2020年高考物理考点题型归纳与训练专题十磁场的性质及带电粒子在磁场中的运动(含解析)
- 格式:docx
- 大小:291.08 KB
- 文档页数:25
高考物理带电粒子在磁场中的运动技巧(很有用)及练习题及解析一、带电粒子在磁场中的运动专项训练1.如图所示,在xOy 坐标系中,第Ⅰ、Ⅱ象限内无电场和磁场。
第Ⅳ象限内(含坐标轴)有垂直坐标平面向里的匀强磁场,第Ⅲ象限内有沿x 轴正向、电场强度大小为E 的匀强磁场。
一质量为m 、电荷量为q 的带正电粒子,从x 轴上的P 点以大小为v 0的速度垂直射入电场,不计粒子重力和空气阻力,P 、O两点间的距离为202mv qE。
(1)求粒子进入磁场时的速度大小v 以及进入磁场时到原点的距离x ;(2)若粒子由第Ⅳ象限的磁场直接回到第Ⅲ象限的电场中,求磁场磁感应强度的大小需要满足的条件。
【答案】(102v ;20mv qE (2)0(21)EB v ≥【解析】 【详解】(1)由动能定理有:2220011222mv qE mv mv qE ⋅=- 解得:v 2v 0设此时粒子的速度方向与y 轴负方向夹角为θ,则有cosθ=022v v =解得:θ=45° 根据tan 21xyθ=⋅=,所以粒子进入磁场时位置到坐标原点的距离为PO 两点距离的两倍,故20mv x qE=(2)要使粒子由第Ⅳ象限的磁场直接回到第Ⅲ象限的电场中,其临界条件是粒子的轨迹与x 轴相切,如图所示,由几何关系有:s=R+R sinθ又:2v qvB mR=解得:(21)EBv+=故(21)EBv+≥2.如图所示,一匀强磁场磁感应强度为B;方向向里,其边界是半径为R的圆,AB为圆的一直径.在A点有一粒子源向圆平面内的各个方向发射质量m、电量-q 的粒子,粒子重力不计.(1)有一带电粒子以的速度垂直磁场进入圆形区域,恰从B点射出.求此粒子在磁场中运动的时间.(2)若磁场的边界是绝缘弹性边界(粒子与边界碰撞后将以原速率反弹),某粒子沿半径方向射入磁场,经过2次碰撞后回到A点,则该粒子的速度为多大?(3)若R=3cm、B=0.2T,在A点的粒子源向圆平面内的各个方向发射速度均为3×105m/s、比荷为108C/kg的粒子.试用阴影图画出粒子在磁场中能到达的区域,并求出该区域的面积(结果保留2位有效数字).【答案】(1)(2)(3)【解析】【分析】(1)根据洛伦兹力提供向心力,求出粒子的半径,通过几何关系得出圆弧所对应的圆心角,根据周期公式,结合t=T求出粒子在磁场中运动的时间.(2)粒子径向射入磁场,必定径向反弹,作出粒子的轨迹图,通过几何关系求出粒子的半径,从而通过半径公式求出粒子的速度.(3)根据粒子的半径公式求出粒子的轨道半径,作出粒子轨迹所能到达的部分,根据几何关系求出面积.【详解】(1)由得r1=2R粒子的运动轨迹如图所示,则α=因为周期.运动时间.(2)粒子运动情况如图所示,β=.r2=R tanβ=R由得(3)粒子的轨道半径r3==1.5cm粒子到达的区域为图中的阴影部分区域面积为S=πr32+2×π(2r3)2−r32=9.0×10-4m2【点睛】本题考查了带电粒子在磁场中的运动问题,需掌握粒子的半径公式和周期公式,并能画出粒子运动的轨迹图,结合几何关系求解.该题对数学几何能力要求较高,需加强这方面的训练.3.3L、间距为L、水平固定的平行金属板之间,存在方向垂直纸面向外的匀强磁场.现将下板接地,让质量为m、电荷量为q的带正电粒子流从两板左端连线的中点O以初速度v0水平向右射入板间,粒子恰好打到下板的中点.若撤去平行板间的磁场,使上板的电势φ随时间t 的变化规律如图所示,则t=0时刻,从O 点射人的粒子P 经时间t 0(未知量)恰好从下板右边缘射出.设粒子打到板上均被板吸收,粒子的重力及粒子间的作用力均不计.(1)求两板间磁场的磁感应强度大小B .(2)若两板右侧存在一定宽度的、方向垂直纸面向里的匀强磁场,为了使t=0时刻射入的粒子P 经过右侧磁场偏转后在电场变化的第一个周期内能够回到O 点,求右侧磁场的宽度d 应满足的条件和电场周期T 的最小值T min . 【答案】(1)0mv B qL = (2)223cos d R a R L ≥+= ;min 0(632)L T π+= 【解析】 【分析】 【详解】(1)如图,设粒子在两板间做匀速圆周运动的半径为R 1,则0102qv B m v R =由几何关系:222113()()22L LR R =+- 解得0mv B qL=(2)粒子P 从O 003L v t =01122y L v t = 解得03y v =设合速度为v ,与竖直方向的夹角为α,则:0tan 3yv v α==则=3πα00sin v v α== 粒子P 在两板的右侧匀强磁场中做匀速圆周运动,设做圆周运动的半径为R 2,则212sin L R α=,解得2R =右侧磁场沿初速度方向的宽度应该满足的条件为22cos d R R L α≥+=; 由于粒子P 从O 点运动到下极板右侧边缘的过程与从上板右边缘运动到O 点的过程,运动轨迹是关于两板间的中心线是上下对称的,这两个过程经历的时间相等,则:2min 0(22)2R T t vπα--=解得()min 023L T v π=【点睛】带电粒子在电场或磁场中的运动问题,关键是分析粒子的受力情况和运动特征,画出粒子的运动轨迹图,结合几何关系求解相关量,并搞清临界状态.4.正、负电子从静止开始分别经过同一回旋加速器加速后,从回旋加速器D 型盒的边缘引出后注入到正负电子对撞机中.正、负电子对撞机置于真空中.在对撞机中正、负电子对撞后湮灭成为两个同频率的光子.回旋加速器D 型盒中的匀强磁场的磁感应强度为0B ,回旋加速器的半径为R ,加速电压为U ;D 型盒缝隙间的距离很小,带电粒子穿过的时间可以忽略不计.电子的质量为m 、电量为e ,重力不计.真空中的光速为c ,普朗克常量为h .(1)求正、负电子进入对撞机时分别具有的能量E 及正、负电子对撞湮灭后产生的光子频率v(2)求从开始经回旋加速器加速到获得最大能量的过程中,D 型盒间的电场对电子做功的平均功率P(3)图甲为正负电子对撞机的最后部分的简化示意图.位于水平面的粗实线所示的圆环真空管道是正、负电子做圆周运动的“容器”,正、负电子沿管道向相反的方向运动,在管道内控制它们转变的是一系列圆形电磁铁.即图中的A 1、A 2、A 4……A n 共有n 个,均匀分布在整个圆环上.每个电磁铁内的磁场都是匀强磁场,并且磁感应强度都相同,方向竖直向下.磁场区域的直径为d .改变电磁铁内电流大小,就可以改变磁场的磁感应强度,从而改变电子偏转的角度.经过精确调整,首先实现电子在环形管道中沿图甲中粗虚线所示的轨道运动,这时电子经过每个电磁铁时射入点和射出点都在电磁铁的同一直径的两端,如图乙所示.这就为进一步实现正、负电子的对撞做好了准备.求电磁铁内匀强磁场的磁感应强度B 大小【答案】(1) 222202e B R mc v mh h =+,22202e B R E m = ;(2) 20e B U mπ ;(3)02sin B R n dπ【解析】 【详解】解:(1)正、负电子在回旋加速器中磁场里则有:200mv evB R= 解得正、负电子离开回旋加速器时的速度为:00eB Rv m=正、负电子进入对撞机时分别具有的能量:222200122e B R E mv m==正、负电子对撞湮灭时动量守恒,能量守恒,则有:222E mc hv +=正、负电子对撞湮灭后产生的光子频率:222202e B R mc v mh h=+(2) 从开始经回旋加速器加速到获得最大能量的过程,设在电场中加速n 次,则有:2012neU mv =解得:2202eB R n mU=正、负电子在磁场中运动的周期为:02mT eB π=正、负电子在磁场中运动的时间为:2022B R nt T Uπ==D 型盒间的电场对电子做功的平均功率:20e B UW E P t t mπ===(3)设电子在匀强磁场中做圆周运动的半径为r ,由几何关系可得sin2dr nπ=解得:2sind r nπ=根据洛伦磁力提供向心力可得:20 0mvev Br=电磁铁内匀强磁场的磁感应强度B大小:02sinB RnBdπ=5.如图所示,半径r=0.06m的半圆形无场区的圆心在坐标原点O处,半径R=0.1m,磁感应强度大小B=0.075T的圆形有界磁场区的圆心坐标为(0,0.08m),平行金属板MN的极板长L=0.3m、间距d=0.1m,极板间所加电压U=6.4x102V,其中N极板收集到的粒子全部中和吸收.一位于O处的粒子源向第一、二象限均匀地发射速度为v的带正电粒子,经圆形磁场偏转后,从第一象限出射的粒子速度方向均沿x轴正方向,已知粒子在磁场中的运动半径R0=0.08m,若粒子重力不计、比荷qm=108C/kg、不计粒子间的相互作用力及电场的边缘效应.sin53°=0.8,cos53°=0.6.(1)求粒子的发射速度v的大小;(2)若粒子在O点入射方向与x轴负方向夹角为37°,求它打出磁场时的坐标:(3)N板收集到的粒子占所有发射粒子的比例η.【答案】(1)6×105m/s;(2)(0,0.18m);(3)29%【解析】【详解】(1)由洛伦兹力充当向心力,即qvB=m2vR可得:v=6×105m/s;(2)若粒子在O点入射方向与x轴负方向夹角为37°,作出速度方向的垂线与y轴交于一点Q,根据几何关系可得PQ=0.0637cos=0.08m,即Q为轨迹圆心的位置;Q到圆上y轴最高点的距离为0.18m-0.0637sin=0.08m,故粒子刚好从圆上y轴最高点离开;故它打出磁场时的坐标为(0,0.18m);(3)如上图所示,令恰能从下极板右端出射的粒子坐标为y,由带电粒子在电场中偏转的规律得:y=12at2…①a=qEm=qUmd…②t=Lv …③由①②③解得:y=0.08m设此粒子射入时与x轴的夹角为α,则由几何知识得:y=r sinα+R0-R0cosα可知tanα=43,即α=53°比例η=53180×100%=29%6.电子扩束装置由电子加速器、偏转电场和偏转磁场组成.偏转电场的极板由相距为d的两块水平平行放置的导体板组成,如图甲所示.大量电子由静止开始,经加速电场加速后,连续不断地沿平行板的方向从两板正中间OO’射入偏转电场.当两板不带电时,这些电子通过两板之间的时间为2t0;:当在两板间加最大值为U0、周期为2t0的电压(如图乙所示)时,所有电子均能从两板间通过,然后进入竖直宽度足够大的匀强酸场中,最后打在竖直放置的荧光屏上.已知磁场的水平宽度为L,电子的质量为m、电荷量为e,其重力不计.(1)求电子离开偏转电场时的位置到OO’的最远位置和最近位置之间的距离(2)要使所有电子都能垂直打在荧光屏上,①求匀强磁场的磁感应强度B②求垂直打在荧光屏上的电子束的宽度△y 【答案】(1)2010U e y t dm ∆= (2)①00U t B dL =②2010U e y y t dm∆=∆= 【解析】 【详解】(1)由题意可知,从0、2t 0、4t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最大,在这种情况下,电子的最大距离为:2222000max 00000311222y U e U e U e y at v t t t t dm dm dm=+=+= 从t 0、3t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最小,在这种情况下,电子的最小距离为:220min 001122U e y at t dm== 最远位置和最近位置之间的距离:1max min y y y ∆=-,2010U e y t dm∆=(2)①设电子从偏转电场中射出时的偏向角为θ,由于电子要垂直打在荧光屏上,所以电子在磁场中运动半径应为:sin L R θ=设电子离开偏转电场时的速度为v 1,垂直偏转极板的速度为v y ,则电子离开偏转电场时的偏向角为θ,1sin y v v θ=,式中00y U ev t dm = 又:1mv R Be=解得:00U t B dL=②由于各个时刻从偏转电场中射出的电子的速度大小相等,方向相同,因此电子进入磁场后做圆周运动的半径也相同,都能垂直打在荧光屏上.由第(1)问知电子离开偏转电场时的位置到OO ′的最大距离和最小距离的差值为△y 1, 所以垂直打在荧光屏上的电子束的宽度为:2010U e y y t dm∆=∆=7.如图所示,空间存在方向垂直于xOy 平面向里的匀强磁场,在0<y<d 的区域Ⅰ内的磁感应强度大小为B ,在y>d 的区域Ⅱ内的磁感应强度大小为2B .一个质量为m 、电荷量为-q 的粒子以速度qBdm从O 点沿y 轴正方向射入区域Ⅰ.不计粒子重力.(1) 求粒子在区域Ⅰ中运动的轨道半径:(2) 若粒子射入区域Ⅰ时的速度为2qBdvm=,求粒子打在x轴上的位置坐标,并求出此过程中带电粒子运动的时间;(3) 若此粒子射入区域Ⅰ的速度qBdvm>,求该粒子打在x轴上位置坐标的最小值.【答案】(1)R d=(2)()43OP d=-23mtqBπ=(3)min3x d=【解析】【分析】【详解】(1)带电粒子在磁场中运动,洛仑磁力提供向心力:21vqv B mr=把qBdvm=,代入上式,解得:R d=(2) 当粒子射入区域Ⅰ时的速度为02v v=时,如图所示在OA段圆周运动的圆心在O1,半径为12R d=在AB段圆周运动的圆心在O 2,半径为R d=在BP段圆周运动的圆心在O3,半径为12R d=可以证明ABPO3为矩形,则图中30θ=,由几何知识可得:132cos303OO d d==所以:323OO d d=所以粒子打在x轴上的位置坐标(133243OP O O OO d=+=粒子在OA段运动的时间为:13023606m mtqB qBππ==粒子在AB 段运动的时间为2120236023m mt q B qBππ==粒子在BP 段运动的时间为313023606m mt t qB qBππ===在此过程中粒子的运动时间:12223mt t t qBπ=+=(3)设粒子在区域Ⅰ中轨道半径为R ,轨迹由图可得粒子打在x 轴上位置坐标:()22222x R R d R d =--+-化简得:222340R Rx x d -++=把上式配方:222213033R x x d ⎛⎫--+= ⎪⎝⎭ 化简为:222213033R x x d ⎛⎫-=-≥ ⎪⎝⎭ 则当23R x =时,位置坐标x 取最小值:min 3x d =8.如图,第一象限内存在沿y 轴负方向的匀强电场,电场强度大小为E ,第二、三、四象限存在方向垂直xOy 平面向外的匀强磁场,其中第二象限的磁感应强度大小为B ,第三、四象限磁感应强度大小相等,一带正电的粒子,从P (-d ,0)点沿与x 轴正方向成α=60°角平行xOy 平面入射,经第二象限后恰好由y 轴上的Q 点(图中未画出)垂直y 轴进入第一象限,之后经第四、三象限重新回到P 点,回到P 点时速度方向与入射方时相同,不计粒子重力,求:(1)粒子从P 点入射时的速度v 0; (2)第三、四象限磁感应强度的大小B /; 【答案】(1)3EB(2)2.4B 【解析】试题分析:(1)粒子从P 点射入磁场中做匀速圆周运动,画出轨迹如图,设粒子在第二象限圆周运动的半径为r ,由几何知识得: 2360d d dr sin sin α===︒ 根据200mv qv B r =得0233qBdv m=粒子在第一象限中做类平抛运动,则有21602qE r cos t m -︒=(); 00y v qEt tan v mv α==联立解得03Ev B=(2)设粒子在第一象限类平抛运动的水平位移和竖直位移分别为x 和y ,根据粒子在第三、四象限圆周运动的对称性可知粒子刚进入第四象限时速度与x 轴正方向的夹角等于α.则有:x=v 0t , 2y v y t =得03222y v y tan x v α===由几何知识可得 y=r-rcosα= 13 2r d=则得23x d=所以粒子在第三、四象限圆周运动的半径为125323d dR dsinα⎛⎫+⎪⎝⎭==粒子进入第三、四象限运动的速度0432v qBdv vcosα===根据2'vqvB mR=得:B′=2.4B考点:带电粒子在电场及磁场中的运动9.如图所示,三块挡板围成截面边长L=1.2m的等边三角形区域,C、P、Q分别是MN、AM和AN中点处的小孔,三个小孔处于同一竖直面内,MN水平,MN上方是竖直向下的匀强电场,场强E=4×10-4N /C.三角形区域内有垂直纸面向里的匀强磁场,磁感应强度为B1;AMN以外区域有垂直纸面向外,磁感应强度大小为B2=3B1的匀强磁场.现将一比荷q/m=105C/kg的帯正电的粒子,从O点由静止释放,粒子从MN小孔C进入内部匀强磁场,经内部磁场偏转后直接垂直AN经过Q点进入外部磁场.已知粒子最终回到了O点,OC相距2m.设粒子与挡板碰撞过程中没有动能损失,且电荷量不变,不计粒子重力,不计挡板厚度,取π=3.求:(1)磁感应强度B1的大小;(2)粒子从O点出发,到再次回到O点经历的时间;(3)若仅改变B2的大小,当B2满足什么条件时,粒子可以垂直于MA经孔P回到O点(若粒子经过A点立即被吸收).【答案】(1)51210T3B-=⨯;(2)-22.8510st=⨯;(3)524210T3kB-+=⨯'【解析】【详解】(1)粒子从O到C即为在电场中加速,则由动能定理得:212Eqx mv=解得v =400 m/s带电粒子在磁场中运动轨迹如图所示.由几何关系可知 10.6m 2LR == 由211v qvB m R =代入数据得 51210T 3B -=⨯ (2)由题可知 B 2=3B 1=2×10-5 T211v qvB m R =则 120.2m 3R R == 由运动轨迹可知:进入电场阶段做匀加速运动,则112x vt = 得到 t 1=0.01 s粒子在磁场B 1中的周期为 112mT qB π=则在磁场B 1中的运动时间为 3211310s 3t T -==⨯ 在磁场B 2中的运动周期为 222mT qB π= 在磁场B 2中的运动时间为3-3321803001801110s 5.510s 3606t T π-︒+︒+︒==⨯=⨯︒则粒子在复合场中总时间为:3-21231722010s 2.8510s 6t t t t π-⎛⎫=++=+⨯=⨯ ⎪⎝⎭(3)设挡板外磁场变为'2B ,粒子在磁场中的轨迹半径为r ,则有 2'2v qvB m r=根据已知条件分析知,粒子可以垂直于MA 经孔P 回到O 点,需满足条件()212Lk r =+其中 k =0、1、2、3…… 解得524210T 3k B -+=⨯'10.如图所示,真空中有一个半径r=0.5m 的圆柱形匀强磁场区域,磁场的磁感应强度大小B=2×10-3T ,方向垂直于纸面向外,x 轴与圆形磁场相切于坐标系原点O ,在x=0.5m 和x=1.5m 之间的区域内有一个方向沿y 轴正方向的匀强电场区域,电场强E=1.5×103N/C ,在x=1.5m 处竖有一个与x 轴垂直的足够长的荧光屏,一粒子源在O 点沿纸平面向各个方向发射速率相同、比荷9110qm=⨯C/kg 的带正电的粒子,若沿y 轴正方向射入磁场的粒子恰能从磁场最右侧的A 点沿x 轴正方向垂直进入电场,不计粒子的重力及粒子间的相互作用和其他阻力.求:(1)粒子源发射的粒子进入磁场时的速度大小;(2)沿y 轴正方向射入磁场的粒子从射出到打到荧光屏上的时间(计算结果保留两位有效数字);(3)从O 点处射出的粒子打在荧光屏上的纵坐标区域范围.【答案】(1)61.010/v m s =⨯;(2)61.810t s -=⨯;(3)0.75 1.75m y m ≤≤ 【解析】 【分析】(1)粒子在磁场中做匀速圆周运动,由几何关系确定半径,根据2v qvB m R=求解速度;(2)粒子在磁场中运动T/4,根据周期求解在磁场中的运动时间;在电场中做类平抛运动,根据平抛运动的规律求解在电场值的时间;(3)根据牛顿第二定律结合运动公式求解在电场中的侧移量,从而求解从O 点处射出的粒子打在荧光屏上的纵坐标区域范围. 【详解】(1)由题意可知,粒子在磁场中的轨道半径为R=r=0.5m ,由2v qvB mR= 进入电场时qBR v m =带入数据解得v=1.0×106m/s(2)粒子在磁场中运动的时间61121044R t s v ππ-=⨯=⨯ 粒子从A 点进入电场做类平抛运动,水平方向的速度为v ,所以在电场中运动的时间62 1.010xt s v-==⨯ 总时间6612110 1.8104t t t s s π--⎛⎫=+=+⨯=⨯⎪⎝⎭(3)沿x 轴正方向射入电场的粒子,在电场中的加速度大小121.510/qEa m s m==⨯ 在电场中侧移:2121261111.5100.7522110y at m m ⎛⎫==⨯⨯⨯= ⎪⨯⎝⎭打在屏上的纵坐标为0.75;经磁场偏转后从坐标为(0,1)的点平行于x 轴方向射入电场的粒子打在屏上的纵坐标为1.75;其他粒子也是沿x 轴正方向平行的方向进入电场,进入电场后的轨迹都平行,故带电粒子打在荧光屏上 的纵坐标区域为0.75≤y ≤1.75.11.如图甲所示,边长为L 的正方形ABCD 区域内(含边界)有垂直纸面向里的匀强磁场。
高考物理带电粒子在磁场中的运动易错题知识点及练习题word一、带电粒子在磁场中的运动压轴题1.如图所示,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外.点3,0P L ⎛⎫ ⎪ ⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q 、质量为m 的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L ),求其速率v 1;(2)若撤去第一象限的磁场,在其中加沿y 轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加沿y 轴正向的匀强电场E o ,粒子3以速率v 3沿y 轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)23BLq m (2221BLq32230B E E v B +⎛⎫ ⎪⎝⎭【解析】 【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111v qv B m r =由几何憨可知:()222113r L r ⎫=-+⎪⎪⎝⎭得到:123BLqv m=(2)粒子2在第一象限中类斜劈运动,有:13L v t=,212qE h t m = 在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:22219BLqv m=(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'= 而'223v v v ''=+ 所以,运动过程中粒子的最小速率为v v v =''-'即:22003E E v v B B ⎛⎫=+- ⎪⎝⎭2.如图,区域I 内有与水平方向成45°角的匀强电场1E ,区域宽度为1d ,区域Ⅱ内有正交的有界匀强磁场B 和匀强电场2E ,区域宽度为2d ,磁场方向垂直纸面向里,电场方向竖直向下.一质量为m 、电量大小为q 的微粒在区域I 左边界的P 点,由静止释放后水平向右做直线运动,进入区域Ⅱ后做匀速圆周运动,从区域Ⅱ右边界上的Q 点穿出,其速度方向改变了30,重力加速度为g ,求:(1)区域I 和区域Ⅱ内匀强电场的电场强度12E E 、的大小. (2)区域Ⅱ内匀强磁场的磁感应强度B 的大小. (3)微粒从P 运动到Q 的时间有多长.【答案】(1)12mg E q =,2mgE q =122m gd 121626d d gd gd π+ 【解析】 【详解】(1)微粒在区域I 内水平向右做直线运动,则在竖直方向上有:1sin45qE mg ︒= 求得:12mgE q=微粒在区域II 内做匀速圆周运动,则重力和电场力平衡,有:2mg qE = 求得:2mgE q=(2)粒子进入磁场区域时满足:2111cos452qE d mv ︒=2v qvB m R=根据几何关系,分析可知:222sin30d R d ==︒整理得:2B =(3)微粒从P 到Q 的时间包括在区域I 内的运动时间t 1和在区域II 内的运动时间t 2,并满足:211112a t d = 1tan45mg ma ︒=2302360Rt vπ︒=⨯︒经整理得:12112t t t =+==3.科学家设想在宇宙中可能存在完全由反粒子构成的反物质.例如:正电子就是电子的反粒子,它跟电子相比较,质量相等、电量相等但电性相反.如图是反物质探测卫星的探测器截面示意图.MN 上方区域的平行长金属板AB 间电压大小可调,平行长金属板AB 间距为d ,匀强磁场的磁感应强度大小为B ,方向垂直纸面向里.MN 下方区域I 、II 为两相邻的方向相反的匀强磁场区,宽度均为3d ,磁感应强度均为B ,ef 是两磁场区的分界线,PQ 是粒子收集板,可以记录粒子打在收集板的位置.通过调节平行金属板AB 间电压,经过较长时间探测器能接收到沿平行金属板射入的各种带电粒子.已知电子、正电子的比荷是b ,不考虑相对论效应、粒子间的相互作用及电磁场的边缘效应.(1)要使速度为v 的正电子匀速通过平行长金属极板AB ,求此时金属板AB 间所加电压U ;(2)通过调节电压U 可以改变正电子通过匀强磁场区域I 和II 的运动时间,求沿平行长金属板方向进入MN 下方磁场区的正电子在匀强磁场区域I 和II 运动的最长时间t m ; (3)假如有一定速度范围的大量电子、正电子沿平行长金属板方向匀速进入MN 下方磁场区,它们既能被收集板接收又不重叠,求金属板AB 间所加电压U 的范围.【答案】(1)Bvd (2)Bb π(3)3B 2d 2b <U <221458B d b【解析】 【详解】(1)正电子匀速直线通过平行金属极板AB ,需满足 Bev=Ee因为正电子的比荷是b ,有 E=Ud联立解得:u Bvd =(2)当正电子越过分界线ef 时恰好与分界线ef 相切,正电子在匀强磁场区域I 、II 运动的时间最长。
高考物理带电粒子在磁场中的运动解题技巧和训练方法及练习题(含答案)含解析一、带电粒子在磁场中的运动专项训练1.如图,区域I 内有与水平方向成45°角的匀强电场1E ,区域宽度为1d ,区域Ⅱ内有正交的有界匀强磁场B 和匀强电场2E ,区域宽度为2d ,磁场方向垂直纸面向里,电场方向竖直向下.一质量为m 、电量大小为q 的微粒在区域I 左边界的P 点,由静止释放后水平向右做直线运动,进入区域Ⅱ后做匀速圆周运动,从区域Ⅱ右边界上的Q 点穿出,其速度方向改变了30,重力加速度为g ,求:(1)区域I 和区域Ⅱ内匀强电场的电场强度12E E 、的大小. (2)区域Ⅱ内匀强磁场的磁感应强度B 的大小. (3)微粒从P 运动到Q 的时间有多长.【答案】(1)12mg E =2mgE q =122m gd 121626d d gd gd π+ 【解析】 【详解】(1)微粒在区域I 内水平向右做直线运动,则在竖直方向上有:1sin45qE mg ︒= 求得:12mgE =微粒在区域II 内做匀速圆周运动,则重力和电场力平衡,有:2mg qE = 求得:2mgE q=(2)粒子进入磁场区域时满足:2111cos452qE d mv ︒=2v qvB m R=根据几何关系,分析可知:222sin30d R d ==︒整理得:122m gd B =(3)微粒从P 到Q 的时间包括在区域I 内的运动时间t 1和在区域II 内的运动时间t 2,并满足:211112a t d =1tan45mg ma ︒=2302360Rt vπ︒=⨯︒ 经整理得:112121222612126gd d d d t t t gd g gd ππ+=+=+⨯=2.如图所示,半径r =0.06m 的半圆形无场区的圆心在坐标原点O 处,半径R =0.1m ,磁感应强度大小B =0.075T 的圆形有界磁场区的圆心坐标为(0,0.08m ),平行金属板MN 的极板长L =0.3m 、间距d =0.1m ,极板间所加电压U =6.4x102V ,其中N 极板收集到的粒子全部中和吸收.一位于O 处的粒子源向第一、二象限均匀地发射速度为v 的带正电粒子,经圆形磁场偏转后,从第一象限出射的粒子速度方向均沿x 轴正方向,已知粒子在磁场中的运动半径R 0=0.08m ,若粒子重力不计、比荷qm=108C/kg 、不计粒子间的相互作用力及电场的边缘效应.sin53°=0.8,cos53°=0.6. (1)求粒子的发射速度v 的大小;(2)若粒子在O 点入射方向与x 轴负方向夹角为37°,求它打出磁场时的坐标: (3)N 板收集到的粒子占所有发射粒子的比例η.【答案】(1)6×105m/s ;(2)(0,0.18m );(3)29% 【解析】 【详解】(1)由洛伦兹力充当向心力,即qvB =m 2v R可得:v =6×105m/s ;(2)若粒子在O 点入射方向与x 轴负方向夹角为37°,作出速度方向的垂线与y 轴交于一点Q ,根据几何关系可得PQ=0.0637cos =0.08m ,即Q 为轨迹圆心的位置; Q 到圆上y 轴最高点的距离为0.18m-0.0637sin =0.08m ,故粒子刚好从圆上y 轴最高点离开; 故它打出磁场时的坐标为(0,0.18m );(3)如上图所示,令恰能从下极板右端出射的粒子坐标为y,由带电粒子在电场中偏转的规律得:y=12at2…①a=qEm=qUmd…②t=Lv …③由①②③解得:y=0.08m设此粒子射入时与x轴的夹角为α,则由几何知识得:y=r sinα+R0-R0cosα可知tanα=43,即α=53°比例η=53180×100%=29%3.如图甲所示,在直角坐标系0≤x≤L区域内有沿y轴正方向的匀强电场,右侧有一个以点(3L,0)为圆心、半径为L的圆形区域,圆形区域与x轴的交点分别为M、N.现有一质量为m、带电量为e的电子,从y轴上的A点以速度v0沿x轴正方向射入电场,飞出电场后从M点进入圆形区域,此时速度方向与x轴正方向的夹角为30°.不考虑电子所受的重力.(1)求电子进入圆形区域时的速度大小和匀强电场场强E的大小;(2)若在圆形区域内加一个垂直纸面向里的匀强磁场,使电子穿出圆形区域时速度方向垂直于x轴.求所加磁场磁感应强度B的大小和电子刚穿出圆形区域时的位置坐标;(3)若在电子刚进入圆形区域时,在圆形区域内加上图乙所示变化的磁场(以垂直于纸面向外为磁场正方向),最后电子从N点处飞出,速度方向与进入磁场时的速度方向相同.请写出磁感应强度B0的大小、磁场变化周期T各应满足的关系表达式.【答案】(1)(2)(3)(n=1,2,3…)(n=1,2,3…)【解析】(1)电子在电场中作类平抛运动,射出电场时,速度分解图如图1中所示.由速度关系可得:解得:由速度关系得:v y=v0tanθ=v0在竖直方向:而水平方向:解得:(2)根据题意作图如图1所示,电子做匀速圆周运动的半径R=L根据牛顿第二定律:解得:根据几何关系得电子穿出圆形区域时位置坐标为(,-)(3)电子在在磁场中最简单的情景如图2所示.在磁场变化的前三分之一个周期内,电子的偏转角为60°,设电子运动的轨道半径为r,运动的T0,粒子在x轴方向上的位移恰好等于r1;在磁场变化的后三分之二个周期内,因磁感应强度减半,电子运动周期T′=2T0,故粒子的偏转角度仍为60°,电子运动的轨道半径变为2r,粒子在x轴方向上的位移恰好等于2r.综合上述分析,则电子能到达N点且速度符合要求的空间条件是:3rn=2L(n=1,2,3…)而:解得:(n=1,2,3…)应满足的时间条件为: (T0+T′)=T而:解得(n=1,2,3…)点睛:本题的靓点在于第三问,综合题目要求及带电粒子运动的半径和周期关系,则符合要求的粒子轨迹必定是粒子先在正B0中偏转60°,而后又在− B0中再次偏转60°,经过n次这样的循环后恰恰从N点穿出.先从半径关系求出磁感应强度的大小,再从周期关系求出交变磁场周期的大小.4.电子扩束装置由电子加速器、偏转电场和偏转磁场组成.偏转电场的极板由相距为d的两块水平平行放置的导体板组成,如图甲所示.大量电子由静止开始,经加速电场加速后,连续不断地沿平行板的方向从两板正中间OO’射入偏转电场.当两板不带电时,这些电子通过两板之间的时间为2t0;:当在两板间加最大值为U0、周期为2t0的电压(如图乙所示)时,所有电子均能从两板间通过,然后进入竖直宽度足够大的匀强酸场中,最后打在竖直放置的荧光屏上.已知磁场的水平宽度为L,电子的质量为m、电荷量为e,其重力不计.(1)求电子离开偏转电场时的位置到OO’的最远位置和最近位置之间的距离(2)要使所有电子都能垂直打在荧光屏上,①求匀强磁场的磁感应强度B②求垂直打在荧光屏上的电子束的宽度△y【答案】(1)2010U e y t dm ∆= (2)①00U t B dL =②2010U e y y t dm∆=∆= 【解析】 【详解】(1)由题意可知,从0、2t 0、4t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最大,在这种情况下,电子的最大距离为:2222000max 00000311222y U e U e U e y at v t t t t dm dm dm=+=+= 从t 0、3t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最小,在这种情况下,电子的最小距离为:220min 001122U e y at t dm== 最远位置和最近位置之间的距离:1max min y y y ∆=-,2010U e y t dm∆=(2)①设电子从偏转电场中射出时的偏向角为θ,由于电子要垂直打在荧光屏上,所以电子在磁场中运动半径应为:sin L R θ=设电子离开偏转电场时的速度为v 1,垂直偏转极板的速度为v y ,则电子离开偏转电场时的偏向角为θ,1sin y v v θ=,式中00y U ev t dm= 又:1mv R Be =解得:00U tB dL=②由于各个时刻从偏转电场中射出的电子的速度大小相等,方向相同,因此电子进入磁场后做圆周运动的半径也相同,都能垂直打在荧光屏上.由第(1)问知电子离开偏转电场时的位置到OO ′的最大距离和最小距离的差值为△y 1, 所以垂直打在荧光屏上的电子束的宽度为:2010U e y y t dm∆=∆=5.如图所示,在第一象限内存在匀强电场,电场方向与x 轴成45°角斜向左下,在第四象限内有一匀强磁场区域,该区域是由一个半径为R 的半圆和一个长为2R 、宽为2R的矩形组成,磁场的方向垂直纸面向里.一质量为m 、电荷量为+q 的粒子(重力忽略不计)以速度v 从Q(0,3R)点垂直电场方向射入电场,恰在P(R ,0)点进入磁场区域.(1)求电场强度大小及粒子经过P点时的速度大小和方向;(2)为使粒子从AC边界射出磁场,磁感应强度应满足什么条件;(3)为使粒子射出磁场区域后不会进入电场区域,磁场的磁感应强度应不大于多少?【答案】(1)22mvE=;2v,速度方向沿y轴负方向(2)82225mv mvBqR qR≤≤(3)()22713mvqR-【解析】【分析】【详解】(1)在电场中,粒子沿初速度方向做匀速运动132cos4522cos45RL R R=-︒=︒1L vt=沿电场力方向做匀加速运动,加速度为a22sin452L R R=︒=2212L at=qEam=设粒子出电场时沿初速度和沿电场力方向分运动的速度大小分别为1v、2v,合速度v'1v v =、2v at =,2tan v vθ=联立可得224mv E qR=进入磁场的速度22122v v v v =+='45θ=︒,速度方向沿y 轴负方向(2)由左手定则判定,粒子向右偏转,当粒子从A 点射出时,运动半径12Rr =由211mv qv B r =''得122mvB qR=当粒子从C 点射出时,由勾股定理得()222222R R r r ⎛⎫-+= ⎪⎝⎭解得258r R =由222mv qv B r =''得2825mvB qR=根据粒子在磁场中运动半径随磁场减弱而增大,可以判断,当82225mv mvB qR qR≤≤时,粒子从AC 边界射出(3)为使粒子不再回到电场区域,需粒子在CD 区域穿出磁场,设出磁场时速度方向平行于x 轴,其半径为3r ,由几何关系得222332R r r R ⎛⎫+-= ⎪⎝⎭解得()3714R r =由233mv qv B r =''得)322713mv B qR= 磁感应强度小于3B ,运转半径更大,出磁场时速度方向偏向x 轴下方,便不会回到电场中6.如图所示,在竖直平面内建立直角坐标系,y 轴沿竖直方向.在x = L 到x =2L 之间存在竖直向上的匀强电场和垂直坐标平面向里的匀强磁场,一个比荷(qm)为k 的带电微粒从坐标原点以一定初速度沿+x 方向抛出,进入电场和磁场后恰好在竖直平面内做匀速圆周运动,离开电场和磁场后,带电微粒恰好沿+x 方向通过x 轴上x =3L 的位置,已知匀强磁场的磁感应强度为B ,重力加速度为g .求:(1)电场强度的大小; (2)带电微粒的初速度;(3)带电微粒做圆周运动的圆心坐标.【答案】(1)g k (2)2gkB(3)2222232(,)28g k B L L k B g -【解析】 【分析】 【详解】(1)由于粒子在复合场中做匀速圆周运动,则:mg =qE ,又=qk m解得g E k=(2)由几何关系:2R cos θ=L ,粒子做圆周运动的向心力等于洛伦兹力:2v qvB m r= ;由cos y v vθ=在进入复合场之前做平抛运动:y gt =v0L v t =解得02g v kB=(3)由212h gt =其中2kBL t g = ,则带电微粒做圆周运动的圆心坐标:'32O x L =; 222'222sin 8O g k B L y h R k B g θ=-+=-7.如图,第一象限内存在沿y 轴负方向的匀强电场,电场强度大小为E ,第二、三、四象限存在方向垂直xOy 平面向外的匀强磁场,其中第二象限的磁感应强度大小为B ,第三、四象限磁感应强度大小相等,一带正电的粒子,从P (-d ,0)点沿与x 轴正方向成α=60°角平行xOy 平面入射,经第二象限后恰好由y 轴上的Q 点(图中未画出)垂直y 轴进入第一象限,之后经第四、三象限重新回到P 点,回到P 点时速度方向与入射方时相同,不计粒子重力,求:(1)粒子从P 点入射时的速度v 0; (2)第三、四象限磁感应强度的大小B /; 【答案】(1)3EB(2)2.4B 【解析】试题分析:(1)粒子从P 点射入磁场中做匀速圆周运动,画出轨迹如图,设粒子在第二象限圆周运动的半径为r ,由几何知识得: 2360d d dr sin sin α===︒ 根据200mv qv B r =得023qBdv =粒子在第一象限中做类平抛运动,则有21602qE r cost m -︒=(); 00y v qEt tan v mv α==联立解得03Ev B=(2)设粒子在第一象限类平抛运动的水平位移和竖直位移分别为x 和y ,根据粒子在第三、四象限圆周运动的对称性可知粒子刚进入第四象限时速度与x 轴正方向的夹角等于α.则有:x=v 0t , 2y v y t =得0322y v y tan x v α===由几何知识可得 y=r-rcosα= 132r = 则得23x d =所以粒子在第三、四象限圆周运动的半径为125323d d R sin α⎛⎫+ ⎪⎝⎭==粒子进入第三、四象限运动的速度00432v qBdv v cos α===根据2'v qvB m R=得:B′=2.4B考点:带电粒子在电场及磁场中的运动8.如图所示,在不考虑万有引力的空间里,有两条相互垂直的分界线MN 、PQ ,其交点为O .MN 一侧有电场强度为E 的匀强电场(垂直于MN ),另一侧有匀强磁场(垂直纸面向里).宇航员(视为质点)固定在PQ 线上距O 点为h 的A 点处,身边有多个质量均为m、电量不等的带负电小球.他先后以相同速度v0、沿平行于MN方向抛出各小球.其中第1个小球恰能通过MN上的C点第一次进入磁场,通过O点第一次离开磁场,OC=2h.求:(1)第1个小球的带电量大小;(2)磁场的磁感强度的大小B;(3)磁场的磁感强度是否有某值,使后面抛出的每个小球从不同位置进入磁场后都能回到宇航员的手中?如有,则磁感强度应调为多大.【答案】(1)20 12mvqEh=;(2)2EBv=;(3)存在,EBv'=【解析】【详解】(1)设第1球的电量为1q,研究A到C的运动:2112q Eh tm=2h v t=解得:212mvqEh=;(2)研究第1球从A到C的运动:12yq Ev hm=解得:0yv v=tan1yvvθ==,45oθ=,2v v=;研究第1球从C作圆周运动到达O的运动,设磁感应强度为B由2 1v q vBmR=得1mvRq B=由几何关系得:22sinR hθ=解得:2EBv=;(3)后面抛出的小球电量为q,磁感应强度B'①小球作平抛运动过程2hmx v t vqE==2yqEv hm=②小球穿过磁场一次能够自行回到A,满足要求:sinR xθ=,变形得:sinmvxqBθ'=解得:EBv'=.9.如图所示,在直角坐标系xOy平面内有两个同心圆,圆心在坐标原点O,小圆内部(I区)和两圆之间的环形区域(Ⅱ区)存在方向均垂直xOy平面向里的匀强磁场(图中未画出),I、Ⅱ区域磁场磁感应强度大小分别为B、2B。
专题09 磁场目录第一节磁场的描述磁场对电流的作用 (1)【基本概念、规律】 (1)【重要考点归纳】 (3)考点一安培定则的应用和磁场的叠加 (3)考点二安培力作用下导体运动情况的判定 (3)【思想方法与技巧】 (3)用视图转换法求解涉及安培力的力学问题 (3)第二节磁场对运动电荷的作用 (4)【基本概念、规律】 (4)【重要考点归纳】 (5)考点一洛伦兹力和电场力的比较 (5)考点二带电粒子在匀强磁场中的运动 (5)考点三“磁偏转”和“电偏转” (6)【思想方法与技巧】 (6)带电粒子在磁场中运动的临界和极值问题 (6)第三节带电粒子在复合场中的运动 (7)【基本概念、规律】 (7)【重要考点归纳】 (9)考点一带电粒子在叠加场中的运动 (9)考点二带电粒子在组合场中的运动 (9)【思想方法与技巧】 (10)带电粒子在交变电场、磁场中的运动 (10)带电粒子在磁场中运动的多解问题 (10)第一节磁场的描述磁场对电流的作用【基本概念、规律】一、磁场、磁感应强度1.磁场(1)基本性质:磁场对处于其中的磁体、电流和运动电荷有磁力的作用.(2)方向:小磁针的N极所受磁场力的方向.2.磁感应强度(1)物理意义:描述磁场强弱和方向.(2)定义式:B=FIL(通电导线垂直于磁场).(3)方向:小磁针静止时N极的指向.(4)单位:特斯拉,符号T.二、磁感线及特点1.磁感线在磁场中画出一些曲线,使曲线上每一点的切线方向都跟这点的磁感应强度的方向一致.2.磁感线的特点(1)磁感线上某点的切线方向就是该点的磁场方向.(2)磁感线的疏密定性地表示磁场的强弱,在磁感线较密的地方磁场较强;在磁感线较疏的地方磁场较弱.(3)磁感线是闭合曲线,没有起点和终点.在磁体外部,从N极指向S极;在磁体内部,由S极指向N 极.(4)同一磁场的磁感线不中断、不相交、不相切.(5)磁感线是假想的曲线,客观上不存在.3.电流周围的磁场三、安培力的大小和方向1.安培力的大小(1)磁场和电流垂直时,F=BIL.(2)磁场和电流平行时:F=0.2.安培力的方向(1)用左手定则判定:伸开左手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让磁感线从掌心进入,并使四指指向电流的方向,这时拇指所指的方向就是通电导线在磁场中所受安培力的方向.(2)安培力的方向特点:F⊥B,F⊥I,即F垂直于B和I决定的平面.(注意:B和I可以有任意夹角)【重要考点归纳】考点一安培定则的应用和磁场的叠加1.安培定则的应用在运用安培定则判定直线电流和环形电流的磁场时应分清“因”和“果”.原因(电流方向)结果(磁场绕向)直线电流的磁场大拇指四指环形电流的磁场四指大拇指2.磁场的叠加磁感应强度是矢量,计算时与力的计算方法相同,利用平行四边形定则或正交分解法进行合成与分解.特别提醒:两个电流附近的磁场的磁感应强度是由两个电流分别独立存在时产生的磁场在该处的磁感应强度叠加而成的.3.解决这类问题的思路和步骤:(1)根据安培定则确定各导线在某点产生的磁场方向;(2)判断各分磁场的磁感应强度大小关系;(3)根据矢量合成法则确定合磁场的大小和方向.考点二安培力作用下导体运动情况的判定1.判定通电导体在安培力作用下的运动或运动趋势,首先必须弄清楚导体所在位置的磁场分布情况,然后利用左手定则准确判定导体的受力情况,进而确定导体的运动方向或运动趋势的方向.2.在应用左手定则判定安培力方向时,磁感线方向不一定垂直于电流方向,但安培力方向一定与磁场方向和电流方向垂直,即大拇指一定要垂直于磁场方向和电流方向决定的平面.【思想方法与技巧】用视图转换法求解涉及安培力的力学问题1.安培力(1)方向:根据左手定则判断.(2)大小:由公式F=BIL计算,且其中的L为导线在磁场中的有效长度.如弯曲通电导线的有效长度L 等于连接两端点的直线的长度,相应的电流方向沿两端点连线由始端流向末端,如图所示.2.视图转换对于安培力作用下的力学问题,需画出导体棒的受力示意图.但在三维空间无法准确画出其受力情况,可将三维立体图转化为二维平面图,即画出俯视图、剖面图或侧视图等.此时,金属棒用圆代替,电流方向用“×”或“·”表示.3.解决安培力作用下的力学问题的思路: (1)选定研究对象;(2)变三维为二维,画出平面受力分析图,判断安培力的方向时切忌跟着感觉走,一定要用左手定则来判断,注意F 安⊥B 、F 安⊥I ;(3)根据力的平衡条件或牛顿第二定律列方程求解.第二节 磁场对运动电荷的作用【基本概念、规律】一、洛伦兹力1.定义:运动电荷在磁场中所受的力. 2.大小(1) v ∥B 时,F =0. (2) v ⊥B 时,F =qvB .(3) v 与B 夹角为θ时,F =qvB sin_θ. 3.方向(1)判定方法:应用左手定则,注意四指应指向正电荷运动方向或负电荷运动的反方向. (2)方向特点:F ⊥B ,F ⊥v .即F 垂直于B 、v 决定的平面.(注意B 和v 可以有任意夹角). 由于F 始终垂直于v 的方向,故洛伦兹力永不做功. 二、带电粒子在匀强磁场中的运动1.若v ∥B ,带电粒子以入射速度v 做匀速直线运动.2.若v ⊥B ,带电粒子在垂直于磁感线的平面内,以入射速度v 做匀速圆周运动. 3.基本公式(1)向心力公式:qvB =m v 2r.(2)轨道半径公式:r =mv Bq.(3)周期公式:T =2πr v =2πm qB ;f =1T =Bq 2πm ;ω=2πT =2πf =Bqm.特别提示:T 的大小与轨道半径r 和运行速率v 无关,只与磁场的磁感应强度B 和粒子的比荷q m有关.【重要考点归纳】考点一洛伦兹力和电场力的比较1.洛伦兹力方向的特点(1)洛伦兹力的方向总是垂直于运动电荷速度方向和磁场方向确定的平面.(2)当电荷运动方向发生变化时,洛伦兹力的方向也随之变化.(3)左手判断洛伦兹力方向,但一定分正、负电荷.2.洛伦兹力与电场力的比较考点二带电粒子在匀强磁场中的运动1.圆心的确定(1)已知入射点、出射点、入射方向和出射方向时,可通过入射点和出射点分别作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨迹的圆心(如图甲所示,图中P为入射点,M为出射点).(2)已知入射方向、入射点和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨迹的圆心(如图乙所示,P为入射点,M为出射点).2.半径的确定可利用物理学公式或几何知识(勾股定理、三角函数等)求出半径大小.3.运动时间的确定粒子在磁场中运动一周的时间为T,当粒子运动的圆弧所对应的圆心角为θ时,其运动时间表示为:t=θ2πT4.求解粒子在匀强磁场中运动问题的步骤:(1)画轨迹:即确定圆心,画出运动轨迹.(2)找联系:轨迹半径与磁感应强度、运动速度的联系,偏转角度与圆心角、运动时间的联系,在磁场中的运动时间与周期的联系.(3)用规律:即牛顿运动定律和圆周运动的规律,特别是周期公式、半径公式.考点三“磁偏转”和“电偏转”【思想方法与技巧】带电粒子在磁场中运动的临界和极值问题1.带电粒子进入有界磁场区域,一般存在临界问题(或边界问题)以及极值问题.解决这类问题的方法思路如下:(1)直接分析、讨论临界状态,找出临界条件,从而通过临界条件求出临界值.(2)以定理、定律为依据,首先求出所研究问题的一般规律和一般解的形式,然后再分析、讨论临界条件下的特殊规律和特殊解.2.带电粒子在有界磁场中的运动,一般涉及临界和边界问题,临界值、边界值常与极值问题相关联.因此,临界状态、边界状态的确定以及所需满足的条件是解决问题的关键.常遇到的临界和极值条件有:(1)带电体在磁场中,离开一个面的临界状态是对这个面的压力为零.(2)射出或不射出磁场的临界状态是带电体运动的轨迹与磁场边界相切,对应粒子速度的临界值.(3)运动时间极值的分析①周期相同的粒子,当速率相同时,轨迹(弦长)越长,圆心角越大,运动时间越长.②周期相同的粒子,当速率不同时,圆心角越大,运动时间越长.第三节带电粒子在复合场中的运动【基本概念、规律】一、带电粒子在复合场中的运动 1.复合场的分类(1)叠加场:电场、磁场、重力场共存,或其中某两场共存.(2)组合场:电场与磁场各位于一定的区域内,并不重叠或在同一区域,电场、磁场交替出现. 2.带电粒子在复合场中的运动分类 (1)静止或匀速直线运动当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动. (2)匀速圆周运动当带电粒子所受的重力与电场力大小相等、方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内做匀速圆周运动.(3)非匀变速曲线运动当带电粒子所受的合外力的大小和方向均变化,且与初速度方向不在同一条直线上时,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线.二、带电粒子在复合场中运动的应用实例 1.质谱仪(1)构造:如图所示,由粒子源、加速电场、偏转磁场和照相底片等构成.(2)原理:粒子由静止在加速电场中被加速,根据动能定理可得关系式qU =12mv 2.粒子在磁场中受洛伦兹力偏转,做匀速圆周运动,根据牛顿第二定律得关系式qvB =m v 2r.由以上两式可得出需要研究的物理量,如粒子轨道半径、粒子质量、比荷. r =1B2mUq ,m =qr 2B 22U ,q m =2U B 2r2. 2.回旋加速器(1)构造:如图所示,D 1、D 2是半圆形金属盒,D 形盒的缝隙处接交流电源.D 形盒处于匀强磁场中.(2)原理:交流电的周期和粒子做圆周运动的周期相等,粒子经电场加速,经磁场回旋,由qvB =mv 2r ,得E km =q 2B 2r 22m,可见粒子获得的最大动能由磁感应强度B 和D 形盒半径r 决定,与加速电压无关.3.速度选择器(如图所示)(1)平行板中电场强度E 和磁感应强度B 互相垂直.这种装置能把具有一定速度的粒子选择出来,所以叫做速度选择器.(2)带电粒子能够沿直线匀速通过速度选择器的条件是qE =qvB ,即v =E B. 4.磁流体发电机(1)磁流体发电是一项新兴技术,它可以把内能直接转化为电能. (2)根据左手定则,如图中的B 是发电机正极.(3)磁流体发电机两极板间的距离为L ,等离子体速度为v ,磁场的磁感应强度为B ,则由qE =q U L=qvB 得两极板间能达到的最大电势差U =BLv .5.电磁流量计工作原理:如图所示,圆形导管直径为d ,用非磁性材料制成,导电液体在管中向左流动,导电液体中的自由电荷(正、负离子),在洛伦兹力的作用下横向偏转,a 、b 间出现电势差,形成电场,当自由电荷所受的电场力和洛伦兹力平衡时,a 、b 间的电势差就保持稳定,即:qvB =qE =q Ud ,所以v =U Bd,因此液体流量Q =Sv =πd 24·U Bd =πdU4B.【重要考点归纳】考点一带电粒子在叠加场中的运动1.带电粒子在叠加场中无约束情况下的运动情况分类(1)磁场力、重力并存①若重力和洛伦兹力平衡,则带电体做匀速直线运动.②若重力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,故机械能守恒,由此可求解问题.(2)电场力、磁场力并存(不计重力的微观粒子)①若电场力和洛伦兹力平衡,则带电体做匀速直线运动.②若电场力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,可用动能定理求解问题.(3)电场力、磁场力、重力并存①若三力平衡,一定做匀速直线运动.②若重力与电场力平衡,一定做匀速圆周运动.③若合力不为零且与速度方向不垂直,将做复杂的曲线运动,因洛伦兹力不做功,可用能量守恒或动能定理求解问题.2.带电粒子在叠加场中有约束情况下的运动带电体在复合场中受轻杆、轻绳、圆环、轨道等约束的情况下,除受场力外,还受弹力、摩擦力作用,常见的运动形式有直线运动和圆周运动,此时解题要通过受力分析明确变力、恒力做功情况,并注意洛伦兹力不做功的特点,运用动能定理、能量守恒定律结合牛顿运动定律求出结果.考点二带电粒子在组合场中的运动带电粒子在组合场中的运动,实际上是几个典型运动过程的组合,因此解决这类问题要分段处理,找出各分段之间的衔接点和相关物理量,问题即可迎刃而解.常见类型如下:1.从电场进入磁场(1)粒子先在电场中做加速直线运动,然后进入磁场做圆周运动.在电场中利用动能定理或运动学公式求粒子刚进入磁场时的速度.(2)粒子先在电场中做类平抛运动,然后进入磁场做圆周运动.在电场中利用平抛运动知识求粒子进入磁场时的速度.2.从磁场进入电场(1)粒子进入电场时的速度与电场方向相同或相反,做匀变速直线运动(不计重力).(2)粒子进入电场时的速度方向与电场方向垂直,做类平抛运动.3.解决带电粒子在组合场中的运动问题的思路。
磁场带电粒子在磁场中的运动1.(多选)如图所示,平面直角坐标系的第二象限内存在着垂直纸面向外、磁感应强度大小为2B的匀强磁场,第三象限内存在着垂直纸面向里、磁感应强度大小为B的匀强磁场。
一带负电的粒子从原点O以某一速度沿与y轴成30°角方向斜向上射入磁场,且在第二象限运动时的轨迹圆的半径为R,已知带电粒子的质量为m,所带电荷量为q,且所受重力可以忽略。
则()A.粒子在第二象限和第三象限两磁场中运动的轨迹圆半径之比为1∶2B.粒子完成一次周期性运动的时间C.粒子从O位置入射后第二次经过x轴时的位置到坐标原点的距离为3RD.若仅将粒子的入射速度大小变为原来的2倍,则粒子完成一次周期性运动的时间将减少2.(多选)(2019四川五校联考)如图所示,在x>0,y>0的空间中有恒定的匀强磁场,磁感应强度的方向垂直于xOy平面向里,大小为B。
现有一质量为m、电荷量为q的带正电粒子,从x轴上的某点P沿着与x轴成30°角的方向射入磁场。
不计重力的影响,则下列说法正确的是()A.只要粒子的速率合适,粒子就可能通过坐标原点B.粒子在磁场中运动所经历的时间可能为C.粒子在磁场中运动所经历的时间可能为D.粒子在磁场中运动所经历的时间可能为3.(多选)(2019长沙四校模拟)如图所示,圆心角为90°的扇形COD内存在方向垂直纸面向外的匀强磁场,E点为半径OD的中点。
现有比荷大小相等的两个带电粒子a、b(不计重力)以大小不等的速度分别从O、E点均沿OC方向射入磁场,粒子a恰从D点射出磁场,粒子b恰从C点射出磁场,已知sin 37°=0.6,cos 37°=0.8,则下列说法中正确的是()A.粒子a带正电,粒子b带负电B.粒子a、b在磁场中运动的加速度大小之比为5∶2C.粒子a、b的速率之比为2∶5D.粒子a、b在磁场中运动的时间之比为180∶534.如图所示,两个完全相同、所在平面互相垂直的导体圆环P、Q中间用绝缘细线连接,通过另一绝缘细线悬挂在天花板上,当P、Q中同时通有图示方向的恒定电流时,关于两线圈的转动(从上向下看)以及细线中张力的变化,下列说法正确的是()A.P顺时针转动,Q逆时针转动,转动时P与天花板连接的细线张力不变B.P逆时针转动,Q顺时针转动,转动时两细线张力均不变C.P、Q均不动,P与天花板连接的细线和与Q连接的细线张力均增大D.P不动,Q逆时针转动,转动时P、Q间细线张力不变5.如图所示,A、B、C三根平行通电直导线均为m,通入的电流大小均相等,其中C中的电流方向与A、B中的电流方向反向,A、B放置在粗糙的水平面上,C静止在空中,三根导线的截面处于一个等边三角形的三个顶点,且三根导线均保持静止,重力加速度为g,则A导线受到B导线的作用力大小和方向为()A.mg,方向由A指向BB.mg,方向由B指向AC.mg,方向由A指向BD.mg,方向由B指向A6.(2019江西省红色七校联考)如图所示,三根通电长直导线P、Q、R互相平行,垂直纸面放置,其间距均为a,电流强度均为I,方向垂直纸面向里(已知电流为I的长直导线产生的磁场中,距导线r处的磁感应强度B=,其中k为常量)。
一、带电粒子在有界磁场中的运动1.运动电荷所受的洛伦兹力....方向始终与速度方向垂直,所以洛伦兹力只改变速度方向,不改变速度大小,洛伦兹力对带电粒子不做功............。
2.带电粒子沿着与磁场垂直的方向射入磁场,在匀强磁场中做匀速圆周运动。
3.洛伦兹力提供带电粒子做圆周运动所需的向心力。
由牛顿第二定律得2v qvB m R=,则粒子运动的轨道半径mv R qB =,运动周期2πm T qB =。
4.带电粒子在匀强磁场中做匀速圆周运动,确定圆心和运动半径,画出粒子运动的轨迹。
⑴ 圆心..的确定:画出粒子运动轨迹中任意两点(一般是射入和射出磁场的两点)的洛伦兹力的方向,两洛伦兹力延长线的交点即为圆心;或利用一根弦的中垂线,结合一点洛伦兹力的延长线作出圆心位置。
⑵ 半径..的确定和计算:圆心确定以后,利用平面几何关系,求出该圆的半径。
⑶ 在磁场中运动时间....的确定:用几何关系求出运动轨迹所对应的圆心角θ,由公式360t T θ=求出粒子在磁场中运动的时间。
【例1】 如图所示,在一矩形区域内,不加磁场时,不计重力的带电粒子以某初速度垂直左边界射入,穿过此区域的时间为t ,若加上磁感应强度为B 、垂直纸面向外的匀强磁场,带电粒子仍以原来的初速度入射,粒子飞出磁场时偏离原方向60︒,利用以上数据可求出下列物理量中的A .带电粒子的比荷B .带电粒子在磁场中运动的周期C .带电粒子的初速度D .带电粒子在磁场中运动的半径【答案】 A B【例2】 如图所示,圆柱形区域的横截面内有垂直于纸面向里的匀强磁场,磁感应强度为B 。
一带电粒子(不计重力)以某一初速度沿截面直径方向射入时,穿过此区域所用的时间为t 。
又知粒子飞出此区域时速度方向偏转了60︒角,根据以上条件可求下列物理量中的A .带电粒子的比荷B .带电粒子的初速度C .带电粒子在磁场中运动的周期D .带电粒子在磁场中运动的半径【答案】 A C【例3】 在一个边界为等边三角形的区域内,存在着方向垂直于纸面向里的匀强磁场,在磁场边界上的P 点处有一个粒子源,粒子源发出比荷相同的三个粒子a b c 、、(不计重力)沿同一方向进入磁场,三个粒子在磁场中的运动轨迹如图所示。
磁场性质及带电粒子在磁场中的运动一、单项选择题1.两相邻匀强磁场区域的磁感应强度大小不同、方向平行.一速度方向与磁感应强度方向垂直的带电粒子(不计重力),从较强磁场区域进入到较弱磁场区域后,粒子的( )A .轨道半径减小,角速度增大B .轨道半径减小,角速度减小C .轨道半径增大,角速度增大D .轨道半径增大,角速度减小2.(2019·淄博模拟)一圆筒处于磁感应强度大小为B 的匀强磁场中,磁场方向与筒的轴平行,筒的横截面如图所示.图中直径MN 的两端分别开有小孔,筒绕其中心轴以角速度ω顺时针转动.在该截面内,一带电粒子从小孔M 射入筒内,射入时的运动方向与MN 成30°角.当筒转过90°时,该粒子恰好从小孔N 飞出圆筒.不计重力.若粒子在筒内未与筒壁发生碰撞,则带电粒子的比荷为( )A .ω3B B .ω2BC .ωBD .2ωB3.在空间中有一如图所示边界垂直纸面向里、磁感应强度为B 的匀强磁场,已知P 、Q 、O 为边长为L 的等边三角形的三个顶点,两个带电粒子甲和乙分别从P 点垂直PO 方向射入匀强磁场中,甲从PO 边的M 点射出磁场,乙从QO 边的N 点射出磁场,已知PM =2MO ,QN =NO ,据此可知( )A .若两个带电粒子的比荷相同,则甲、乙两个带电粒子射入磁场时的速度大小之比为1∶2B .若两个带电粒子的动能相同,则甲、乙两个带电粒子所带电荷量之比为3∶2C .若两个带电粒子的带电荷量相同,则甲、乙两个带电粒子射入磁场时的动量大小之比为3∶2D .若两个带电粒子的比荷相同,则甲、乙两个带电粒子在磁场中运动的时间之比为3∶24.(2019·高考北京卷)如图所示,正方形区域内存在垂直纸面的匀强磁场.一带电粒子垂直磁场边界从a 点射入,从b 点射出.下列说法正确的是( )A .粒子带正电B .粒子在b 点速率大于在a 点速率C .若仅减小磁感应强度,则粒子可能从b 点右侧射出D .若仅减小入射速率,则粒子在磁场中运动时间变短5.(2019·河南六市联考)如图所示的坐标系中,有两个半径均为r 的圆形线圈L 1、L 2,分别垂直于y 轴和x 轴放置,其圆心O 1和O2的坐标分别为(0,3r )、(3r ,0),给线圈L 1通电流3I 0(从上向下看为逆时针方向),给线圈L 2通电流4I 0(从右向左看为逆时针方向).据相关电磁学理论可以知道,圆环形电流在其中心轴线上产生的磁感应强度为B =μIr 22(r 2+Z 2)32,其中μ为真空磁导率,I 为环中电流,r 为圆环半径,Z 为中心轴线上任意一点到圆环圆心的距离.据此可推算出两通电线圈在坐标原点O 处产生的磁感应强度的大小和方向分别为( )A.5μI 016r,方向指向第一象限 B .5μI 08r ,方向指向第二象限C .5μI 032r ,方向指向第三象限D .5μI 0r 216r 32,方向指向第四象限6.如图所示,竖直平行边界MN 、PQ 间有垂直于纸面向里的匀强磁场,甲、乙两个完全相同的粒子(不计粒子的重力)在边界MN 上的C 点分别以垂直于磁场的速度进入磁场,速度方向与边界MN 的夹角分别为30°、45°,结果两个粒子均从边界PQ 上的D 点射出磁场,C 、D 连线与两边界的垂线CE 的夹角θ=30°,则两粒子在磁场中运动的速度之比v 甲v 乙及运动的时间之比t 甲t 乙分别为(已知sin 15°=6-24,cos 15°=6+24)( )A .6-22 2B .6+22 2 C .6-24 23D .6+24 237.(2019·威海质检)如图所示,在半径为R 的圆形区域内充满磁感应强度为B 的匀强磁场,MN 是一竖直放置的感光板,从圆形磁场最高点P 垂直磁场射入大量的带正电、电荷量为q 、质量为m 、速度为v 的粒子,不考虑粒子间的相互作用力,关于这些粒子的运动,以下说法正确的是( )A .只要对着圆心入射,出射后均可垂直打在MN 上B .对着圆心入射的粒子,其出射方向的反向延长线不一定过圆心C .对着圆心入射的粒子,速度越大在磁场中通过的弧长越长,时间也越长D .只要速度满足v =qBRm,沿不同方向入射的粒子出射后均可垂直打在MN 上 8.如图所示,在OA 和OC 两射线间存在着匀强磁场,∠AOC =30°,正负电子(质量、电荷量大小相同,电性相反)以相同的速度从M 点垂直OA 方向射入匀强磁场,下列说法正确的是( )A .若正电子不从OC 边射出,正负电子在磁场中运动时间之比可能为3∶1B .若正电子不从OC 边射出,正负电子在磁场中运动时间之比可能为6∶1 C .若负电子不从OC 边射出,正负电子在磁场中运动时间之比不可能为1∶1D .若负电子不从OC 边射出,正负电子在磁场中运动时间之比可能为1∶6 二、多项选择题9.(2019·青岛二模)如图所示,两根长直导线竖直插入光滑绝缘水平桌面上的M 、N 两小孔中,O 为M 、N 连线中点,连线上a 、b 两点关于O 点对称.导线通有大小相等、方向相反的电流I .已知通电长直导线在周围产生的磁场的磁感应强度B =k I r,式中k 是常数,I 是导线中的电流,r 为点到导线的距离.一带正电的小球(图中未画出)以初速度v 0从a 点出发沿连线运动到b 点.关于上述过程,下列说法正确的是( )A .小球先做加速运动后做减速运动B .小球一直做匀速直线运动C .小球对桌面的压力先增大后减小D .小球对桌面的压力一直在增大10.(2019·济宁高三模拟)如图所示,MN 平行于y 轴,在y 轴与MN 之间的区域内存在与xOy 平面垂直的匀强磁场,磁感应强度大小为B .在t =0时刻,从原点O 发射一束等速率的相同的带电粒子,速度方向与y 轴正方向的夹角分布在0~90°范围内.其中,沿y 轴正方向发射的粒子在t =t 0时刻刚好从磁场右边界MN 上的P 点离开磁场,已知P 点的坐标是((2+2)d ,2d ),不计粒子重力,下列说法正确的是( )A .粒子在磁场中做圆周运动的半径为2+2dB .粒子的发射速度大小为3πd2t 0C .带电粒子的比荷为π4Bt 0D .带电粒子在磁场中运动的最长时间为2t 011.如图所示为长为2L 、板间距离为L 的水平极板P 、Q ,现有质量为m ,电荷量为q 的带正电粒子(不计重力),从左边极板间中点处,以速度v 0平行极板射入,欲使粒子不打在极板上,可采用的办法有( )A .在极板间加垂直纸面向内的匀强磁场,磁感应强度B <4mv 017qLB .在极板间加垂直纸面向内的匀强磁场,磁感应强度B >4mv 0qLC .在极板间加垂直极板指向P 极板的匀强电场,电场强度E <mv 204qLD .在极板间加垂直极板指向Q 极板的匀强电场,电场强度E >17mv 24qL12.(2019·唐山二模)如图所示,两方向相反、磁感应强度大小均为B 的匀强磁场被边长为L 的等边三角形ABC 分开,三角形内磁场垂直纸面向里,三角形顶点A 处有一质子源,能沿∠BAC 的角平分线发射速度不同的质子(质子重力不计),所有质子均能通过C 点,质子比荷q m=k ,则质子的速度可能为( )A .2BkLB .BkL2 C .3BkL 2D .BkL8三、非选择题13.(2019·青岛二模)如图所示,在xOy 平面内,有一以O 为圆心、R 为半径的半圆形匀强磁场区域,磁场方向垂直坐标平面向里,磁感应强度大小为B .位于O 点的粒子源向第二象限内的各个方向连续发射大量同种带电粒子,粒子均不会从磁场的圆弧边界射出.粒子的速率相等,质量为m 、电荷量大小为q ,粒子重力及粒子间的相互作用均不计.(1)若粒子带负电,求粒子的速率应满足的条件及粒子在磁场中运动的最短时间; (2)若粒子带正电,求粒子在磁场中能够经过区域的最大面积.14.(2019·潍坊五校联考)如图所示,在直角坐标系的原点O 处有一放射源,向四周均匀发射速度大小相等、方向都平行于纸面的带电粒子.在放射源右侧有一很薄的挡板,垂直于x 轴放置,挡板与xOy 平面交线的两端M 、N 正好与原点O 构成等边三角形,O ′为挡板与x 轴的交点.在整个空间中,有垂直于xOy 平面向外的匀强磁场(图中未画出),带电粒子在磁场中沿顺时针方向做匀速圆周运动.已知带电粒子的质量为m ,带电荷量大小为q ,速度大小为v ,MN 的长度为L .(不计带电粒子的重力及粒子间的相互作用)(1)确定带电粒子的电性;(2)要使带电粒子不打在挡板上,求磁感应强度的最小值;(3)要使MN 的右侧都有粒子打到,求磁感应强度的最大值.(计算过程中,要求画出各临界状态的轨迹图)参考答案一、单项选择题1.两相邻匀强磁场区域的磁感应强度大小不同、方向平行.一速度方向与磁感应强度方向垂直的带电粒子(不计重力),从较强磁场区域进入到较弱磁场区域后,粒子的( )A .轨道半径减小,角速度增大B .轨道半径减小,角速度减小C .轨道半径增大,角速度增大D .轨道半径增大,角速度减小解析:选D.分析轨道半径:带电粒子从较强磁场区域进入到较弱磁场区域后,粒子的速度v 大小不变,磁感应强度B 减小,由公式r =mv qB可知,轨道半径增大.分析角速度:由公式T =2πmqB可知,粒子在磁场中运动的周期增大,根据ω=2πT知角速度减小,选项D 正确.2.(2019·淄博模拟)一圆筒处于磁感应强度大小为B 的匀强磁场中,磁场方向与筒的轴平行,筒的横截面如图所示.图中直径MN 的两端分别开有小孔,筒绕其中心轴以角速度ω顺时针转动.在该截面内,一带电粒子从小孔M 射入筒内,射入时的运动方向与MN 成30°角.当筒转过90°时,该粒子恰好从小孔N 飞出圆筒.不计重力.若粒子在筒内未与筒壁发生碰撞,则带电粒子的比荷为( )A .ω3B B .ω2BC .ωBD .2ωB解析:选A.由题可知,粒子在磁场中做圆周运动的轨迹如图所示,由几何关系可知,粒子在磁场中做圆周运动的圆弧所对的圆心角为30°,因此粒子在磁场中运动的时间为t =112×2πmqB ,粒子在磁场中运动的时间与筒转过90°所用的时间相等,即πm 6qB =14×2πω,求得q m =ω3B,A 项正确.3.在空间中有一如图所示边界垂直纸面向里、磁感应强度为B 的匀强磁场,已知P 、Q 、O 为边长为L 的等边三角形的三个顶点,两个带电粒子甲和乙分别从P 点垂直PO 方向射入匀强磁场中,甲从PO 边的M 点射出磁场,乙从QO 边的N 点射出磁场,已知PM =2MO ,QN =NO ,据此可知( )A .若两个带电粒子的比荷相同,则甲、乙两个带电粒子射入磁场时的速度大小之比为1∶2B .若两个带电粒子的动能相同,则甲、乙两个带电粒子所带电荷量之比为3∶2C .若两个带电粒子的带电荷量相同,则甲、乙两个带电粒子射入磁场时的动量大小之比为3∶2D .若两个带电粒子的比荷相同,则甲、乙两个带电粒子在磁场中运动的时间之比为3∶2解析:选 D .根据题述,画出两个带电粒子在磁场区域中运动的轨迹,如图所示,由几何关系可知,r 甲=13L ,r 乙=12L .由qvB =m v 2r ,解得r =mv qB =p qB .若两个带电粒子的比荷 q m 相同,由r =mvqB 可知,甲、乙两个带电粒子射入磁场时的速度大小之比等于轨迹半径之比,即v 甲∶v 乙=r 甲∶r 乙=2∶3,选项A 错误;若两个带电粒子的动能相同,由r =mv qB=2mE k qB可知,甲、乙两个带电粒子所带电荷量的比值为q 甲q 乙=m 甲m 乙 ·r 乙r 甲=32m 甲m 乙,选项B 错误;若两个带电粒子所带电荷量q 相同,由r =mv qB =pqB可知,甲、乙两个带电粒子射入磁场时的动量大小之比等于轨迹半径之比,即p 甲∶p 乙=r 甲∶r 乙=2∶3,选项C 错误;若两个带电粒子的比荷相同,则由T =2πmqB可知两粒子在磁场中运动的周期相同,带电粒子甲在磁场区域中运动轨迹圆弧所对圆心角为180°,在磁场中运动的时间为T2;带电粒子乙在磁场区域中运动轨迹圆弧所对圆心角为120°,在磁场中运动的时间为T3,则甲、乙两个带电粒子在磁场中运动的时间之比为t 甲∶t 乙=3∶2,选项D 正确.4.(2019·高考北京卷)如图所示,正方形区域内存在垂直纸面的匀强磁场.一带电粒子垂直磁场边界从a 点射入,从b 点射出.下列说法正确的是( )A .粒子带正电B .粒子在b 点速率大于在a 点速率C .若仅减小磁感应强度,则粒子可能从b 点右侧射出D .若仅减小入射速率,则粒子在磁场中运动时间变短解析:选C.由左手定则可知,粒子带负电,A 项错误;由于洛伦兹力不做功,故粒子速率不变,B 项错误;粒子在磁场中运动轨迹半径R =mv qB,若仅减小磁感应强度B 的大小,则R 变大,粒子可能从b 点右侧射出,C 项正确;若仅减小入射速率,则R 变小,粒子在磁场中的偏转角θ变大,t =θ2πT ,T =2πmqB,粒子在磁场中的运动时间变长,D 项错误.5.(2019·河南六市联考)如图所示的坐标系中,有两个半径均为r 的圆形线圈L 1、L 2,分别垂直于y 轴和x 轴放置,其圆心O 1和O 2的坐标分别为(0,3r )、(3r ,0),给线圈L 1通电流3I 0(从上向下看为逆时针方向),给线圈L 2通电流4I 0(从右向左看为逆时针方向).据相关电磁学理论可以知道,圆环形电流在其中心轴线上产生的磁感应强度为B =μIr 22(r 2+Z 2)32,其中μ为真空磁导率,I 为环中电流,r 为圆环半径,Z 为中心轴线上任意一点到圆环圆心的距离.据此可推算出两通电线圈在坐标原点O 处产生的磁感应强度的大小和方向分别为( )A.5μI 016r,方向指向第一象限 B .5μI 08r ,方向指向第二象限C .5μI 032r ,方向指向第三象限D .5μI 0r 216r 32,方向指向第四象限解析:选A.根据B =μIr 22(r 2+Z 2)32可知:线圈L 1在O 点产生的磁感应强度为:B 1=3μI 0r22[r 2+(3r )2]32=3μI 016r ,由右手螺旋定则可知方向沿y 轴正方向,线圈L 2在O 点产生的磁感应强度为:B 2=4μI 0r22[r 2+(3r )2]32=4μI 016r,方向沿x 轴正方向,B 1和B 2方向垂直,所以O 点的磁感应强度为B =B 21+B 22=5μI 016r,方向指向第一象限,选项A 正确. 6.如图所示,竖直平行边界MN 、PQ 间有垂直于纸面向里的匀强磁场,甲、乙两个完全相同的粒子(不计粒子的重力)在边界MN 上的C 点分别以垂直于磁场的速度进入磁场,速度方向与边界MN 的夹角分别为30°、45°,结果两个粒子均从边界PQ 上的D 点射出磁场,C 、D 连线与两边界的垂线CE 的夹角θ=30°,则两粒子在磁场中运动的速度之比v 甲v 乙及运动的时间之比t 甲t 乙分别为(已知sin 15°=6-24,cos 15°=6+24)( )A .6-22 2B .6+22 2 C .6-24 23D .6+24 23解析:选A.C 、D 两点间的距离记为L ,粒子的运动轨迹如图所示,则轨迹半径r =L2cos (θ+α),轨迹所对的圆心角β=2(90°-θ-α)=120°-2α,结合r =mv qB 和T =2πm qB ,得v ∝1cos (30°+α),t =β360°T ∝(120°-2α),则v 甲v 乙=cos (30°+45°)cos (30°+30°)=6-22,t 甲t 乙=120°-2×30°120°-2×45°=2,选项A 正确. 7.(2019·威海质检)如图所示,在半径为R 的圆形区域内充满磁感应强度为B 的匀强磁场,MN 是一竖直放置的感光板,从圆形磁场最高点P 垂直磁场射入大量的带正电、电荷量为q 、质量为m 、速度为v 的粒子,不考虑粒子间的相互作用力,关于这些粒子的运动,以下说法正确的是( )A .只要对着圆心入射,出射后均可垂直打在MN 上B .对着圆心入射的粒子,其出射方向的反向延长线不一定过圆心C .对着圆心入射的粒子,速度越大在磁场中通过的弧长越长,时间也越长D .只要速度满足v =qBRm,沿不同方向入射的粒子出射后均可垂直打在MN 上 解析:选D.对着圆心入射的粒子,出射后不一定垂直打在MN 上,与粒子的速度有关,故A 错误;带电粒子的运动轨迹是圆弧,根据几何知识可知,对着圆心入射的粒子,其出射方向的反向延长线也一定过圆心,故B 错误;对着圆心入射的粒子,速度越大在磁场中轨迹半径越大,弧长越长,轨迹对应的圆心角越小,由t =θ2πT 知,运动时间t 越小,故C 错误;速度满足v =qBR m 时,轨迹半径r =mvqB=R ,入射点、出射点、O 点与轨迹的圆心构成菱形,射出磁场时的轨迹半径与最高点处的磁场半径平行,粒子一定垂直打在MN 板上,故D 正确.8.如图所示,在OA 和OC 两射线间存在着匀强磁场,∠AOC =30°,正负电子(质量、电荷量大小相同,电性相反)以相同的速度从M 点垂直OA 方向射入匀强磁场,下列说法正确的是( )A .若正电子不从OC 边射出,正负电子在磁场中运动时间之比可能为3∶1B .若正电子不从OC 边射出,正负电子在磁场中运动时间之比可能为6∶1 C .若负电子不从OC 边射出,正负电子在磁场中运动时间之比不可能为1∶1D .若负电子不从OC 边射出,正负电子在磁场中运动时间之比可能为1∶6解析:选D.正电子向右偏转,负电子向左偏转,若正电子不从OC 边射出,负电子一定不会从OC 边射出,二者运动轨迹对应的圆心角均为180°,可知二者在磁场中运动时间之比为1∶1,故A 、B 错误;若负电子不从OC 边射出且正电子也不从OC 边射出,正负电子在磁场中运动轨迹的圆心角都为180°,可知二者在磁场中运动的时间之比为1∶1;当负电子恰好不从OC 边射出时,运动轨迹对应的圆心角为180°,由几何关系知,此时正电子运动轨迹的圆心角为30°,正负电子在磁场中运动的周期相等,根据t =θ2πT 知,正负电子在磁场中运动的时间之比为1∶6,故若负电子不从OC 边射出,正负电子在磁场中运动时间之比在1∶6与1∶1之间,故C 错误,D 正确.二、多项选择题9.(2019·青岛二模)如图所示,两根长直导线竖直插入光滑绝缘水平桌面上的M 、N 两小孔中,O 为M 、N 连线中点,连线上a、b两点关于O点对称.导线通有大小相等、方向相反的电流I.已知通电长直导线在周围产生的磁场的磁感应强度B=kIr,式中k是常数,I是导线中的电流,r为点到导线的距离.一带正电的小球(图中未画出)以初速度v0从a点出发沿连线运动到b点.关于上述过程,下列说法正确的是( )A.小球先做加速运动后做减速运动B.小球一直做匀速直线运动C.小球对桌面的压力先增大后减小D.小球对桌面的压力一直在增大解析:选BC.由安培定则和磁场叠加原理可以判断出在MN连线上的磁场方向平行桌面向里,所以小球所受洛伦兹力的方向垂直桌面向上.对小球受力分析,受重力、桌面支持力、洛伦兹力3个力作用,小球在水平方向不受力,故从a点到b点,小球一直做匀速直线运动,A错误,B正确;由于从a至b合磁感应强度先减小后增大,则小球所受洛伦兹力先减小后增大,桌面对小球的支持力先增大后减小,由作用力与反作用力的关系知小球对桌面的压力先增大后减小,C正确,D错误.10.(2019·济宁高三模拟)如图所示,MN平行于y轴,在y轴与MN之间的区域内存在与xOy平面垂直的匀强磁场,磁感应强度大小为B.在t=0时刻,从原点O发射一束等速率的相同的带电粒子,速度方向与y轴正方向的夹角分布在0~90°范围内.其中,沿y轴正方向发射的粒子在t=t0时刻刚好从磁场右边界MN上的P点离开磁场,已知P点的坐标是((2+2)d,2d),不计粒子重力,下列说法正确的是( )A.粒子在磁场中做圆周运动的半径为2+2dB.粒子的发射速度大小为3πd2t0C.带电粒子的比荷为π4Bt0D.带电粒子在磁场中运动的最长时间为2t0解析:选BD.根据题意作出沿y轴正方向发射的带电粒子在磁场中做圆周运动的轨迹如图甲所示.甲圆心为O′,根据几何关系,粒子做圆周运动的半径为r=2d,故A错误;沿y轴正方向发射的粒子在磁场中运动的圆心角为3π4,运动时间t0=3π4×2dv0解得:v0=3πd2t0,故B正确;沿y轴正方向发射的粒子在磁场中运动的圆心角为3π4,对应运动时间为t0,所以粒子运动的周期为T=8t03,由Bqv0=m⎝⎛⎭⎪⎫2πT2r则qm=3π4Bt0,故C错误;在磁场中运动时间最长的粒子的运动轨迹如图乙所示.,乙)由几何知识得该粒子做圆周运动的圆心角为3π2,在磁场中的运动时间为2t0,故D正确.11.如图所示为长为2L、板间距离为L的水平极板P、Q,现有质量为m,电荷量为q的带正电粒子(不计重力),从左边极板间中点处,以速度v0平行极板射入,欲使粒子不打在极板上,可采用的办法有( )A.在极板间加垂直纸面向内的匀强磁场,磁感应强度B<4mv017qLB.在极板间加垂直纸面向内的匀强磁场,磁感应强度B>4mv0qLC.在极板间加垂直极板指向P极板的匀强电场,电场强度E<mv204qLD.在极板间加垂直极板指向Q极板的匀强电场,电场强度E>17mv204qL解析:选ABC.如图1所示,由题意知,带正电的粒子从左边射出磁场,其在磁场中圆周运动的半径R<L4,带正电的粒子从右边射出磁场,其在磁场中圆周运动的半径R>17L4,粒子在磁场中做圆周运动的洛伦兹力提供向心力,即qvB=mv20R,可得粒子做圆周运动的半径R=mv0qB,所以mv0qB<L4或mv0qB>17L4,解得:B>4mv0qL或B<4mv017qL,故A、B正确;当在极板间加垂直极板指向P极板的匀强电场时,粒子恰好从右边射出电场,如图2所示,y=12qEm⎝⎛⎭⎪⎫2Lv02<L2,解得E<mv204qL,故C正确;根据对称性可知,D错误.12.(2019·唐山二模)如图所示,两方向相反、磁感应强度大小均为B的匀强磁场被边长为L的等边三角形ABC 分开,三角形内磁场垂直纸面向里,三角形顶点A处有一质子源,能沿∠BAC的角平分线发射速度不同的质子(质子重力不计),所有质子均能通过C点,质子比荷qm=k,则质子的速度可能为( )A .2BkLB .BkL2 C .3BkL 2D .BkL8解析:选BD.因质子带正电,且经过c 点,其可能的轨迹如图所示,所有圆弧所对圆心角均为60°,所以质子运行半径r =L n (n =1,2,3,…),由洛伦兹力提供向心力得Bqv =m v 2r,即v =Bqr m =Bk Ln(n =1,2,3,…),选项B 、D 正确. 三、非选择题13.(2019·青岛二模)如图所示,在xOy 平面内,有一以O 为圆心、R 为半径的半圆形匀强磁场区域,磁场方向垂直坐标平面向里,磁感应强度大小为B .位于O 点的粒子源向第二象限内的各个方向连续发射大量同种带电粒子,粒子均不会从磁场的圆弧边界射出.粒子的速率相等,质量为m 、电荷量大小为q ,粒子重力及粒子间的相互作用均不计.(1)若粒子带负电,求粒子的速率应满足的条件及粒子在磁场中运动的最短时间; (2)若粒子带正电,求粒子在磁场中能够经过区域的最大面积.解析:(1)粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,则:qvB =m v 2r根据几何关系:r ≤R2联立得:v ≤qBR 2m粒子在磁场中做圆周运动的周期:T =2πmqB由粒子在磁场中运动的轨迹可得,沿y 轴正向射入磁场中的粒子在磁场中运动时间最短,则:t =T2联立可得:t =πmqB.(2)分析可得,粒子在磁场中能经过的区域为半圆,如图中阴影部分,由几何关系可得该半圆的半径:r ′=12R面积:S =12πr ′2联立可得:S =18πR 2.答案:(1)v ≤qBR 2m πm qB (2)18πR 214.(2019·潍坊五校联考)如图所示,在直角坐标系的原点O 处有一放射源,向四周均匀发射速度大小相等、方向都平行于纸面的带电粒子.在放射源右侧有一很薄的挡板,垂直于x 轴放置,挡板与xOy 平面交线的两端M 、N 正好与原点O 构成等边三角形,O ′为挡板与x 轴的交点.在整个空间中,有垂直于xOy 平面向外的匀强磁场(图中未画出),带电粒子在磁场中沿顺时针方向做匀速圆周运动.已知带电粒子的质量为m ,带电荷量大小为q ,速度大小为v ,MN 的长度为L .(不计带电粒子的重力及粒子间的相互作用)(1)确定带电粒子的电性;(2)要使带电粒子不打在挡板上,求磁感应强度的最小值;(3)要使MN 的右侧都有粒子打到,求磁感应强度的最大值.(计算过程中,要求画出各临界状态的轨迹图) 解析:(1)带电粒子沿顺时针方向运动,由左手定则可得,粒子带正电荷.(2)设磁感应强度大小为B ,带电粒子运动的轨迹半径为r ,带电粒子做圆周运动的向心力由洛伦兹力提供,有qvB =mv 2r ,解得r =mv qB.由于从O 点射出的粒子的速度大小都相同,由上式可得,所有粒子的轨迹半径都相等.由几何知识可知,为使粒子不打在挡板上,轨迹的半径最大时,带电粒子在O 点沿y 轴正方向射出,其轨迹刚好与MN 相切,轨迹圆心为O 1,如图甲所示.则最大半径r max =12L cos 30°=34L由上式可得,磁感应强度的最小值B min =43mv3qL.(3)为使MN 的右侧都有粒子打到,打在N 点的粒子最小半径的轨迹为图乙中的圆弧OMN .图中点O 2为轨迹的圆心,由于内接△OMN 为正三角形,由几何知识知,最小的轨迹半径为r min =L2cos 30°粒子做匀速圆周运动的向心力由洛伦兹力提供,有qvB =mv 2r ,所以磁感应强度的最大值B max =3mvqL.答案:见解析。
高考物理带电粒子在磁场中的运动习题知识归纳总结含答案解析一、带电粒子在磁场中的运动压轴题1.如图甲所示,在直角坐标系中的0≤x≤L 区域内有沿y 轴正方向的匀强电场,右侧有以点(2L ,0)为圆心、半径为L 的圆形区域,与x 轴的交点分别为M 、N ,在xOy 平面内,从电离室产生的质量为m 、带电荷量为e 的电子以几乎为零的初速度从P 点飘入电势差为U 的加速电场中,加速后经过右侧极板上的小孔Q 点沿x 轴正方向进入匀强电场,已知O 、Q两点之间的距离为2L,飞出电场后从M 点进入圆形区域,不考虑电子所受的重力。
(1)求0≤x≤L 区域内电场强度E 的大小和电子从M 点进入圆形区域时的速度v M ;(2)若圆形区域内加一个垂直于纸面向外的匀强磁场,使电子穿出圆形区域时速度方向垂直于x 轴,求所加磁场磁感应强度B 的大小和电子在圆形区域内运动的时间t ; (3)若在电子从M 点进入磁场区域时,取t =0,在圆形区域内加如图乙所示变化的磁场(以垂直于纸面向外为正方向),最后电子从N 点飞出,速度方向与进入圆形磁场时方向相同,请写出磁场变化周期T 满足的关系表达式。
【答案】(1)2U E L =,2M eU v m=v M 的方向与x 轴的夹角为θ,θ=45°;(2)2M mv mv B eR L e ==3348M R L m t v eUππ==3)T 的表达式为22T n emU =(n =1,2,3,…) 【解析】 【详解】(1)在加速电场中,从P 点到Q 点由动能定理得:2012eU mv = 可得02eUv m=电子从Q 点到M 点,做类平抛运动, x 轴方向做匀速直线运动,02L m t L v eU==y 轴方向做匀加速直线运动,2122L eE t m=⨯ 由以上各式可得:2UE L=电子运动至M 点时:220()M Ee v v t m=+ 即:2M eUv m= 设v M 的方向与x 轴的夹角为θ,02cos 2M v v θ== 解得:θ=45°。
2020 高考物理二轮复习题型概括与训练专题十磁场的性质及带电粒子在磁场中的运动题型一、磁场的性质与安培力【典例 1】.(2019 ·江苏高考 )( 多项选择 )如下图,在圆滑的水平桌面上,行长直导线,经过的电流强度相等。
矩形线框位于两条导线的正中间,流,在 a、b 产生的磁场作用下静止。
则a、 b 的电流方向可能是(a 和 b 是两条固定的平通有顺时针方向的电)A .均向左B.均向右C. a 的向左, b 的向右D.a 的向右, b 的向左【答案】CD【分析】如图 1 所示,若 a、 b 中电流方向均向左,矩形线框凑近导线的两边所受安培力方向同样,使线框导游线 b 挪动。
同理可知,若a、 b 中电流均向右,线框导游线 a 挪动,故 A 、B 不切合题意。
若 a 导线的电流方向向左, b 导线的电流方向向右, a、b 中电流 I ′在线框所在处产生的磁场方向如图 2 所示,线框凑近导线的两边所在处的磁感觉强度同样,所受的安培力大小相等、方向相反,线框静止。
同理可知,若 a 导线的电流方向向右, b 导线的电流方向向左,线框也静止,C、 D 切合题意。
题型二、判断安培力作用下导体的运动【典例 2】.(2019 ·福州高考模拟 )如下图,一根长为L 的金属细杆通有大小为I 的电流时,水沉静止在倾角为θ的圆滑绝缘固定斜面上。
斜面处在方向竖直向上、磁感觉强度大小为B 的匀强磁场中。
若电流和磁场的方向均不变,电流大小变成0.5I ,磁感觉强度大小变成4B,重力加快度为g。
则此时金属细杆()A.电流流向垂直纸面向外B.遇到的安培力大小为2BIL sinθC.对斜面压力大小变成本来的 2 倍D.将沿斜面向上加快运动,加快度大小为gsinθ【答案】D【分析】金属细杆水沉静止时,金属细杆遇到重力、斜面的支持力和安培力而均衡,故安培力水平向右,由左手定章得电流流向垂直纸面向里, A 错误;依据安培力公式可得,以后金属细杆遇到的安培力大小为1,B 错误;金属细杆水沉静止于斜面上时,F 安= 4B·IL =2BIL2依据均衡条件可得: F N cosθ= mg, F N sinθ=BIL ,磁感觉强度大小和电流大小改变时,依据受力剖析和牛顿第二定律可得: F N′= mgcosθ+ 2BIL sinθ=mg 1+sin2θ= F N (1+ sin2θ)<2 F N,cosθ2BIL cosθ- mgsinθa==gsinθ,加快度方向沿斜面向上,金属细杆将沿斜面向上运动,C错m误, D正确。
题型三、带电粒子在匀强磁场中运动的办理方法【典例 3】. (2019 ·江西高三九校 3 月联考 )( 多项选择 )如下图是一个半径为 R 的竖直圆形磁场地区,磁感觉强度大小为 B,磁感觉强度方向垂直纸面向里。
有一个粒子源在圆上的 A 点不断地发射出速率同样的带正电的粒子,带电粒子的质量均为 m,电荷量均为 q,运动的半径为 r,在磁场中的轨迹所对应的圆心角为α。
以下说法正确的选项是()πmA .若 r=2R,则粒子在磁场中运动的最长时间为6qBB.若 r= 2R,粒子沿着与半径方向成45°角斜向下射入磁场,则有α 2 2+1 tan=27C.若 r=R,粒子沿着磁场的半径方向射入,则粒子在磁场中的运动时间为πm 3qBD.若 r=R,粒子沿着与半径方向成60°角斜向下射入磁场,则圆心角α为150 °【答案】 BD【分析】若 r = 2R,粒子在磁场中运动时间最长时,磁场地区的直径是轨迹的弦,作出轨60°迹如图 1 所示,由于 r= 2R,圆心角α=60°,则粒子在磁场中运动的最长时间为 t max= T 360 °12πmπm45°角斜向下射入磁场,作出=· =,故 A 错误;若 r= 2R,粒子沿着与半径方向成6 qB3qB轨迹22如图 2 所示,依据几何关系,有α 2R2R2 2+1tan ===,故 B 正确;若 r=R,2227r-2 R2R-2R粒子沿着磁场的半径方向射入,粒子运动轨迹如图 3 所示,圆心角为 90°,粒子在磁场中运动的时间 t=90°12πmπm,故 C 错误;若 r = R,粒子沿着与半径方向成60°角斜向360T=·=2qB°4qB下射入磁场,轨迹如图 4 所示,图中轨迹圆心与磁场圆心以及入射点和出射点连线组成菱形,由几何知识知圆心角α为 150°,故 D 正确。
题型四带电粒子在组合场、复合场中的运动【典例4】. (2019 ·湖南怀化高考一模)如下图,在平面直角坐标系xOy 中的第一象限内存在磁感觉强度大小为B、方向垂直于坐标平面向里的有界矩形匀强磁场地区(图中未画出 );在第二象限内存在沿x 轴负方向的匀强电场。
一粒子源固定在x 轴上坐标为 (- L,0) 的 A 点,粒子源沿 y 轴正方向开释出速度大小为v0的电子,电子经过y 轴上的 C 点时速度方向与y 轴正方向成α= 45°角,电子经过磁场偏转后恰巧垂直经过第一象限内与x 轴正方向成β=15°角的射线 OM 。
已知电子的质量为m,电荷量为 e,不考虑粒子的重力和粒子之间的互相作用。
求:(1)匀强电场的电场强度 E 的大小;(2)电子在电场和磁场中运动的总时间t;(3)矩形磁场地区的最小面积 S min。
22L2πm mv02mv0【答案】(1)2eL(2) v0+3eB(3) 3eB【分析】(1)电子从 A 到 C 的过程中,由动能定理得:1122eEL = 2mv C - 2mv 0,又有 v C cos α= v 0,2联立解得: E =mv 0。
2eL(2) 电子在电场中做类平抛运动,沿电场方向有:v C sin αL =t 1,2v 0此中 v C =,2π 由数学知识知电子在磁场中的速度倾向角等于圆心角:θ= π- α- β= ,3θ电子在磁场中的运动时间:t 2= T ,2π此中 T =2πm,eB电子在电场和磁场中运动的总时间 t = t 1+ t 2,联立解得: t = 2L 2πm0 + 。
v 3eBC2vC(3) 电子在磁场中做匀速圆周运动,洛伦兹力供给向心力,则有ev B = m r最小矩形地区如下图,θθ由数学知识得: CD =2r ·sin 2, CQ = r -r cos 2,矩形地区的最小面积:S min = CD ·CQ ,联立解得: S mv02。
min=3eB【典例 5】.(2019 ·山东省滨州市二模)如下图,处于竖直面内的坐标系 x 轴水平、y 轴竖直,第二象限内有互相垂直的匀强电场和匀强磁场,电场方向竖直向下,磁场方向垂直坐标平面向里。
带电微粒从x 轴上 M 点以某一速度射入电磁场中,速度与x 轴负半轴夹角α= 53°,微粒在第二象限做匀速圆周运动,并垂直 y 轴进入第一象限。
已知微粒的质量为 m,电荷量为- q, OM 间距离为L ,重力加快度为g, sin53 °= 0.8, cos53°= 0.6。
求:(1)匀强电场的电场强度 E;(2) 若微粒再次回到x 轴时动能为 M 点动能的 2 倍,匀强磁场的磁感觉强度 B 为多少?【答案】(1)mg(2)8m g q5q L【分析】(1)微粒在第二象限做匀速圆周运动,则 qE=mg 解得: E=mg。
q(2) 微粒垂直 y 轴进入第一象限,则圆周运动圆心在y 轴上,由几何关系得: r sinα= Lv2洛伦兹力供给向心力,有:qvB= m r微粒在第一象限中运动机遇械能守恒,有:1mgr(1+ cosα)= E k-2mv212又由于 E k=2× mv2联立以上各式解得:B=8m5q g L。
【加强训练】1.(2019 ·东省聊城市二模山)如下图,三根互相平行的固定长直导线L1、L 2和 L 3垂直纸面搁置,直导线与纸面的交点及坐标原点O 分别位于边长为 a 的正方形的四个极点。
L1与 L3中的电流均为2I、方向均垂直纸面向里,L 2中的电流为I 、方向垂直纸面向外。
已知在电流为 I 的长直导线的磁场中,距导线r 处的磁感觉强度B=kIr ,此中k 为常数。
某时辰有一电子正好经过原点磁场力()O 且速度方向垂直纸面向外,速度大小为v,电子电量为e,则该电子所受A .方向与 y 轴正方向成 45°角,大小为32kIve2a 52kIveB.方向与 y 轴负方向成 45°角,大小为2aC.方向与 y 轴正方向成 45°角,大小为52kIve2a 32kIveD.方向与 y 轴负方向成 45°角,大小为2a2.(2019 常·州市月考 )如下图的圆形地区里匀强磁场方向垂直于纸面向里,有一束速率各不同样的质子自 A 点沿半径方向射入磁场,则质子射入磁场的运动速率越大()A.其轨迹对应的圆心角越大B.其在磁场地区运动的行程越大C.其射出磁场地区时速度的倾向角越大D.其在磁场中的运动时间越长3.(2019 ·宁大连二模辽) 如下图, AC 是四分之一圆弧,O 为圆心, D 为圆弧中点, A、 D、C 处各有一垂直纸面的通电直导线,电流大小相等,方向垂直纸面向里,整个空间还存在一个磁感觉强度大小为 B 的匀强磁场,O 处的磁感觉强度恰巧为零。
假如将 D 处电流反向,其余条件都不变,则O 处的磁感觉强度大小为()A . 2( 2- 1)B B. 2(2+ 1)BC.2B D.04.如下图为一个有界的足够大的匀强磁场地区,磁场方向垂直纸面向外,一个不计重力的带正电的粒子,以某一速率v 垂直磁场方向从O 点进入磁场地区,粒子进入磁场时速度方向与磁场界限夹角为θ,以下相关说法正确的选项是()A .若θ必定, v 越大,粒子在磁场中运动时间越长B.粒子在磁场中运动时间与v 相关,与θ大小没关C.粒子在磁场中运动时间与θ相关,与v 没关D.若 v 必定,θ越大,粒子在磁场中运动时间越长5.(2018 ·山东潍坊实验中学检测)如下图,一束电子以大小不一样的速率沿图示方向垂直飞入横截面是一正方形的匀强磁场地区,以下判断正确的选项是()A.电子在磁场中运动时间越长,其轨迹线越长B.电子在磁场中运动时间越长,其轨迹线所对应的圆心角越大C.在磁场中运动时间同样的电子,其轨迹线不必定重合D.电子的速率不一样,它们在磁场中运动时间必定不同样6.(2019 河·南省洛阳市三模 )(多项选择 )如下图,虚线 OL 与 y 轴的夹角为 60°,在此角范围内有垂直于 xOy 平面向外的匀强磁场。