x P 2=,)(21xx x Q -=)())(()()())((ln )()(C x x xC dx x x C dx x x x e C dx e xx e C dx e x Q e y x dx x dx xdx x P dxx P +-=+-=+⋅-=+-=+=⎰⎰⎰⎰---⎰⎰⎰⎰211111222222222将初始条件11=)(y 代入上式,得23=C 故所求微分方程在初始条件11=)(y 下的特解为:223121xx y +-=5.(本题8分)求函数)1ln(2+=x y 在]3,1[-的最大值和最小值. 解:求函数的一阶导数,得12)(2+='x xx f 因此)1ln(2+=x y 在)3,1(-内有唯一的驻点0=x .比较下列值:10ln )3(,0)0(,2ln )1(===-f f f ,故)1ln(2+=x y 在]3,1[-上的最大值为,10ln )3(=f 最小值为0)0(=f . 6.(本题9分)求dx xx ⎰-23231.解:令,sin t x = 则.cos tdt dx =0=x 时,0=t ;23=x 时,3π=t . 2453221241)cos 3cos (cos )1(cos cos )sin (cos cos sin 13033023023032323=+-=-=-=-==-⎰⎰⎰⎰ππππt t td t t d t tdt ttdx xx7.(本题9分)计算,⎰⎰Ddxdy x y其中D 由21x ≤+2y 4≤,x x y ,=轴所围解:积分区域如下图所示,在极坐标系下,122=+y x 的方程化为1=r ,422=+y x 的方程化为2=r ,由图可知,⎭⎬⎫⎩⎨⎧≤≤≤≤='40 ,21 ),(πθθr r D=⎰⎰Ddxdy xy⎰⎰''D dr rd θθtan ⎰⎰⋅=4021tan πθθrdr d.2ln 43cos ln 23cos cos 232cos sin 404021240=-=-=⋅=⎰⎰πππθθθθθθd rd12yxxy =。
微积分试题及答案第一章 函数极限与连续一、填空题1、已知x x f cos 1)2(sin +=,则=)(cos x f 。
2、=-+→∞)1()34(lim22x x x x 。
3、0→x 时,x x sin tan -是x 的 阶无穷小。
4、01sin lim 0=→xx kx 成立的k 为 。
5、=-∞→x e xx arctan lim 。
6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b 。
7、=+→xx x 6)13ln(lim 0 。
8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________。
9、函数)2ln(1++=x y 的反函数为_________。
10、设a 是非零常数,则________)(lim =-+∞→xx ax a x 。
11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数________=a 。
12、函数xxx f +=13arcsin )(的定义域是__________。
13、lim ____________x →+∞=。
14、设8)2(lim =-+∞→xx ax a x ,则=a ________。
15、)2)(1(lim n n n n n -++++∞→=____________。
二、选择题1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则 中所给的函数必为奇函数。
(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。
2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有 。
(A)α是比β高阶的无穷小; (B)α是比β低阶的无穷小; (C )α与β是同阶无穷小; (D )βα~。
《微积分》试题
一、选择题(3×5=15)
1、.函数f (x)=1+x3+x5,则f (x3+x5)为(d)
(A)1+x3+x5(B)1+2(x3+x5)
(C)1+x6+x10(D)1+(x3+x5)3+(x3+x5)5
2、.函数f(x)在区间[a,b]上连续,则以下结论正确的是(b)
(A)f (x)可能存在,也可能不存在,x∈[a,b].
(B)f (x)在[a,b] 上必有最大值。
(C)f (x)在[a,b] 上必有最小值,但没有最大值.
(D)f (x)在(a,b)上必有最小值。
3、函数的弹性是函数对自变量的( C )
A、导数
B、变化率
C、相对变化率
D、微分
4、下列论断正确的是( a )
A、可导极值点必为驻点
B、极值点必为驻点
C、驻点必为可导极值点
D、驻点必为极值点
5、∫e-x dx=(b)
(A)e-x+c(B)-e-x+c (C)-e-x(D)-e x +c
二、填空题(3×5=15)
1.设,则 . [答案:]
2.函数y=x+ex上点(0,1) 处的切线方程是_____________。
[答案:2x-y+1=0]
任课教师:系主任签字:
3、物体运动方程为S=1
1+t (米).则在t=1秒时,物体速度为V=____,加速度
为a=____。
[答案:41-,4
1 ]
4。
设,则 。
[答案:
3
4]
5.若⎰
+=c e 2dx )x (f 2
x ,则
f(x )=_________。
[答案:2
x
e ]
三、计算题 1、设x sin e
y x
1tan = ,求dy . (10分)
解:dy=d x sin e x
1tan =dx x sin x 1sec
x 1x cos e
22x
1tan
⎪⎭
⎫ ⎝⎛- 2.计算
⎰+2x )e 1(dx
. (15分)
解:原式=⎰+-+dx )e 1(e e 12x x x =⎰⎰++-+2x x x )e 1()e 1(d e 1dx =⎰+++-+x
x x x e
11
dx e 1e e 1 =x -ln(1+e x )+x
e
11
+ +c
3。
求
(15分)
解:
4.设一质量为m的物体从高空自由落下,空气阻力正比于速度( 比例常数为k)0 )求速度与时间的关系。
(15分)
解:设速度为u,则u满足m=dt
du
=mg-ku 解方程得u=
k
1
(mg-ce—kt/m ) 由u│t=0=0定出c,得u=k
mg
(1-e-kt/m )
5.设函数f(x),g (x)在[a,b ]上连续且f (a)>g(a ),f (b)〈g(b ),求证:在(a ,b )
内,曲线y=f (x )与y=g(x)至少有一个交点。
(15分)
证:据题意F(x)=f (x )-g (x ),显然在[a,b ]上连续且F (a)=f (a )-g (a)>0,F(b )=f (b )-g(b )<0,据闭区间上连续函数的零值定理,可知:在(a,b)内至少存在一点ξ,使F(ξ)=0,即f (ξ)—g (ξ)=0,所以
f (
《微积分》试题(二)
开卷( ) 闭卷(√) 适用专业年级:2008级农资等
姓名 学号 专业 班级
本试题4大题,共4页,满分100分。
考试时间120分钟
2、试卷若有雷同以零分计
3、请将选择填空题答在指定位置,否则无效 一、填空题(每空2分,共20分)
1、 .
2、 。
3、 。
4、=a , =b 。
5、 。
6、 。
7、 。
8、 .9 .
1、当0→x 时x cos 1-与n
x 为同阶无穷小,则=n .
2、已知,0≠m ⎩⎨⎧==t
y t x m ln ,则=dx dy。
3、设)(x f 是定义在实数集上以2为周期的函数,且)11()(≤<-=x e x f x
,则
=⎪⎭
⎫
⎝⎛23f 。
4、已知bx ax x x f ++=2
3)(在1-=x 处取得极小值2-,则=a , =b 。
5、
()=+'⎰⎰D
dxdy y x
f 22
,其中{}
41),(22≤+≤=y x y x D 。
6、由抛物线2
x y =与直线0,1==y x 所围平面图形绕x 轴旋转一周所得旋转体的体积为 。
7、=⎪⎭
⎫ ⎝⎛+-+∞→1
11lim x x x x 。
8、已知)(x f 在0x 点连续,且A x x x f x x =-→0
)
(lim
,则=')(0x f 。
9、xy y ='的通解为 。
1、a x f x x =→)(lim 0
是a x f x x =→)(lim 0
的( )条件.
A 、充分
B 、必要
C 、既不充分也不必要
D 、充要
2、若实系数方程0012
23344=++++a x a x a x a x a 有四个实根,则方程
023*******=+++a x a x a x a 的实根个数为( ).
A 、1
B 、2
C 、3
D 、0
3、设在区间],[b a 上)(x f 可导且0)(>'x f ,令()a b b f s dx x f s b
a -==⎰)(,)(21,
则有( )。
A 、21s s <
B 、21s s >
C 、21s s =
D 、无法判断 4、下列广义积分收敛的是( )。
A 、
⎰
+∞
+1
21dx x x B 、⎰1021sin 1dx x x C 、⎰+∞+1211
dx x D 、⎰+∞1x
dx 5、已知f 是R 上的可微函数,()
,x
e f y =则
==0
x dx
dy
( )。
A 、()x
e
f ' B 、()x
x
e f e ' C 、)1(f D 、)1(f '
6、函数⎪⎩⎪⎨⎧<≥=1
cos 1
2
)(x x a x x x f π在定义域内处处连续,则=a ( )。
A 、2
B 、-2
C 、1
D 、-1
7、⎪⎩⎪
⎨⎧=≠+=)0,0(),(0
)0,0(),(),(22y x y x y x xy
y x f 在(0,0)点( ).
A 、可微
B 、连续
C 、有极限
D 、偏导数存在 8、若A x f x x =→)(lim 0
,则)(x f 在0x 点( )。
A 、有定义
B 、无定义
C 、A x f =)(0
D 、以上答案都不对 9、()3
1-=x y 的极值点个数为( )。
A 、0
B 、1
C 、2
D 、3 10、),(,0y x f b a <<在2
R 上连续,⎰⎰
=x
a b
a
dy y x f dx ),(( )。
A 、
⎰⎰
x
a
b
a
dx y x f dy ),( B 、⎰⎰b
a
b
a
dx y x f dy ),(
C 、
⎰⎰
x b
b
a
dx y x f dy ),( D 、⎰⎰b
y
b a dx y x f dy ),(
三、计算题(每小题10分,共50分)
1、计算4
2
sin lim
x
tdt x x ⎰→
2、已知)(x f y =是由方程y
e xy -=1所确定的隐函数,求)0(y ''.
3、计算⎰+dx x x
2cos 1cos ln 。
4、求函数xyz
e x u 3=的全微分du 。
5、计算⎰⎰D
y
x d e
σ,其中D 是由直线1,,=-==y x y x y 所围成的平面有界闭区域。
四、证明题(10分)
证明:对任意的,0>x 不等式)1ln()1(1x x e x
++>-成立。