第三讲 GIS的空间地理坐标系统
- 格式:ppt
- 大小:463.00 KB
- 文档页数:37
GIS中坐标系定义及大地坐标系发布日期:2012-02-04 浏览次数:2核心提示:GIS中的坐标系定义由基准面和地图投影两组参数确定,而基准面的定义则由特定椭球体及其对应的转换参数确定。
1、椭球体GIS中的坐标系定义由基准面和地图投影两组参数确定,而基准面的定义则由特定椭球体及其对应的转换参数确定。
基准面是利用特定椭球体对特定地区地球表面的逼近,因此每个国家或地区均有各自的基准面。
基准面是在椭球体基础上建立的,椭球体可以对应多个基准面,而基准面只能对应一个椭球体。
椭球体的几何定义:O是椭球中心,NS为旋转轴,a为长半轴,b为短半轴。
子午圈:包含旋转轴的平面与椭球面相截所得的椭圆。
纬圈:垂直于旋转轴的平面与椭球面相截所得的圆,也叫平行圈。
赤道:通过椭球中心的平行圈。
基本几何参数:椭圆的扁率椭圆的第一偏心率椭圆的第二偏心率其中a、b称为长度元素;扁率α反映了椭球体的扁平程度。
偏心率e和e’是子午椭圆的焦点离开中心的距离与椭圆半径之比,它们也反映椭球体的扁平程度,偏心率愈大,椭球愈扁。
套用不同的椭球体,同一个地点会测量到不同的经纬度。
下面是几种常见的椭球体及参数列表。
几种常见的椭球体参数值克拉索夫斯基椭球体1975年国际椭球体WGS-84椭球体a6 378 245.000 000 000 0(m)6 378 140.000 000 000 0(m)6 378 137.000 000 000 0(m)b 6 356 863.018 773 047 3(m)6 356 755.288 157 528 7(m)6 356 752.314 2(m)c 6 399 698.901 782 711 0(m)6 399 596.651 988 010 5(m)6 399 593.625 8(m)α1/298.3 1/298.257 1/298.257 223 563e20.006 693 421 622 966 0.006 694 384 999 588 0.006 694 379 901 3e’20.006 738 525 414 683 0.006 739 501 819 473 0.006 739 496 742 272、地图投影地球是一个球体,球面上的位置,是以经纬度来表示,我们把它称为“球面坐标系統”或“地理坐标系統”。
ARCGIS中坐标系的定义及投影转换方法ArcGIS是一款由ESRI公司开发的地理信息系统软件,它提供了丰富的功能和工具来管理、分析和可视化地理空间数据。
在ArcGIS中,坐标系是地理数据的基础。
它定义了地理空间数据的坐标轴方向、单位和参考基准。
ArcGIS支持多种不同的坐标系,包括地理坐标系和投影坐标系。
地理坐标系使用经纬度来表示地球表面上的位置。
经度表示从西经0度到东经180度的角度,可以用-180到180度的范围表示。
纬度表示从南纬0度到北纬90度的角度,可以用-90到90度的范围表示。
常用的地理坐标系有WGS84和GCS_NAD83投影坐标系使用二维平面来表示地球表面上的位置。
由于地球是一个近似于椭球体的三维物体,将三维物体映射到二维平面上会引起形状、大小和方向的变化。
因此,投影坐标系定义了如何在平面上进行映射。
每种投影坐标系都有自己的坐标单位和转换方法。
常用的投影坐标系有UTM投影、Lambert投影和Mercator投影。
投影转换是将一种投影坐标系转换为另一种投影坐标系的过程。
在ArcGIS中,有以下几种常用的投影转换方法:1. 在地图视图中进行投影转换:在ArcMap中,可以通过选择地图视图的“数据”菜单下的“投影”选项来进行投影转换。
用户可以选择源坐标系和目标坐标系,并可以选择是否进行坐标转换。
2. 使用坐标系工具箱进行转换:ArcGIS提供了一系列坐标系工具箱,可以帮助用户进行坐标系的转换。
可以通过在ArcToolbox中选择“数据管理工具”>“坐标系”来访问这些工具。
3. 使用“项目”工具箱进行投影转换:在ArcGIS Pro中,可以使用“项目”工具箱中的“投影”工具来进行投影转换。
用户可以选择源数据和目标投影,并可以选择是否进行地理转换。
4. 使用ArcPy进行投影转换:ArcPy是ArcGIS的Python模块,可以通过编写Python脚本来进行投影转换。
用户可以使用ArcPy中的Projection类和ProjectRaster函数来实现投影转换。
GIS中坐标系统的理解理解坐标系统关键要明确两个概念:Geographic coordinate system和Projected coordinate system。
1. 首先理解Geographic coordinate systemGeographic coordinate system为地理坐标系统,是以经纬度为地图的存储单位的。
很明显,Geographic coordinate system是球面坐标系统。
我们要将地球上的数字化信息存放到球面坐标系统上,如何进行操作呢?地球是一个不规则的椭球,要将数据信息以科学的方法存放到椭球上,这样的椭球体具有特点:可以量化计算的。
具有长半轴,短半轴,偏心率。
以下几行便是Krasovsky_1940椭球及其相应参数。
Spheroid: Krasovsky_1940Semimajor Axis: 6378245.000000000000000000Semiminor Axis: 6356863.018773047300000000Inverse Flattening: 298.300000000000010000然而有了这个椭球体以后还不够,还需要一个大地基准面将这个椭球定位.在坐标系统描述中,可以看到有这么一行:Datum: D_Beijing_1954 (表示大地基准面是D_Beijing_1954.)有了Spheroid和Datum两个基本条件,地理坐标系统便可以使用.下面是地理坐标系统的完整参数:Alias:Abbreviation:Remarks:Angular Unit: Degree (0.017453292519943299)Prime Meridian: Greenwich (0.000000000000000000)Datum: D_Beijing_1954Spheroid: Krasovsky_1940Semimajor Axis: 6378245.000000000000000000Semiminor Axis: 6356863.018773047300000000Inverse Flattening: 298.3000000000000100002. 接下来是Projection coordinate systemProjection coordinate system即投影坐标系统,首先看看投影坐标系统中的一些参数.Projection: Gauss_KrugerParameters:False_Easting: 500000.000000False_Northing: 0.000000Central_Meridian: 117.000000Scale_Factor: 1.000000Latitude_Of_Origin: 0.000000Linear Unit: Meter (1.000000)Geographic Coordinate System:Name: GCS_Beijing_1954Alias:Abbreviation:Remarks:Angular Unit: Degree (0.017453292519943299)Prime Meridian: Greenwich (0.000000000000000000)Datum: D_Beijing_1954Spheroid: Krasovsky_1940Semimajor Axis: 6378245.000000000000000000Semiminor Axis: 6356863.018773047300000000Inverse Flattening: 298.300000000000010000从参数中可以看出,每一个投影坐标系统都必定会有Geographic Coordinate System。
坐标系统是GIS图形显示、数据组织分析的基础,建立完善的坐标投影系统对于GIS应用来说是非常重要的。
GIS的坐标系统大致有三种:Plannar Coordinate System (平面坐标系统)、Geographic Coordinate System(地理坐标系统)、Projection Coordinate System(投影坐标系统)。
这三者并不是完全独立的,而且各自都有各自的应用特点。
如平面坐标系统常常在小范围内不需要投影或坐标变换的情况下使用,在Arcgis中,默认打开数据不知道坐标系统信息的情况下都当作Custom CS处理,也就是平面坐标系统。
而地理坐标系统和投影坐标系统又是相互联系的,地理坐标系统是投影坐标系统的基础之一,二者的区别联系在下文详述,下面先搞清楚几个基本的概念1、椭球面(Ellipsoid)地图坐标系由大地基准面和地图投影确定,大地基准面是利用特定椭球体对特定地区地球表面的逼近,因此每个国家或地区均有各自的大地基准面,我们通常称谓的北京54坐标系、西安80坐标系实际上指的是我国的两个大地基准面。
我国参照前苏联从1953年起采用克拉索夫斯基(Krassovsky)椭球体建立了我国的北京54坐标系,1978年采用国际大地测量协会推荐的IAG 75地球椭球体建立了我国新的大地坐标系--西安80坐标系,目前GPS定位所得出的结果都属于WGS84坐标系统,WGS84基准面采用WGS84椭球体,它是一地心坐标系,即以地心作为椭球体中心的坐标系。
因此相对同一地理位置,不同的大地基准面,它们的经纬度坐标是有差异的。
采用的3个椭球体参数如下(源自“全球定位系统测量规范GB/T 18314-2001”):椭球体长半轴短半轴Krassovsky63782456356863.0188IAG 7563781406356755.2882WGS 8463781376356752.3142理解:椭球面是用来逼近地球的,应该是一个立的椭圆旋转而成的。
ArcGIS的地理坐标系与大地坐标系一直以来,总有很多朋友针对地理坐标系、大地坐标系这两个概念吃不透。
近日,在网上看到一篇文章介绍它们,非常喜欢。
所以在此转发一下,希望能够对制图的朋友们有所帮助。
地理坐标:为球面坐标。
参考平面地是椭球面,坐标单位:经纬度大地坐标:为平面坐标。
参考平面地是水平面,坐标单位:米、千米等地理坐标转换到大地坐标的过程可理解为投影。
(投影:将不规则的地球曲面转换为平面)在ArcGIS中预定义了两套坐标系:地理坐标系(Geographic coordinate system)投影坐标系(Projected coordinate system)1、首先理解地理坐标系(Geographic coordinate system),Geographic coordinate system直译为地理坐标系统,是以经纬度为地图的存储单位的。
很明显,Geographic coordinate syst em是球面坐标系统。
我们要将地球上的数字化信息存放到球面坐标系统上,如何进行操作呢?地球是一个不规则的椭球,如何将数据信息以科学的方法存放到椭球上?这必然要求我们找到这样的一个椭球体。
这样的椭球体具有特点:可以量化计算的。
具有长半轴,短半轴,偏心率。
以下几行便是Krasovsky_1940椭球及其相应参数。
Spheroid: Krasovsky_1940Semimajor Axis: 6378245.000000000000000000Semiminor Axis: 6356863.018773047300000000Inverse Flattening(扁率): 298.300000000000010000然而有了这个椭球体以后还不够,还需要一个大地基准面将这个椭球定位。
在坐标系统描述中,可以看到有这么一行:Datum: D_Beijing_1954表示,大地基准面是D_Beijing_1954。
ARCGIS中坐标系的定义及投影转换方法ArcGIS是一款广泛应用于地理信息系统(GIS)的软件。
在ArcGIS 中,坐标系的定义和投影转换方法是非常重要的,它们用于描述和处理地理空间数据。
坐标系的定义:坐标系是用来描述地球上其中一点在二维或三维空间中的位置的一种系统。
在ArcGIS中,常用的坐标系有地理坐标系和投影坐标系。
地理坐标系:地理坐标系是由经纬度确定的,在地理空间中以角度为单位描述位置的坐标系。
经度是从西经0度到东经180度,纬度是从赤道0度到北极90度或南极-90度。
地理坐标系在球面上描述地理位置,但在计算时会引入高度误差。
投影坐标系:为了在平面上准确描述地理位置,需要采用投影坐标系。
投影坐标系将地理空间中的位置投影到一个平面上,以米或英尺为单位。
ArcGIS提供了各种投影坐标系以满足不同地区和任务的需要。
常见的投影坐标系包括等角圆柱投影、等面积圆锥投影和兰勃托投影等。
投影转换方法:在ArcGIS中,进行坐标系的投影转换可以通过以下方法实现:1.工具栏转换:在ArcGIS的工具栏中,有许多工具可以用于投影转换。
例如,“投影”工具可以将地理坐标系转换为投影坐标系,而“定义坐标系”工具可以定义、更改和转换数据的投影坐标系。
2.批量转换:ArcGIS中的“批量投影”工具可以用于将多个数据一次性地从一个坐标系转换为另一个坐标系。
这对于处理大量数据和保持一致性非常有用。
3.手动转换:有时,需要手动转换坐标系。
在ArcGIS中可以通过在数据的属性中手动定义或更改坐标系,然后将其转换为新的投影坐标系。
4.预定义转换:ArcGIS提供了一系列预定义的转换方法,可以将数据从一种坐标系转换为另一种坐标系。
这些预定义的转换方法可以根据需要进行调整和优化。
总结:在ArcGIS中,坐标系的定义和投影转换方法是地理空间数据处理的重要环节。
通过合理选择合适的坐标系和使用正确的投影转换方法,可以确保数据的准确性和一致性,为地理分析和空间研究提供可靠的支持。
ArcGIS中的地理坐标系与投影坐标系
对于GIS专业的⼩伙伴,初学GIS时必然会遇到这样⼀个问题:什么时地理坐标系?什么⼜是投影坐标系?
地理坐标系是以地球椭圆体为基础建议的⼀种三维坐标系,⼀般以经纬度和⾼程为坐标系的三个维度。
X轴指经度,Y轴指纬度,Z轴指⾼程。
投影坐标系是指将三维球体投影到平⾯后的坐标系统,⼀般以⽶或者千⽶做单位,经过投影后的地图,可以⽤来计算⾯积和周长。
如果地图没有经过投影,也可以计算⾯积和周长,但是计算得到的结果叫做球⾯⾯积和球⾯周长。
那么在ArcGIS中,怎样定义或者转换坐标系呢?
⽅法有很多种,这⾥介绍⼀种最简单的⽅法。
新建⼀个地理数据库——新建⼀个要素集,在要素集⾥设置好你需要的坐标系-——将地图导⼊这个要素集,便可⾃动转换为该坐标系。
当然,ArcGIS还提供很多⾼级的关于坐标系的操作,⽐如⾃定义坐标系,⾃定义投影,坐标转换记法等,详细操作可见汤国安教授写的《ArcGIS操作教程》。
ArcGIS中坐标系统简介ArcGIS中坐标系统简介GIS处理的是空间信息,⽽所有对空间信息的量算都是基于某个坐标系统的,因此GIS中坐标系统的定义是GIS系统的基础,正确理解GIS中的坐标系统就变得尤为重要。
ArcGIS是⼤家常⽤的地理信息系统软件,但是对于其中的坐标系统,许多⼈都表⽰不理解。
现在就介绍⼀下ArcGIS的坐标系统特点及其中常⽤坐标系统。
⾸先,我们要介绍⼀下基础知识,在ArcGIS中,坐标系统有两种,⼀种叫做地理坐标系统(Geographic Coordinate Systems),还有⼀种叫投影坐标系统(Projected Coordinate Systems),他们位于ArcGIS安装⽬录的Coordinate Systems ⽂件夹中,其实ArcGIS还有⼀种坐标系统叫做Vertical Coordinate Systems,直译过来就是垂直坐标系统,其实就是定义空间地理数据所采⽤的⾼程基准,⽐如中国现⾏的⾼程基准是1985国家⾼程基准。
1. 地理坐标系统(Geographic Coordinate Systems)所谓地理坐标系统(Geographic Coordinate Systems)是指⽤经纬度表⽰地⾯点位的球⾯坐标,很显然地理坐标系统为球⾯坐标系统。
ArcGIS中最常⽤的地理坐标系统为WGS84,locaspace viewer三维地球软件所采⽤的坐标系统也是WGS84投影坐标系,该坐标系应⽤⾮常⼴泛,其参数如下:Angular Unit: Degree (0.017453292519943295)Prime Meridian: Greenwich (0.000000000000000000)Datum: D_WGS_1984Spheroid: WGS_1984Semimajor Axis: 6378137.000000000000000000Semiminor Axis: 6356752.314245179300000000Inverse Flattening: 298.257223563000030000 从上⾯的参数中我们可以看出,WGS84地理坐标系统包含有Angular Unit(⾓度单位)、Prime Meridian(本初⼦午线)、Datum(基准⾯)和Spheroid (椭球体)四个参数。