四年级奥数上册:第十一讲 格点与面积
- 格式:doc
- 大小:777.50 KB
- 文档页数:8
四年级奥数题及答案-求格点图案面积
【题目】以下这张图里的三个格点图案面积分别是多少?
【解析】
这三个图形都适合用格点面积公式计算面积:
格点多边形面积 = 内格点个数 + 边格点数÷ 2 - 1
这个公式是皮克(Pick)在1899年给出的,被称为“皮克定理”,这是一个实用而有趣的定理。
我们先来看喇叭图案:
这个图案周界上有8个格点,图内却没有格点,那么利用格点面积公式我们可以求得这个喇叭形状的面积为:0+8÷2-1=3;
接下来这只小猫的图案:
小猫图案的周界上有20个格点,而图内有2个格点,面积为:2+20÷2-1=11;
小狗图案同理:
我们可以看到小狗图案是由两个格点多边形组成,那我们可以将两个图案分开求解,先求出每个格点多边形的面积,再求出总面积。
躯干面积:0+12÷2-1=5;
尾巴面积:0+4÷2-1=1;
总面积:5+1=6。
我们在计算像小狗图案这样的有两个或以上的独立格点多边形组成的图案时,可以先求每个独立的格点多边形的面积,再进行求和计算总面积,这样可以避免数漏多个独立图形公共格点而导致计算错误。
第十一讲格点与面积同学们,一看这个题目,你一定会有许多疑问:什么是格点?格点与面积之间又有什么关系等等.这一节我们就来探讨这些问题。
在一张纸上,先画出一些水平直线和一些竖直直线,并使任意两条相邻的平行线的距离都相等(通常规定是1个单位),这样在纸上就形成了一个方格网,其中的每个交点就叫做一个格点.在方格网中,以格点为顶点画出的多边形叫做格点多边形,例如,右图中的乡村小屋图形就是一个格点多边形.那么,格点多边形的面积如何计算?它与格点数目有没有关系?如果有,这两者之间的关系能否用计算公式来表达?下面就让我们一起来探讨这些问题吧!一、正方形格点问题:正方形格点问题就是它的格点都是由两组互相垂直相交的平行线的交点构成的.每一个小方格都是一个小正方形.例1、判断下列图形哪些是格点多边形?分析:根据格点多边形的定义可知,图形的边必须是直线,顶点要在格点上!所以只有(1)是格点多边形。
例2、如右图,计算各个格点多边形的面积.分析:本题所给的图形都是规则图形,它们的面积运用公式直接可求,只要判断出相应的有关数据就行了.法一:第(1)图是正方形,边长是4,所以面积是4×4=16(面积单位);第(2)图是矩形,长是5,宽是3,所以面积是5×3=15(面积单位);第(3)图是三角形,底是5,高是4,所以面积是5×4÷2=10(面积单位);第(4)图是平行四边形,底是5,高是3,所以面积是5×3=15(面积单位);第(5)图是直角梯形,上底是3,下底是5,高是3,所以面积是(3+5)×3÷2=12(面积单位);第(6)图是梯形,上底是3,下底是6,高是4,所以面积是(3+6)×4÷2=18(面积单位).注:如果两格点之间的距离是2,你能利用刚计算的结果说出相应面积么?分析:面积数值均扩大4倍。
法二:以上部分图形除了利用各自的面积公式直接求出外,我们还可以从推导它们的面积公式过程中得到启发,即用“割补法”或“扩展法”分别转化成平置的长方形来求。
知识要点第四讲格点与面积1、如图a 所示,在一张纸上,先画出一些水平直线和一些竖直直线,并使任意两条相邻的平行线的距离都相等(通常规定是1个单位),这样在纸上就形成了一个方格网,其中的每个交点就叫做一个格点。
在方格网中,以格点为顶点画出的直线型多边形叫做格点多边形。
用N 表示多边形内部格点数,L 表示多边形周界上的格点数,S 表示多边形面积,我们能发现如下规律:12LS N =+-,这个规律就是毕克定理(Pick's Theorem )。
图a2、如图b 所示,在一张纸上,先画出一些水平直线和一些与水平直线夹角为60o 的直线,并使任意两条相邻的平行线的距离都相等,这样在纸上就形成了一个正三角形网(通常规定每个小正三角形的面积为1),其中的每个交点就叫做一个格点。
在正三角形网中,以格点为顶点画出的直线型多边形叫做格点多边形。
用N 表示多边形内部格点,L 表示多边形周界上的格点,S 表示多边形面积,与比克定理类似的有:22S N L =+-。
图b方格网【例 1】 下列5个图中,哪些是格点多边形?图1 图2 图3 图4 图5 【分析】根据格点多边形的定义,格点多边形必须符合2个条件:(1)图形必须是多边形,即图形的边必须是直线;(2)图形的顶点必须在格点上。
图3、图4的顶点不在格点上,图5有条线不是直线;所以图1、图2是格点多边形。
【例 2】 计算下图中各个格点多边形的面积,并填写表格。
(小正方形的面积为1单位面积)图1 图2 图3 图4 图5 图6图 图形内的格点数(N )边界上的格点数(L )12LN +- 面积(S )图1 图2 图3 图4 图5 图6【分析】本题的图形都是规则图形,它们的面积运用公式直接可求,只要判断出相应的有关数据就行了。
图1是正方形,边长是5,所以面积S 正方形2525==面积单位;图2是长方形,长是7、宽是4,所以面积S 长方形7428=⨯=面积单位;图3是三角形,底是5,高是4,所以面积S 三角形54102⨯==面积单位; 图4是平行四边形,底是5,高是5,所以面积S 平行四边形5525=⨯=面积单位; 图5是直角梯形,上底是3,下底是7,高是5,所以面积S 梯形(37)5252+⨯==面积单位; 图6是梯形,上底是2,下底是5,高是5,所以面积S 梯形(25)517.52+⨯==面积单位。
上课日期: 上课时间: 教师姓名:知识点一:格点面积 一、正方形格点问题在一张纸上,先画出一些水平直线和一些竖直直线,并使任意两条相邻的平行线的距离都相等(通常规定是1个单位),这样在纸上就形成了一个方格网,其中的每个交点就叫做一个格点.在方格网中,以格点为顶点画出的多边形叫做格点多边形,例如,右图中的乡村小屋图形就是一个格点多边形.那么,格点多边形的面积如何计算?它与格点数目有没有关系?如果有,这两者之间的关系能否用计算公式来表达?下面就让我们一起来探讨这些问题吧!用N 表示多边形内部格点,L 表示多边形周界上的格点,S 表示多边形面积,请同学们分析前几个例题的格点数.我们能发现如下规律:12LS N =+-.这个规律就是毕克定理.二、 三角形格点问题1、定义:所谓三角形格点多边形是指:每相邻三点成“∵”或“∴”,所形成的三角形都是等边三角形.规定它的面积为1,以这样的点为顶点画出的多边形为三角形格点多边形.2、公式:关于三角形格点多边形的面积同样有它的计算公式:如果用S 表示面积,N 表示图形内包含的格点数,L 表示图形周界上的格点数,那么有22S N L =⨯+-,就是格点多边形面积等于图形内部所包含格点数的2倍与周界上格点数的和减去2.知识点二:图形剪拼巧求面积知识框架毕克定理若一个格点多边形内部有N 个格点,它的边界上有L 个格点,则它的面积为12LS N =+-.本讲中很多类型的题目还要求同学们去动手尝试.通过本讲知识的学习,让同学们了解不同图形的分割、拼合、剪拼的方法,锻炼同学们的平面想象能力以及增强学生的动手操作能力.(1)把一个几何图形按某种要求分成几个图形,就叫做图形的分割.(2)反过来,按一定的要求也可以把几个图形拼成一个完美的图形,就叫做图形的拼合.(3)将一个或者多个图形先分割开,再拼成一种指定的图形,则叫做图形的剪拼.我们在图形的分割、拼合和剪拼的过程中,都要结合所提供的图形特点来思考.(1)如果把一个图形分割成若干个大小、形状相等的部分,那么就要想办法找图形的对称点,把图形先分少,再分多.(2)图形中,如果有数量方面的要求,可以先从数量入手,找出平分后每块上所含数量的多少,再结合数量来分割图形.(3)如果是要把几个图形拼合成一个大图形,要特别注意每条边的长度,把相等的边长拼合在一起,先拼少的,再拼多的.(4)如果是剪拼图形,要抓住“剪、拼前后图形的面积相等”这个关键,根据已知条件和图形的特点,通过分析推理和必要的计算,确定剪拼的方法.一、解题关键:分割其实就是运用特殊的三角形(等角直角三角形、等边三角形等)、正方形、等边图形的特殊性质进行分割而得,所以分割的关键是利用了特殊图形的关系解题。
巧解格点与面积巧点睛一一方法和技巧通过寻找面积之间的关系,培养学生探索问题、解决问题、发现规律的能力。
巧指导一一例题精讲A级冲刺名校•基础点晴【例1】下图是用橡皮盘钉在钉板上围成的几个图形,每相邻两点之间的距离都是1厘米,计算这些图形的面积各是多少平方厘米。
做一做1计算下图各格点多边形的面积,每格面积为1。
【例2】下图每相邻两点之间的距离都是1厘米,求各个图形的面积,再填好下表,最后总结出一般规律。
图形边上点数内部点数面积分析与解按照例1的分析方法,进行分割。
图①的面积是2平方厘米,图②的面积是4.5平方厘米,图③的面积是5.5平方厘米,图④的面积是7平方厘米,图⑤的面积是2平方厘米。
填表:寻找规律:图①:4 + 2 + 1 —1=2图②:9 + 2 + 1 —1=4.5图③:9 + 2 + 1 —1=5.5图④:10 + 2 + 3 — 1=7图⑤:6 + 2 + 0 —1=2于是,图形的面积与格点数有如下关系:图形的面积二边上点数+ 2+内部点数一1做一做2下图是一个8X8的正方形,求正方形内四边形ABCD 的面积。
(先用分割法,再用整点法)【例3】右图中每一小格的面积都是1平方厘米,那么粗线围成的图形面积是多少平方厘米?做一做3设每相邻两点间的距离为1,利用格点面积公式计算下图中阴影部分的面积。
■B级更上层楼【例4】如下图,计算下列各格点多边形的面积,统计每个图形周界上的格点数与图形内包含的格点数。
我们对表内的数据分析发现:任何一个格点多边形的面积等于周界上的格点数除以2减1再加上图形内包含的格点数。
如果用S表示面积,用N表示图形内的格点数,用L表示周界上的格点数,再列成下表,它们之间的关系就更清楚了。
做一做4求下列格点多边形的面积(每相邻三点”.・”“・・・”构成面积为1的等百年三角形)。
心.【例5】右图中每相邻三点连接后组成的等边三角形的面积为1 平方厘米。
问三角形ABC的面积是多少?分析与解边上点数为4,内部点数为4,可以• • / •、• • • 利用公式求出面积。
九、格点与面积(B)年级______班_____ 姓名 _____得分_____ 一、填空题:1.右图是用皮筋在钉板上围成的一个三角形,计算它的面积是多少.(每相邻两个小钉之间的距离都等于1个长度单位).2.右图是一根用皮筋在钉板上围成的一个四边形,计算它的面积是多少.(每相邻两个小钉之间的距离都等于1个长度单位).3.在一个9⨯6的长方形内,有一个凸四边形ABCD(如右图).用毕克定理先求出它的面积来,再用拼割方法计算它的面积,看两者是否一致.4.右图中每个小正方形的面积都是4平方厘米,求图中阴影部分的面积.5.右图是一个10⨯10的正方形,求正方形内的四边形ABCD的面积.6.右图是一个8⨯12面积单位的图形.求矩形内的箭形ABCDEFGH的面积.7.右图中每个小正方形的面积都是1,那么图中这只“狗”所占的面积是多少?8.右图是一个5⨯5的方格纸,小方格的面积是1平方厘米,小方格的顶点为格点.请你在图上选7个格点,要求其中任意3个格点都不在一条直线上,并且使这7个点用线段连结所围成的面积尽可能大,那么,所用图形的面积1是多少平方厘米?9.右图中每个小正方形的面积为1平方分米,那么阴影部分的面积是多少平方分米?10.右图中每个小平行四边形的面积是1个面积单位,求阴影部分的面积.二、解答题:1.右图中有21个点,其中每相邻的三点“∴”或“∵”所形成的三角形都是面积为1的等边三角形,试计算ABC∆的面积.2.右图中有21个点,其中每相邻的三点“∴”或“∵”所形成的三角形都是面积为1的等边三角形,试计算四边形DEFG的面积.3.把等边三角形ABC每边六等分,组成如右图的三角形网.若图中每个小三角形的面积均为12cm,试求图中三角形DEF的面积.4.把大正三角形每边八等份,组成如右图所示的三角形网.如果每个小三角形的面积都是1,求图中粗线所围成的三角形的面积.———————————————答案——————————————————————一、填空题:1. 5.5面积单位.分析:解答这类问题可直接套用毕克定理:格点面积=内部格点数+周界上格点数÷2-1.注意:一是毕克定理只对格点凸多边形适用,二是在数格点时要细心.解: 5+3÷2-1=5.5(面积单位).2. 5+5÷2-1=6.5(面积单位).3. 27.5面积单位.解: ①由毕克定理得:25+7÷2-1=27.5(面积单位).②用拼割方法得:ABCD的面积=长方形EFGH的面积-四角上的四个三角形的面积 =9⨯6-(6⨯2÷2+3⨯3÷2+4⨯3÷2+4⨯5÷2)=54-(6+4.5+6+10)=27.5(面积单位).4. 48平方厘米.解: ①内部格点数为: 9个;②周界上格点数为: 8个;③阴影部分的面积是: 4⨯(9+8÷2-1)=48(平方厘米).5. 30面积单位.解: 因为ABCD不是凸四边形,所以如在原题图上取格点E,则三角形BCE及四边形AECD都是凸的图形,故:S=(4+6÷2-1)+(21+8÷2-1)ABCD=6+24=30(面积单位).6. 46面积单位.解: 因为ABCDEFGH不是凸多边形,所以,连结GC、MN,则ABH∆、矩形GCNM、三角形MFE、EDN都是凸的图形.故箭形ABCDEFGH的面积=(8+10÷2-1)+4⨯8+(4÷2-1)⨯2=12+32+2=46(面积单位).7. 67.5面积单位.解: 图形内部格点数为59,图形周界上格点数为19.所以图形的面积为:59+19÷2-1=67.5(面积单位).8. 23.5(平方厘米).分析与解: 这是一个5⨯5的方格纸,共有25个格点.现在要围成一个面积最大的图形,根据格点面积公式,要使图形面积最大,必须使图形包含的内部格点数和周界上格点数尽可能多.由方格纸可知,内部格点数最多为4⨯4=16,周界上格点数最多为5⨯4=20.但是,当周界上格点数为最多时,不符合题中“任意3个格点不在一条直线上”的条件,因此,适当调整图上7个格点的位置,如右上图所示,就得到了面积最大的图形.所围成图形的最大面积为: 16+17÷2-1=23.5(平方厘米).9. 8.5平方分米.解:图形内部格点数为7,图形周界上格点数为 5.阴影部分的面积为:7+5÷2-1=8.5(平方分米).10. 18.5面积单位.解: 图形内部格点数为16,图形周界上格点数为7.图形的面积为: 16+7÷2-1=18.5(面积单位).二、解答题:1. 10面积单位.分析: 由“∵”和“∴”重合两点可拼为平行四边形 ,可以推出如下计算这类格点面积的公式:图形面积=(内部格点数+周界上格点数÷2-1)⨯2.解: 图形内部格点数为4,图形周界上格点数为4.ABC S ∆=(4+4÷2-1)⨯2=10(面积单位).2. 12面积单位.解: DEFG S 四边形=(5+4÷2-1)⨯2=12(面积单位).3. 11面积单位.解: 图形内部格点数为5,图形周界上格点数为3. DEF S ∆=(5+3÷2-1)⨯2=11(2cm ).4. 26面积单位.解: 图形内部格点数为12,图形周界上格点数为4. 图形的面积为: (12+4÷2-1)⨯2=26(面积单位).。
模块一、正方形格点问题在一张纸上,先画出一些水平直线和一些竖直直线,并使任意两条相邻的平行线的距离都相等(通常规定是1个单位),这样在纸上就形成了一个方格网,其中的每个交点就叫做一个格点.在方格网中,以格点为顶点画出的多边形叫做格点多边形,例如,右图中的乡村小屋图形就是一个格点多边形.那么,格点多边形的面积如何计算?它与格点数目有没有关系?如果有,这两者之间的关系能否用计算公式来表达?下面就让我们一起来探讨这些问题吧!用N 表示多边形内部格点,L 表示多边形周界上的格点,S 表示多边形面积,请同学们分析前几个例题的格点数.我们能发现如下规律:12LS N =+-.这个规律就是毕克定理.【例 1】 判断下列图形哪些是格点多边形?⑴⑵⑶⑷【考点】格点型面积 【难度】2星 【题型】判断【例 2】 如图,计算各个格点多边形的面积.⑶⑵⑴⑹⑸⑷【考点】格点型面积 【难度】2星 【题型】解答【例 3】 如图(a ),计算这个格点多边形的面积.毕克定理若一个格点多边形内部有N 个格点,它的边界上有L 个格点, 则它的面积为12LS N =+-. 例题精讲4-2-7.格点型面积【考点】格点型面积【难度】2星【题型】解答【例 4】右图是一个方格网,计算阴影部分的面积.【考点】格点型面积【难度】2星【题型】解答【关键词】新加坡小学数学奥林匹克竞赛【例 5】分别计算图中两个格点多边形的面积.【考点】格点型面积【难度】3星【题型】解答【巩固】求下列各个格点多边形的面积.(1)(2)(3)(4)【考点】格点型面积【难度】3星【题型】解答【例 6】“乡村小屋”的面积是多少?【考点】格点型面积【难度】3星【题型】解答【例 7】右图是一个812面积单位的图形.求矩形内的箭形ABCDEFGH的面积.HGFEDCBA【考点】格点型面积【难度】3星【题型】解答【例 8】比较图中的两个阴影部分①和②的面积,它们的大小关系______【考点】格点型面积【难度】3星【题型】填空【关键词】希望杯,五年级,二试,第9题,6分【例 9】右图中每个小正方形的面积都是1,那么图中这只“狗”所占的面积是多少?【考点】格点型面积【难度】4星【巩固】如图,每一个小方格的面积都是1平方厘米,那么用粗线围成的图形的面积是多少平方厘米?【考点】格点型面积【难度】3星【题型】解答【例 10】第一届保良局亚洲区城市小学数学邀请赛在7月21日开幕,下面的图形中,每一个小方格的面积是1,那么7、2、1三个数字所占的面积之和是多少?【考点】格点型面积【难度】3星【题型】解答【关键词】保良局亚洲区城市小学数学竞赛【例 11】55的方格纸,小方格的面积是1平方厘米,小方格的顶点称为格点.请你在图上选7个格点,要求其中任意3个格点都不在一条直线上,并且使这7个点用直线连接后所围成的面积尽可能大.那么,所围图形的面积是平方厘米.【考点】格点型面积【难度】3星【题型】填空【关键词】小学数学奥林匹克【例 12】两个边长相等的正方形各被分成25个大小相同的小方格.现将这两个正方形的一部分重叠起来,若左上角的阴影部分(块状)面积为25.12cm,右下角的阴影部分(线状)面积为27.4cm,求大正方形的面积.【考点】格点型面积 【难度】5星 【题型】解答 【关键词】从小爱数学【例 13】 将边长为正整数n 的正方形平均分成2n 个小正方形,每个小正方形的顶点称为格点。
格点与面积知识点总结1:正方形格点多边形面积公式2:三角形格点多边形面积公式3:割补法求不规则多边形面积【例题精讲】例1在下面的正方形网格中,每个小正方形的面积都是1平方厘米。
请据此计算下面两个图形的面积。
【答案】13平方厘米和15平方厘米。
正方形格点多边形的面积=边界格点数÷2+内部格点数-1(1)边界格点数:20个,内部格点数:4个,面积:20÷2+4-113(平方厘米)(2)边界格点数:14个,内部格点数:9个,面积:14÷2+9-1=15(平方厘米)【例题小结】对比已学割补法与格点面积的优势,引导学生掌握更高效的方法。
练1在下面的正方形网格中,每个小正方形的面积都是1平方厘米。
网格中多边形的面积是多少平方厘米?【答案】36平方厘米【解析】边界格点数是34个,内部格点数是20个,因此面积是34÷2+20-1=36平方厘米。
例2在下图中,每个小方格的面积都是2平方厘米,那么格点多边形的面积是多少平方厘米?【答案】13平方厘米正方形格点多边形的面积=边界格点数÷2+内部格点数-1边界格点数:7 个,内部格点数:4 个面积:(7÷2+4-1)×2=13(平方厘米)【例题小结】单位小正方形面积是几,利用格点公式求出的面积也要扩大几倍。
练2小新将某市的地图轮廓绘制到了网格上,且每相邻的四个点围成的正方形的面积都是1平方厘米。
请帮小新计算出该市在地图上的面积。
【答案】20平方厘米【解析】边界格点数是14个,内部格点数是14个,因此面积是14÷2+14−1=20(平方厘米)。
例3在下图中,每个小方格的边长都是1厘米,那么阴影部分的面积是多少平方厘米?【答案】22平方厘米。
割补方法:整体-空白整体:6×6=36(平方厘米)空白:正方形格点多边形的面积=边界格点数÷2+内部格点数-112÷2+9-1=14(平方厘米)阴影:36-14=22(平方厘米)【例题小结】阴影部分面积=整体-空白练3在下图中,每个小正方形的边长都是1厘米,那么阴影部分的面积是多少平方厘米?【答案】14平方厘米【解析】可以将阴影部分面积和十字形的空白部分看做一个整体,面积是:8÷2+21-1=24(平方厘米),十字形的空白部分的面积是12÷2+5-1=10(平方厘米),因此阴影部分面积是24-10=14(平方厘米)。