一次函数、一次方程和一元一次不等式(基础)巩固练习
- 格式:doc
- 大小:267.30 KB
- 文档页数:7
巩固练05一次函数变量与常量的定义:在问题研究的过程中,可以取不同数值的量叫做,数值不变的量叫做。
函数的定义:一般的,在一个变化过程中,有两个变量x、y,如果给定任意一个x的值,都会有一个的y与之对应,那么就称y是x的函数,其中是x,y是。
自变量的取值范围:①被开方数;②分母。
画函数图像的三个步骤:①;②;③。
函数的三中表示方法:①;②;③。
正比例函数:形如的函数,其中是比例系数。
一次函数:形如的函数。
正比例函数、一次函数的图像和性质与k、b的关系:函数K的值b的值与x轴的交点与y轴交点经过象限y随x的变化情况大致图像正比例函数)0(≠=kkxy>k0=b(0,0)0<k一次函数)0(≠+=kbkxy>k>b<b<k>b<b函数的平移:平移规则:①左右平移:,在上进行加减。
②上下平移:,在后面进行加减。
待定系数法求一次函数解析式的步骤:①设——设一次函数解析式:。
②代——找出题目中或函数图像上的已知点代入函数解析式得到关于方程或方程组。
③求——求解出方程或方程组的。
④反代——将求出的的值反代入函数解析式得出函数解析式。
一次函数与方程:①若一次函数)0(≠+=k b kx y 过点(m ,n ),则方程n b kx =+的解为。
②若一次函数)0(≠+=k b kx y 与一次函数)0(≠+=a c ax y 的交点坐标为)(n m ,,则方程c ax b kx +=+的解为;方程组⎩⎨⎧-=--=-c y ax by kx 的解为。
一次函数与不等式:①若一次函数)0(≠+=k b kx y 过点(m ,n ),则不等式n b kx >+就是函数图像在坐标系中函数值大于n 的部分所对应的x 的值;不等式n b kx <+就是函数图像在坐标系中函数值小于n 的部分所对应的x 的值。
②若一次函数)0(≠+=k b kx y 与一次函数)0(≠+=a c ax y 的交点坐标为)(n m ,,则c ax b kx ++>就是)0(≠+=k b kx y 的图像在)0(≠+=a c ax y 的图像上方的部分所对应的x 的值;c ax b kx ++<就是)0(≠+=k b kx y 的图像在)0(≠+=a c ax y 的图像下方的部分对应的x 的值。
第二章一元一次不等式与一元一次不等式组第5节一元一次不等式与一次函数课堂练习学校:___________姓名:___________班级:___________考生__________评卷人得分 一、单选题1.一次函数1y ax b 与2y cx d =+ 的图象如图所示,下列说法:①0ab < ;①函数y ax d =+ 不经过第一象限;①不等式ax b cx d ++> 的解集是3x < ;①()13a c db -=- .其中正确的个数有( )A .4B .3C .2D .12.同一直角坐标系中,一次函数11y k x b =+与正比例函数22y k x =的图象如图所示,则满足12y y ≥的x 取值范围是( )A .2x -≤B .2x ≥-C .2x <-D .2x >-3.如图,一次函数y kx b =+的图象经过A 、B 两点,则不等式0kx b +<的解集是( )A.1x>B.01x<<C.1x<D.0x<4.若一次函数y kx b=+(k b、为常数,且0k≠)的图象经过点()01A-,,()11B,,则不等式1kx b+>的解为()A.0x<B.0x>C.1x<D.1x>5.一次函数y=kx+b的图象如图所示,当y>3时,x的取值范围是()A.x0<B.x0>C.x2<D.x2>.6.如图,一次函数y1=x+3与y2=ax+b的图象相交于点P(1,4),则关于x的不等式x+3≤ax+b的解集是()A.x≥4B.x≤4C.x≥1D.x≤17.一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:①k<0;①a>0;①当x<3时,y1<y2;①当y1>0且y2>0时,﹣a<x<4.其中正确的个数是()A.1个B.2个C.3个D.4个8.如图,函数y1=﹣2x 与y2=ax+3 的图象相交于点A(m,2),则关于x 的不等式﹣2x>ax+3 的解集是()A .x >2B .x <2C .x >﹣1D .x <﹣1评卷人得分 二、填空题 9.如图,已知一次函数y =ax+b 和y =kx 的图象交于点P(﹣4,﹣2),则关于x 的不等式ax+b≤kx <1的解集为______.10.如图,直线()0y kx b k =+>交x 轴于点()30A -,,交直线y x =于点B ,则根据图象可知,()0x kx b +<不等式的解为_______.11.一次函数1y kx b =+与2y x a =+的图象如图,则()0kx b x a +-+>的解集是__.12.如图,直线11y k x a =+与22y k x b =+的交点坐标为()1,2,当12k x a k x b +≤+时,则x 的取值范围是__________.13.如图,一次函数y=﹣x ﹣2与y=2x +m 的图象相交于点P (n ,﹣4),则关于x 的不等式组22{20x m x x +----<<的解集为_____.14.函数2y x =和4y ax =+的图象相交于点(),2A m ,则不等式24x ax -≤的解为__________.15.如图,一次函数y kx b =+的图象与x 轴的交点坐标为()2,0-,则下列说法:y ①随x 的增大而减小;0b <②;③关于x 的方程0kx b +=的解为2x =-;④当1x =-时,0.y <其中正确的是______.(请你将正确序号填在横线上)16.一次函数y =kx +b 的图像如图所示,则关于x 的不等式kx -m +b >0的解集是____.评卷人得分三、解答题 17.如图:已知直线y kx b =+经过点()5,0A ,()1,4B .(1)求直线AB的解析式;(2)若直线24y x=-与直线AB相交于点C,求点C的坐标;(3)根据图象,直接写出关于x的不等式240x kx b->+>的解集.18.如图,直线1l:1y x=+与直线2l:y mx n=+相交于点()1,P b.(1)求关于x,y的方程组1y xy mx n=+⎧⎨=+⎩的解;(2)已知直线2l经过第一、二、四象限,则当x______时,1x mx n+>+.19.如图,已知一次函数y=kx+k+1的图象与一次函数y=﹣x+4的图象交于点A (1,a).(1)求a、k的值;(2)根据图象,写出不等式﹣x+4>kx+k+1的解;(3)结合图形,当x>2时,求一次函数y=﹣x+4函数值y的取值范围;20.如图,直线1:1l y x=+与直线22 :3l y x a=-+相交于点(1,)p b;(1)求出a,b的值;(2)根据图象直接写出不等式2013x x a<+<-+的解集;(3)求出ABP∆的面积.参考答案:1.A【解析】【分析】仔细观察图象:①a 的正负看函数y 1=ax +b 图象从左向右成何趋势,b 的正负看函数y 1=ax +b 图象与y 轴交点即可;①c 的正负看函数y 2=cx +d 从左向右成何趋势,d 的正负看函数y 2=cx +d 与y 轴的交点坐标;①以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大;①看两直线都在x 轴上方的自变量的取值范围.【详解】由图象可得:a <0,b >0,c >0,d <0,①ab <0,故①正确;函数y =ax +d 的图象经过第二,三,四象限,即不经过第一象限,故①正确,由图象可得当x <3时,一次函数y 1=ax +b 图象在y 2=cx +d 的图象上方,①ax +b >cx +d 的解集是x <3,故①正确;①一次函数y 1=ax +b 与y 2=cx +d 的图象的交点的横坐标为3,①3a +b =3c +d①3a−3c =d−b ,①a−c =13(d−b ),故①正确, 故选:A .【点睛】本题考查了一次函数与一元一次不等式,一次函数的图象与性质,利用数形结合是解题的关键.2.A【解析】【详解】试题分析:当2x ≤-时,直线11y k x b =+都在直线22y k x =的上方,即12y y ≥.故选A . 考点:一次函数与一元一次不等式.3.A【解析】由图象可知:B (1,0),且当x >1时,y <0,即可得到不等式kx+b <0的解集是x >1,即可得出选项.【详解】解:①一次函数y=kx+b 的图象经过A 、B 两点,由图象可知:B (1,0),根据图象当x >1时,y <0,即:不等式kx+b <0的解集是x >1.故选A .【点睛】本题主要考查对一次函数与一元一次不等式的关系,一次函数的图象等知识点的理解和掌握,能根据图象进行说理是解此题的关键,用的数学思想是数形结合思想.4.D【解析】【分析】可直接画出图像,利用数形结合直接读出不等式的解 【详解】如下图图象,易得1kx b +>时,1x >故选D【点睛】本题考查一次函数与不等式的关系,本题关键在于利用画出图像,利用数形结合进行解题 5.A【解析】根据题意在函数图像中寻找3y >时函数图像所在的位置,发现此时函数图像对应的x 范围是小于零,从而得出答案【详解】解:①由函数图象可知,当x <0时函数图象在3的上方,①当y >3时,x <0.故选A .【点睛】本题考查的是一次函数的图象,能利用数形结合求出x 的取值范围是解答此题的关键. 6.D【解析】【详解】根据函数图像可得:当1x ≤时,21y y ≥,即3ax b x +≥+.故选D考点:一次函数与不等式7.B【解析】【分析】仔细观察图象,①k 的正负看函数图象从左向右成何趋势即可;①a 看y 2=x +a 与y 轴的交点坐标;①以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大;①看两直线都在x 轴上方的自变量的取值范围.【详解】①①y 1=kx +b 的图象从左向右呈下降趋势,①k <0正确;①①y 2=x +a ,与y 轴的交点在负半轴上,①a <0,故①错误;①当x <3时,y 1>y 2,故①错误;①y 2=x +a 与x 轴交点的横坐标为x =﹣a ,当y 1>0且y 2>0时,﹣a <x <4正确;故正确的判断是①①,正确的个数是2个.【点睛】本题考查一次函数与一元一次不等式、一次函数的图象与性质,利用数形结合是解题的关键.8.D【解析】【详解】解:①函数12y x =-与23y ax =+的图象相交于点A (m ,2),把点A 代入12y x =-,得: 1m =-,①点A (-1,2),①当1x <-时,12y x =-的图象在23y ax =+的图象上方,①关于 x 的不等式﹣2x >ax +3 的解集是1x <-.故选:D.9.﹣4≤x <2【解析】【分析】先利用待定系数法求出y =kx 的表达式,然后求出y =1时对应的x 值,再根据函数图象得出结论即可.【详解】解:①已知一次函数y =ax+b 和y =kx 的图象交于点P(﹣4,﹣2),①﹣4k =﹣2,解得:k =12,①解析式为y =12x ,当y =1时,x =2,①由函数图象可知,当x≥﹣4时一次函数y =ax+b 在一次函数y =kx 图象的下方, ①关于x 的不等式ax+b≤kx <1的解集是﹣4≤x <2.故答案为:﹣4≤x <2.【点睛】本题主要考查两个一次函数的交点问题,能够数形结合是解题的关键.10.-3<x <0【解析】【分析】先把()0x kx b +<化简 00x kx b >⎧⎨+<⎩或00x kx b <⎧⎨+>⎩然后利用函数图像分别解两个不等式组即可. 【详解】解:由题意得:不等式()0x kx b +<化简 00x kx b >⎧⎨+<⎩或00x kx b <⎧⎨+>⎩得00x kx b >⎧⎨+<⎩无解,00x kx b <⎧⎨+>⎩的解集 -3<x <0 故答案为:-3<x <0【点睛】本题考查了一次函数与一元一次不等式组的解,正确将一元二次不等式转化为一元一次不等式组是解题的关键.11.1x <-【解析】【分析】不等式kx+b-(x+a )>0的解集是一次函数y 1=kx+b 在y 2=x+a 的图象上方的部分对应的x 的取值范围,据此即可解答.【详解】解:不等式()0kx b x a +-+>的解集是1x <-.故答案为1x <-.【点睛】本题考查了一次函数的图象与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.12.1x ≤【解析】【分析】在图中找到两函数图象的交点,根据一次函数图象的交点坐标与不等式组解集的关系即可作出判断.【详解】解:①直线l 1:y 1=k 1x+a 与直线l 2:y 2=k 2x+b 的交点坐标是(1,2),①当x=1时,y 1=y 2=2.而当y 1≤y 2时,即12k x a k x b +≤+时,x≤1.故答案为:x≤1.【点睛】此题考查了直线交点坐标与一次函数组成的不等式组的解的关系,利用图象即可直接解答,体现了数形结合思想在解题中的应用.13.﹣2<x <2【解析】【分析】先将点P (n ,﹣4)代入y=﹣x ﹣2,求出n 的值,再找出直线y=2x+m 落在y=﹣x﹣2的下方且都在x 轴下方的部分对应的自变量的取值范围即可. 【详解】①一次函数y=﹣x ﹣2的图象过点P (n ,﹣4),①﹣4=﹣n ﹣2,解得n=2,①P (2,﹣4),又①y=﹣x ﹣2与x 轴的交点是(﹣2,0),①关于x 的不等式组2220x m x x +--⎧⎨--⎩<<的解集为22x -<<. 故答案为22x -<<.【点睛】本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确确定出 n 的值,是解答本题的关键.14.1x ≤【解析】【分析】函数2y x =和4y ax =+的图象相交于点(),2A m ,求出m 的值,然后解不等式即可.【详解】解:①函数y=2x 的图象经过点A (m ,2),①2m=2,解得:m=1,①点A (1,2),当x≤1时,2x≤ax+4,即不等式2x-4≤ax 的解集为x≤1.故答案为x≤1.【点睛】本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.15.③【解析】【分析】根据一次函数的性质,一次函数与一元一次方程的关系对个小题分析判断即可得解.【详解】由图可知:①y 随x 的增大而增大,错误;①b >0,错误;①关于x 的方程kx +b =0的解为x =﹣2,正确;①当x =﹣1时,y >0,错误.故答案为①.【点睛】本题考查了一次函数的性质,一次函数与一元一次方程、一元一次不等式的关系,利用数形结合是求解的关键.16.3x <-【解析】【分析】先根据一次函数y=kx+b 的图象经过点(3-,m )可知,由图像可知,当x 3<-时,kx b m +>,即可得出结论.【详解】解:有图像可知,一次函数y=kx+b 经过点(3-,m ),则当x 3=-时,kx b m +=,由图像可知,当x 3<-时,kx b m +>,①0kx m b -+>的解集是:3x <-;故答案为:3x <-.【点睛】本题考查的是一次函数与一元一次不等式,能利用数形结合求出不等式的取值范围是解答此题的关键.17.(1)5y x =-+;(2)点C 的坐标为()32,;(3)35x <<【解析】【分析】 (1)将A 、B 坐标代入解析式中计算解答即可;(2)将两直线方程联立求方程组的解即可;(3)根据图像找出y>0,且直线24y x =-高于直线y kx b =+部分的x 值即可.【详解】解:(1)因为直线y kx b =+经过点()5,0A ,()1,4B所以将其代入解析式中有504x b x b +=⎧⎨+=⎩,解得15k b =-⎧⎨=⎩, 所以直线AB 的解析式为5y x =-+;(2)因为直线24y x =-与直线AB 相交于点C所以有524y x y x =-+⎧⎨=-⎩,解得32x y =⎧⎨=⎩ 所以点C 的坐标为()32,; (3)根据图像可知两直线交点C 的右侧直线24y x =-高于直线y kx b =+且大于0,此时x的取值范围是大于3并且小于5,所以不等式240x kx b ->+>的解集是35x <<.【点睛】本题考查的是一次函数综合问题,能够充分调动所学知识是解题的关键.18.(1)1x =,2y = (2)1x >【解析】【分析】(1)方程组的解即为两条直线的交点P 的坐标,将x =1,代入直线l 1求出P 点坐标即可;(2)不等式x +1>mx +n 的解集即直线l 1在直线l 2的上方时x 的取值范围.【详解】解:(1)由题意可得,关于x ,y 的方程组的解即为两条直线的交点P 的坐标, 当x =1时,代入直线l 1,求得y =2,即P (1,2)即方程组的解为12x y =⎧⎨=⎩; (2)由题意可知,x +1>mx +n 时,直线l 1在直线l 2的上方,由函数图象可得,此时x >1,故答案为x >1.【点睛】本题主要考查一次函数与二元一次方程组及一元一次不等式的关系,熟悉一次函数的图象并熟练应用数形结合的思想是解答本题的关键19.(1)a =﹣3,k =1;(2)x <1;(3)当x >2时,y <2.【解析】【分析】(1)把A (1,a )代入y =﹣x +4求得a 的值,再把将A (1,3)代入y =kx +k +1即可求得k 的值;(2)观察函数图象即可解答;(3)当x =2时,y =2,观察图象,x >2时,图象在x =2的右侧,在y =2的下面,即可解答.【详解】(1)把A (1,a )代入y =﹣x +4得a =﹣1+4=3,将A(1,3)代入y=kx+k+1得k+k+1=3,解得k=1;(2)根据图象可得:不等式﹣x+4>kx+k+1的解集为x<1;(3)当x=2时,y=﹣x+4=﹣2+4=2,所以当x>2时,y<2.【点睛】本题考查的是一次函数与不等式的解集,掌握利用函数图象求不等式解集的方法是关键.20.(1) a=83,b=2;(2)-1<x<1;(3)5.【解析】【分析】(1)把P点坐标代入y=x+1可得b的值,继而代入23y x a=-+可求a的值;(2)根据两函数图象的交点坐标及y=x+1与x轴的交点可得答案;(3)首先求出点A、B的坐标,由此计算AB的长,再由点P的坐标,即可计算出ABP∆的面积.【详解】解:(1)①直线l1:y=x+1过点P(1,b),①b=1+1=2;把点P(1,2)代入23y x a=-+中得a=8 3(2)①y=x+1与x轴交于点(-1,0),①在x=-1的左边x=1的右边的图象满足不等式2013x x a<+<-+,①不等式2013x x a<+<-+的解集是-1<x<1(3)在2833y x=-+中,当y=0时,x=4①点B的坐标是(4,0)又A(-1,0),①AB=4+1=5,①点P(1,2),①ABP∆的面积为:12×5×2=5.【点睛】此题主要考查了一次函数与二元一次方程组,关键是掌握待定系数法求一次函数解析式,掌握凡是函数图象经过的点必能满足解析式即可.。
6.6 一次函数、一元一次方程和一元一次不等式(基础作业)-苏科版八年级上册一.选择题1.一次函数y=kx+b的图象如图所示,则下列结论正确的是()A.k>0B.b=﹣1C.y随x的增大而增大D.当x>2时,kx+b<02.若一次函数y=kx+b的图象过点(﹣2,0)、(0,1),则不等式k(x﹣1)+b>0的解集是()A.x>﹣2B.x>﹣1C.x>1D.x>23.在平面直角坐标系xOy中,直线l1:y1=k1x+5与直线l2:y2=k2x的图象如图所示,则关于x的不等式k2x<k1x+5的解集为()A.x>﹣2B.x<﹣2C.x<3D.x>34.对于一次函数y=kx+b(k<0,b>0),下列的说法错误的是()A.y随着x的增大而减小B.点(﹣1,﹣2)可能在这个函数的图象上C.图象与y轴交于点(0,b)D.当时,y<05.一次函数y1=kx+3(k为常数,k≠0)和y2=x﹣3.当x<2时,y1>y2,则k取值范围()A.k≤﹣2B.﹣2≤k≤1且k≠0C.k≥1D.﹣2<k<1且k≠06.如图,已知一次函数y=mx+n的图象经过点P(﹣2,3),则关于x的不等式mx+n<3的解集为()A.x>﹣3B.x<﹣3C.x>﹣2D.x<﹣27.如图,直线l是函数y=x+3的图象.若点P(a,b)满足a<5,且b>x+3,则P 点的坐标可能是()A.(2,3)B.(3,5)C.(4,4)D.(5,6)8.定义max(a,b),当a≥b时,max(a,b)=a,当a<b时,max(a,b)=b;已知函数y=max(﹣x﹣3,2x﹣9),则该函数的最小值是()A.﹣9B.﹣3C.﹣6D.﹣59.已知函数y1=3x+1,y2=ax(a为常数),当x>0时,y1>y2,则a的取值范围是()A.a≥3B.a≤3C.a>3D.a<310.一次函数y=mx+n与y=ax+b在同一平面直角坐标系中的图象如图所示,根据图象有下列五个结论:①a>0;②n<0;③方程mx+n=0的解是x=1;④不等式ax+b>3的解集是x>0;⑤不等式mx+n≤ax+b的解集是x≤﹣2.其中正确的结论个数是()A.1B.2C.3D.4二.填空题11.已知一次函数y=mx+n与x轴的交点为(﹣5,0),则方程mx+n=0的解是.12.如图所示,一次函数y=kx+b的图象经过A(0,2)、B(4,0)两点,则不等式kx+b >0的解集是.13.如图,直线y=x+5与直线y=0.5x+15交于点A(20,25),则方程x+5=0.5x+15的解为.14.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③关于x 的方程kx﹣x=a﹣b的解是x=3;④当x<3时,y1>y2.则其中正确的序号有.15.对于平面直角坐标系xOy中第一象限内的点P(x,y)和图形W,给出如下定义:过点P作x轴和y轴的垂线,垂足分别为M,N,若图形W中的任意一点Q(a,b)满足a≤x 且b≤y,则称四边形PMON是图形W的一个覆盖,点P为这个覆盖的一个特征点.例:若M(1,3),N(4,3),则点P(5,4)为线段MN的一个覆盖的特征点.已知A(1,3),B(3,1),C(2.3),请回答下列问题:(1)在P1(3,3),P2(3,2),P3(1,2)中,是△ABC的覆盖特征点的是;(2)若在一次函数y=mx+5(m≠0)的图象上存在△ABC的覆盖的特征点,则m的取值范围是.三.解答题16.如图,一次函数y=kx+b的图象与x轴交于点B(2,0),与y轴交于点A(0,5),与正比例函数y=mx的图象交于点C,且点C的横坐标为(1)求一次函数y=kx+b和正比例函数y=mx的解析式;(2)结合图象直接写出不等式0<kx+b<mx的解集.17.小时在学习了一次函数知识后,结合探究一次函数图象与性质的方法,对新函数y=2﹣|x﹣1|及其图象进行如下探究.(1)自变量x的取值范围是全体实数,x与y的几组对应值如表:x…﹣3﹣2﹣1012345…y…﹣2﹣1m1210n﹣2…其中m=,n=.(2)请在给出的平面直角坐标系中画出该函数的图象,并结合图象写出该函数的一条性质:.(3)当时,x的取值范围为.18.如图,直线y=kx+b经过点A(﹣5,0),B(﹣1,4)(1)求直线AB的表达式;(2)求直线CE:y=﹣2x﹣4与直线AB及y轴围成图形的面积;(3)根据图象,直接写出关于x的不等式kx+b>﹣2x﹣4的解集.19.如图,已知直线l1:y1=2x+1与坐标轴交于A、C两点,直线l2:y2=﹣x﹣2与坐标轴交于B、D两点,两线的交点为P点.(1)求P点的坐标;(2)求△APB的面积;(3)利用图象求当x取何值时,y1>y2.20.如图,直线y=﹣x+1与x轴,y轴分别交于B,A两点,动点P在线段AB上移动,以P为顶点作∠OPQ=45°交x轴于点Q.(1)求点A和点B的坐标;(2)比较∠AOP与∠BPQ的大小,说明理由.(3)是否存在点P,使得△OPQ是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.。
一次函数与方程、不等式专项练习60题(有答案)1.一次函数y=kx+b的图象如图所示,则方程kx+b=0的解为()A .x=2 B.y=2 C.x=﹣1 D.y=﹣12.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A .x<B.x<3 C.x>D.x>33.如图,一次函数y=kx+b的图象与y轴交于点(0,1),则关于x的不等式kx+b>1的解集是()A .x>0 B.x<0 C.x>1 D.x<14.已知一次函数y=ax+b的图象过第一、二、四象限,且与x轴交于点(2,0),则关于x的不等式a(x﹣1)﹣b >0的解集为()A .x<﹣1 B.x>﹣1 C.x>1 D.x<15.如图,直线y1=k1x+a与y2=k2x+b的交点坐标为(1,2),则使y1<y2的x的取值范围为()A .x>1 B.x>2 C.x<1 D.x<26.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k2x<k1x+b的解集为()A .x<﹣1 B.x>﹣1 C.x>2 D.x<27.如图,直线y=kx+b经过点A(﹣1,﹣2)和点B(﹣2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为()A .x<﹣2 B.﹣2<x<﹣1 C.﹣2<x<0 D.﹣1<x<08.已知整数x满足﹣5≤x≤5,y1=x+1,y2=﹣2x+4,对任意一个x,m都取y1,y2中的较小值,则m的最大值是()A .1 B.2 C.24 D.﹣99.如图,直线y1=与y2=﹣x+3相交于点A,若y1<y2,那么()A .x>2 B.x<2 C.x>1 D.x<110.一次函数y=3x+9的图象经过(﹣,1),则方程3x+9=1的解为x=_________.11.如图,已知直线y=ax+b,则方程ax+b=1的解x=_________.12.如图,一次函数y=ax+b的图象经过A,B两点,则关于x的方程ax+b=0的解是_________.13.已知直线与x轴、y轴交于不同的两点A和B,S△AOB≤4,则b的取值范围是_________.14.已知关于x的方程mx+n=0的解是x=﹣2,则直线y=mx+n与x轴的交点坐标是_________.15.已知ax+b=0的解为x=﹣2,则函数y=ax+b与x轴的交点坐标为_________.16.一次函数y=kx+b的图象如图所示,则关于x的方程kx+b=0的解为______,当x______时,kx+b<0.17.如图,已知函数y=2x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),根据图象可得方程2x+b=ax﹣3的解是_________.18.一元一次方程0.5x+1=0的解是一次函数y=0.5x+1的图象与_________的横坐标.19.如图,已知直线y=ax﹣b,则关于x的方程ax﹣1=b的解x=_________.20.一次函数y1=kx+b与y2=x+a的图象如图,则方程kx+b=x+a的解是_________.21.一次函数y=2x+2的图象如图所示,则由图象可知,方程2x+2=0的解为_________.22.一次函数y=ax+b的图象过点(0,﹣2)和(3,0)两点,则方程ax+b=0的解为_________.23.方程3x+2=8的解是x=_________,则函数y=3x+2在自变量x等于_________时的函数值是8.24.一次函数y=ax+b的图象如图所示,则一元一次方程ax+b=0的解是x=_________.25.观察下表,估算方程1700+150x=2450的解是_________.x的值 1 2 3 4 5 6 7 …1700+150x的值1850 2000 2150 2300 2450 2600 2750 …26.已知y1=3x+1,y2=21-3x,当x取何值时,y1比21y2小2.27.计算:(4a﹣3b)•(a﹣2b)28.我们知道多项式的乘法可以利用图形的面积进行解释,如(2a+b)(a+b)=2a2+3ab+b2就能用图1或图2等图形的面积表示:(1)请你写出图3所表示的一个等式:_________.(2)试画出一个图形,使它的面积能表示:(a+b)(a+3b)=a2+4ab+3b2.29.如图,直线l是一次函数y=kx+b的图象,点A、B在直线l上.根据图象回答下列问题:(1)写出方程kx+b=0的解;(2)写出不等式kx+b>1的解集;(3)若直线l上的点P(m,n)在线段AB上移动,则m、n应如何取值.30.当自变量x的取值满足什么条件时,函数y=﹣2x+7的值为﹣2.31.如图,过A点的一次函数y=kx+b的图象与正比例函数y=2x的图象相交于点B,则不等式0<2x<kx+b的解集是()A .x<1 B.x<0或x>1 C.0<x<1 D.x>132.已知关于x的一次函数y=kx+b(k≠0)的图象过点(2,0),(0,﹣1),则不等式kx+b≥0的解集是()A .x≥2 B.x≤2 C.0≤x≤2 D.﹣1≤x≤233.当自变量x的取值满足什么条件时,函数y=3x﹣8的值满足y>0()A .x=B.x≤C.x>D.x≥﹣34.已知函数y=8x﹣11,要使y>0,那么x应取()A .x>B.x<C.x>0 D.x<035.如图,已知直线y=3x+b与y=ax﹣2的交点的横坐标为﹣2,根据图象有下列3个结论:①a>0;②b>0;③x >﹣2是不等式3x+b>ax﹣2的解集.其中正确的个数是()A .0 B.1 C.2 D.336.如图,直线y=ax+b经过点(﹣4,0),则不等式ax+b≥0的解集为_________.37.如图,直线y=kx+b经过A(﹣2,﹣1)和B(﹣3,0)两点,则不等式﹣3≤﹣2x﹣5<kx+b的解集是_________.38.如图所示,函数y=ax+b和a(x﹣1)﹣b>0的图象相交于(﹣1,1),(2,2)两点.当y1>y2时,x的取值范围是_________.39.如图,直线y=ax+b与直线y=cx+d相交于点(2,1),直线y=cx+d交y轴于点(0,2),则不等式组ax+b<cx+d <2的解集为_________.40.如图,直线y=kx+b经过点(2,1),则不等式0≤x<2kx+2b的解集为_________.41.一次函数y=kx+b的图象如图所示,由图象可知,当x_________时,y值为正数,当x_________时,y为负数.42.如图,直线y=kx+b经过A(1,2),B(﹣2,﹣1)两点,则不等式x<kx+b<2的解集为_________.43.如果直线y=kx+b经过A(2,1),B(﹣1,﹣2)两点,则不等式x≥kx+b≥﹣2的解集为:_________.44.如图,直线y=kx+b与x轴交于点(﹣3,0),且过P(2,﹣3),则2x﹣7<kx+b≤0的解集_________.45.已知一次函数y=ax﹣b的图象经过一、二、三象限,且与x轴交于点(﹣2,0),则不等式ax>b的解集为_________.46.已知一次函数y=ax+b的图象过第一、二、四象限,且与x轴交于点(2,O),则关于x的不等式a(x﹣l)﹣b >0的解集为_________.47.如图,直线y=ax+b经过A(﹣2,﹣5)、B(3,0)两点,那么,不等式组2(ax+b)<5x<0的解集是_________.48.已知函数y1=2x+b与y2=ax﹣3的图象交于点P(﹣2,5),则不等式y1>y2的解集是_________.49.如图,直线y=kx+b经过A(2,0),B(﹣2,﹣4)两点,则不等式y>0的解集为_________.50.已知点P(x,y)位于第二象限,并且y≤x+4,x、y为整数,符合上述条件的点P共有6个.51.作出函数y=2x﹣4的图象,并根据图象回答下列问题:(1)当﹣2≤x≤4时,求函数y的取值范围;(2)当x取什么值时,y<0,y=0,y>0;(3)当x取何值时,﹣4<y<2.52.画出函数y=2x+1的图象,利用图象求:(1)方程2x+1=0的根;(2)不等式2x+1≥0的解;(3)求图象与坐标轴的两个交点之间的距离.53.用画函数图象的方法解不等式5x+4<2x+10.54.画出函数y=3x+12的图象,并回答下列问题:(1)当x为什么值时,y>0;(2)如果这个函数y的值满足﹣6≤y≤6,求相应的x的取值范围.55.如图,直线y=x+1和y=﹣3x+b交于点A(2,m).(1)求m、b的值;(2)在所给的平面直角坐标系中画出直线y=﹣3x+b;(3)结合图象写出不等式﹣3x+b<x+1的解集是_________.56.如图,图中是y=a1x+b1和y=a2x+b2的图象,根据图象填空.的解集是_________;的解集是_________;的解集是_________.57.在平面直角坐标系x0y中,直线y=kx+b(k≠0)过(1,3)和(3,1)两点,且与x轴、y轴分别交于A、B 两点,求不等式kx+b≤0的解.58.用图象法解不等式5x﹣1>2x+5.59.(1)在同一坐标系中,作出函数y1=﹣x与y2=x﹣2的图象;(2)根据图象可知:方程组的解为_________;(3)当x_________时,y2<0.(4)当x_________时,y2<﹣2(5)当x_________时,y1>y2.60.做一做,画出函数y=﹣2x+2的图象,结合图象回答下列问题.函数y=﹣2x+2的图象中:(1)随着x的增大,y将_________填“增大”或“减小”)(2)它的图象从左到右_________(填“上升”或“下降”)(3)图象与x轴的交点坐标是_________,与y轴的交点坐标是_________(4)这个函数中,随着x的增大,y将增大还是减小?它的图象从左到右怎样变化?(5)当x取何值时,y=0?(6)当x取何值时,y>0?一次函数与方程不等式60题参考答案:1.∵一次函数y=kx+b的图象与x轴的交点为(﹣1,0),∴当kx+b=0时,x=﹣1.故选C.2.∵函数y=2x和y=ax+4的图象相交于点A(m,3),∴3=2m,m=,∴点A的坐标是(,3),∴不等式2x<ax+4的解集为x<;故选A3.由一次函数的图象可知,此函数是减函数,∵一次函数y=kx+b的图象与y轴交于点(0,1),∴当x<0时,关于x的不等式kx+b>1.故选B.4.∵一次函数y=ax+b的图象过第一、二、四象限,∴b>0,a<0,把(2,0)代入解析式y=ax+b得:0=2a+b,解得:2a=﹣b =﹣2,∵a(x﹣1)﹣b>0,∴a(x﹣1)>b,∵a<0,∴x﹣1<,∴x<﹣1,故选A5.由图象可知,当x<1时,直线y1落在直线y2的下方,故使y1<y2的x的取值范围是:x<1.故选C.6.两条直线的交点坐标为(﹣1,2),且当x>﹣1时,直线l2在直线l1的下方,故不等式k2x<k1x+b的解集为x>﹣1.故选B7.不等式2x<kx+b<0体现的几何意义就是直线y=kx+b上,位于直线y=2x上方,x轴下方的那部分点,显然,这些点在点A与点B之间.故选B8.联立两函数的解析式,得:,解得;即两函数图象交点为(1,2),在﹣5≤x≤5的范围内;由于y1的函数值随x的增大而增大,y2的函数值随x的增大而减小;因此当x=1时,m值最大,即m=2.故选B9.从图象上得出,当y1<y2时,x<2.故选B.10.方程3x+9=1的解,即函数y=3x+9中函数值y=1时,x的值.∵一次函数y=3x+9的图象经过(﹣,1),即函数值是1时,自变量x=﹣.因而方程3x+9=1的解为x=﹣11.根据图形知,当y=1时,x=4,即ax+b=1时,x=4.∴方程ax+b=1的解x=412.由图可知:当x=2时,函数值为0;因此当x=0时,ax+b=0,即方程ax+b=0的解为:x=213.由直线与x轴、y轴交于不同的两点A和B,令x=0,则y=b,令y=0,则x=﹣2b,∴S△AOB=×2b2=b2≤4,解得:﹣2≤b≤2且b≠0,故答案为:﹣2≤b≤2且b≠014.∵方程的解为x=﹣2,∴当x=﹣2时mx+n=0;又∵直线y=mx+n与x轴的交点的纵坐标是0,∴当y=0时,则有mx+n=0,∴x=﹣2时,y=0.∴直线y=mx+n与x轴的交点坐标是(﹣2,0)15.∵ax+b=0的解为x=﹣2,∴函数y=ax+b与x轴的交点坐标为(﹣2,0),故答案为:(﹣2,0)16.从图象上可知则关于x的方程kx+b=0的解为的解是x=﹣3,当x<﹣3时,kx+b<0.故答案为:x=﹣3,x<﹣317.根据题意,知点P(﹣2,﹣5)在函数y=2x+b的图象上,∴﹣5=﹣4+b,解得,b=﹣1;又点P(﹣2,﹣5)在函数y=ax﹣3的图象上,∴﹣5=﹣2a﹣3,解得,a=1;∴由方程2x+b=ax﹣3,得2x﹣1=x﹣3,解得,x=﹣2;故答案是:x=﹣218.∵0.5x+1=0,∴0.5x=﹣1,∴x=﹣2,∴一次函数y=0.5x+1的图象与x轴交点的横坐标为:x=﹣2,故答案为:x轴交点.19.根据图形知,当y=1时,x=4,即ax﹣b=1时,x=4.故方程ax+b=1的解x=4.故答案为:420.一次函数y1=kx+b与y2=x+a的图象的交点的横坐标是3,故方程的解是:x=3.故答案是:x=321.由一次函数y=2x+2的图象知:y=2x+2经过点(﹣1,0),∴方程2x+2=0的解为:x=﹣1,故答案为:x=﹣1.22.一次函数y=ax+b 的图象过点(0,﹣2)和(3,0)两点,∴b=﹣2,3a+b=0,解得:a=,∴方程ax+b=0可化为:x ﹣2=0,∴x=3.23.解方程3x+2=8得到:x=2,函数y=3x+2的函数值是8.即3x+2=8,解得x=2,因而方程3x+2=8的解是x=2 即函数y=3x+2在自变量x 等于2时的函数值是8.故填2、8 24.∵一次函数y=ax+b 的图象与x 轴交点的横坐标是﹣2,∴一元一次方程ax+b=0的解是:x=﹣2.故填﹣225.设y=1700+150x ,由图中所给的表可知:当x=5时,y=1700+150x=2450,∴方程1700+150x=2450的解是5. 故答案为:526.∵y 1比21 y 2小2.,y 1=3x +1, y 2=21-3x ∴3x +1= 21(21-3x )-2=41-23x-2 两边都乘12得,4x+12=3-18x-24,移项及合并得22x=-33,解得x=-1.5,当x=-1.5时,y 1比21 y 2小2. 27.原式=4a •a ﹣8ab ﹣3ab+6b •b=4a 2﹣11ab+6b 228.(1)∵长方形的面积=长×宽,∴图3的面积=(a+2b )(2a+b )=2a 2+5ab+2b 2,故图3所表示的一个等式:(a+2b )(2a+b )=2a 2+5ab+2b 2,故答案为:(a+2b )(2a+b )=2a 2+5ab+2b 2;(2)∵图形面积为:(a+b )(a+3b )=a 2+4ab+3b 2,∴长方形的面积=长×宽=(a+b )(a+3b ),由此可画出的图形为:29.函数与x 轴的交点A 坐标为(﹣2,0),与y 轴的交点的坐标为(0,1),且y 随x 的增大而增大.(1)函数经过点(﹣2,0),则方程kx+b=0的根是x=﹣2;(2)函数经过点(0,1),则当x >0时,有kx+b >1,即不等式kx+b >1的解集是x >0;(3)线段AB 的自变量的取值范围是:﹣2≤x ≤2,当﹣2≤m ≤2时,函数值y 的范围是0≤y ≤2, 则0≤n ≤2.30. 函数y=﹣2x+7中,令y=﹣2,则﹣2x+7=﹣2,解得:x=4.5.31.一次函数y=kx+b 经过A 、B 两点,∴,解得:k=﹣,b=3. 故:y=﹣,∵0<2x <﹣,解得:0<x <1.故选C32.由于x 的一次函数y=kx+b (k ≠0)的图象过点(2,0),且函数值y 随x 的增大而增大,∴不等式kx+b ≥0的解集是x ≥2.故选A33.函数y=3x ﹣8的值满足y >0,即3x ﹣8>0,解得:x >.故选C34.函数y=8x ﹣11,要使y >0,则8x ﹣11>0,解得:x >.故选A .35. 由图象可知,a >0,故①正确;b >0,故②正确;当x >﹣2是直线y=3x+b 在直线y=ax ﹣2的上方,即x >﹣2是不等式3x+b >ax ﹣2,故③正确.故选D .36.由图象可以看出:当x ≥﹣4时,y ≥0,∴不等式ax+b ≥0的解集为x ≥﹣4,故答案为:x ≥﹣437.∵直线y=kx+b经过A(﹣2,﹣1)和B(﹣3,0)两点,∴,解得,∴不等式变为﹣3≤﹣2x﹣5<﹣x﹣3,解得﹣2<x≤﹣1,故答案为﹣2<x≤﹣138.∵函数y=ax+b和a(x﹣1)﹣b>0的图象相交于(﹣1,1),(2,2)两点,∴根据图象可以看出,当y1>y2时,x的取值范围是x>2或x<﹣1,故答案为:x<﹣1或x>239. 如图,直线y=ax+b与直线y=cx+d相交于点(2,1),直线y=cx+d交y轴于点(0,2),则不等式组ax+b<cx+d<2的解集为(0,2).40.由直线y=ax+b与直线y=cx+d相交于点(2,1),直线y=cx+d交y轴于点(0,2),根据图象即可知不等式组ax+b<cx+d<2的解集为(0,2),故答案为:(0,2).41. 一次函数y=kx+b的图象如图所示,由图象可知,当x x>﹣3时,y值为正数,当x x<﹣3时,y为负数.42.由图形知,一次函数y=kx+b经过点(﹣3,0),(0,2)故函数解析式为:y=x+2,令y>0,解得:x>﹣3,令y<0,解得:x<﹣3.故答案为:x>﹣3,x<﹣343.直线y=kx+b经过A(2,1)和B(﹣1,﹣2)两点,可得:,解得;则不等式组x≥kx+b≥﹣2可化为x≥x﹣1≥﹣2,解得:﹣1≤x≤244.直线y=kx+b与x轴交于点(﹣3,0),且过P(2,﹣3),∴结合图象得:kx+b≤0的解集是:x≥﹣3,∵2x﹣7<﹣3,∴x<2,∴2x﹣7<kx+b≤0的解集是:﹣3≤x<2,故答案为:﹣3≤x<245.如右图所示:不等式ax>b的解集就是求函数y=ax﹣b>0,当y>0时,图象在x轴上方,则不等式ax>b的解集为x>﹣2.故答案为:x>﹣2.46.∵一次函数y=ax+b的图象过第一、二、四象限,∴b>0,a<0,把(2,0)代入解析式y=ax+b得:0=2a+b,解得:2a=﹣b,=﹣2,∵a(x﹣1)﹣b>0,∴a(x﹣1)>b,∵a<0,∴x﹣1<,∴x<﹣147.把A(﹣2,﹣5)、B(3,0)两点的坐标代入y=ax+b,得﹣2a+b=﹣5,3a+b=0,解得:a=1,b=﹣3.解不等式组:2(x﹣3)<5x<0,得:﹣2<x<0.故答案为:﹣2<x<048.由图象可知x>﹣2时,y1>y2;故答案为x>﹣249.∵一次函数y=kx+b的图象经过A、B两点,由图象可知:直线从左往右逐渐上升,即y随x的增大而增大,又A(2,0),所以不等式y>0的解集是x>2.故答案为x>250.∵已知点P(x,y)位于第二象限,∴x<0,y>0,又∵y≤x+4,∴0<y<4,x<0,又∵x、y为整数,∴当y=1时,x可取﹣3,﹣2,﹣1,当y=2时,x可取﹣1,﹣2,当y=3时,x可取﹣1.则P坐标为(﹣1,1),(﹣1,2),(﹣1,3),(﹣2,1),(﹣2,2),(﹣3,1)共6个.故答案为:651.当x=0时,y=﹣4,当y=0时,x=2,即y=2x﹣4过点(0,﹣4)和点(2,0),过这两点作直线即为y=2x﹣4的图象,从图象得出函数值随x的增大而增大;(1)当x=﹣2时,y=﹣8,当x=4,y=4,∴当﹣2≤x≤4时,函数y的取值范围为:﹣8≤y≤4;(2)由于当y=0时,x=2,∴当x<2时,y<0,当x=2时,y=0,当x>2时,y>0;(3)∵当y=﹣4时,x=0;当y=2时,x=3,∴当x的取值范围为:0<x<3时,有﹣4<y<2.52.列表:描点,过(0,1)和(﹣,0)两点作直线即可得函数y=2x+1的图象,如图:(1)由图象看出当x=﹣时,y=0,即2x+1=0,所以x=﹣是方程2x+1=0的解;(2)不等式2x+1≥0的解应为函数图象上不在x轴下方的点的横坐标,所以x≥﹣是不等式2x+1≥0的解;(3)由勾股定理得它们之间的距离为53.令y1=5x+4,y2=2x+10,对于y1=5x+4,当x=0时,y=4;当y=0时,x=﹣,即y1=5x+4过点(0,4)和点(﹣,0),过这两点作直线即为y1=5x+4的图象;对于y2=2x+10,当x=0时,y=10;当y=0时,x=﹣5,即y2=2x+10过点(0,10)和点(﹣5,0),过这两点作直线即为y2=2x+10的图象.图象如图:由图可知当x<2时,不等式5x+4<2x+10成立.54. 当x=0时,y=12;当y=0时,x=﹣4,即y=3x+12过点(0,12)和点(﹣4,0),过这两点作直线即为y=3x+12的图象,从图象得出函数值随x的增大而增大;(1)函数图象经过点(﹣4,0),并且函数值y随x的增大而增大,因而当x>﹣4时y>0;(2)函数经过点(﹣6,﹣6)和点(﹣2,6)并且函数值y随x的增大而增大,因而函数y的值满足﹣6≤y≤6时,相应的x的取值范围是:﹣6≤x≤﹣2.55.(1)根据题意得:解得:(2)画出直线如图:(3)自变量的取值范围是:x>2.56.由题意知:由图象知y=a1x+b1>0时有x>﹣3,函数y=a2x+b2>0时有x<1,∴不等式组的解集的解集为:﹣3<x<1;故答案为:﹣3<x<1;由题知:由图象知y=a1x+b1<0时有x<﹣3,根据函数图象知y=a2x+b2<0时有x<1,∴不等式组的解集为:x<﹣3;故答案为:x<﹣3;由题意知:根据函数图象知y=a1x+b1<0时有x<﹣3,根据函数图象知y=a2x+b2<0时有x>1,∴不等式组的解集是空集;故答案为:空集57.∵直线y=kx+b(k≠0)过(1,3)和(3,1)两点,∴,解得:,∴直线AB的解析式为:y=﹣x+4,∵当y=0时,x=4,∴A(4,0),∴不等式kx+b≤0的解集为:x<4.58.5x﹣1>2x+5可变形为x﹣2>0,画一次函数y=x﹣2的图象,如图所示:根据图象可得:当y>0时,图象在x轴的上方,故x>2.59.(1)解:如图所示:.(2)解:由图象可知:方程组的解为,故答案为:.(3)解:根据题意得:x﹣2<0,解得:x<2,故答案为:<2.(4)解:根据题意得:x﹣2<﹣2,解得:x<0,故答案为:<0.(5)解:根据题意得:﹣x>x﹣2,解得:x<1,故答案为:x<1.60.函数y=﹣2x+2的图象为:(1)由图象知:随着x的增大,y将减小.(2)由图象知:图象从左向右下降.(3)由图象知:与x轴的交点坐标是(1,0),与y轴的交点坐标是(0,2).(4)由图象知:这个函数中,随着x的增大,y将减小,图象从左向右下降.(5)由图象知:当x=1时,y=0.(6)由图象知:当x<1时,y>0.。
一、选择题1.若对(0,)t ∀∈+∞,都有22(1)3x t x t+<+成立,则x 的取值范围是( ) A .()2,6-B .(,3)(2,6)-∞--C .(,3)(2,)-∞-⋃-+∞D .(,3)(2,)-∞-⋃-+∞2.现有以下结论: ①函数1y x x=+的最小值是2; ②若a 、b R ∈且0ab >,则2b aa b+≥;③y =2;④函数()4230y x x x=-->的最小值为2-. 其中,正确的有( )个A .0B .1C .2D .33.已知a ,b 均为正数,且20a b ab +-=,则22124b a a b -+-的最大值为( )A .9-B .8-C .7-D .6-4.已知(1,0),(1,0)A B -,点M 是曲线x =上异于B 的任意一点,令,MAB MBA αβ∠=∠=,则下列式子中最大的是( )A .|tan tan |αβ⋅B .|tan tan |αβ+C .|tan tan |αβ-D .tan tan αβ5.小明从甲地到乙地前后半程的速度分别为a 和()b a b <,其全程的平均速度为v ,则下列不正确的是( )A .a v <<B .v <C 2a bv +<<D .2abv a b=+ 6.若正数a ,b 满足1a >,1b >,且3a b +=,则1411a b +--的最小值为( ) A .4B .6C .9D .167.若直线220ax by +-=(),a b R +∈平分圆222460xy x y +---=,则21a b+的最小值是( ).A .1B .5C .D .3+8.若对于任意的x >0,不等式231xa x x ≤++恒成立,则实数a 的取值范围是( )A .a ≥15B .a >15 C .a <15 D .a ≤159.不等式28610x x -+<的解集为( ) A .11(,)42B .11(,)(,)42-∞+∞ C .11(,)34--D .11(,)(,)34-∞--+∞ 10.已知1x >,则41x x +-的最小值为 A .3B .4C .5D .611.已知01a <<,1b >,则下列不等式中成立的是( )A .4aba b a b+<+ B 2aba b<+C <D .a b +12.已知3x >,13y x x =+-,则y 的最小值为( ) A .2B .3C .4D .5二、填空题13.若对(,1]x ∈-∞-时,不等式21()2()12xxm m --<恒成立,则实数m 的取值范围是____________.. 14.已知,x y R +∈,且1112x y+=,则x y +的最小值为________ 15.已知向量()2,1a y =-,(),3b x =,且a b ⊥,若x ,y 均为正数,则32x y+的最小值是______.16.已知a ,b ,c 均为正数,且abc =4a +9b ,则a +b +c 的最小值为_____.17.已知实数0a >,0b >是8a 与2b 的等比中项,则62a b+的最小值是_________. 18.已知向量1a =,向量b 满足4a b a b -++=,则b 的最小值为______.19.函数()2436x x f x x ++=-的值域为__________.20.已知正实数,x y 满足3x+y+=xy ,则x y +的最小值为__________.三、解答题21.已知0,0x y >>,且440x y +=. (1)求xy 的最大值;(2)求11x y+的最小值.22.已知不等式()()2330,ax a x b a b R +--<∈的解集为{}31A x x =-<<.(1)求实数a ,b 的值;(2)设()22()2ax bx f x x A x +-=∈-,当x 为何值时()f x 取得最大值,并求出其最大值.23.已知命题p :方程240x mx ++=无实数根:命题q :不等式()2310x m x +-+>在x ∈R 上恒成立.(1)如果命题p 是假命题,请求出实数m 的取值范围;(2)如果命题p q ∨为真命题,且命题p q ∧为假命题,请求出实数m 的取值范围.24.设m ∈R ,不等式()()231210mx m x m -+++>的解集记为集合P .(1)若{}12P x x =-<<,求m 的值; (2)当0m >时,求集合P .25.(理)已知关于x 的不等式2320ax x -+>的解集为{1x x <或}x b >. (1)求实数a ,b 的值;(2)解关于x 的不等式()()0ax b x c -->(c 为常数).26.已知正数,,a b c 满足3a b c ++=. (Ⅰ)若221a b +=,求c 的取值范围; (Ⅱ)求证:3bc ac aba b c++≥.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】首先利用基本不等式得到2(1)4t t +≥,再根据题意得到243x x <+,解不等式即可.【详解】令()2(1)t t t f +=,()0,t ∈+∞,()2)2(11t t f t t t==+++,因为()0,t ∈+∞,所以()1224f t t t=++≥=, 当1t t=即1t =时取等号,又因为(0,)t ∀∈+∞,都有22(1)3x t x t +<+,所以243x x <+即可.由243x x <+得()243033x x x x +-<++,即241203x x x --<+, ()()241230xx x --+<,所以()()()6230x x x -++<,解得3x <-或26x -<<. 故选:B. 【点睛】易错点点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.B解析:B 【分析】取0x <,可判断①的正误;利用基本不等式可判断②③④的正误. 【详解】对于①,当0x <时,10y x x=+<,①错误;对于②,若a ,b R ∈且0ab >,说明0b a >,0a b >,则2b a a b +≥=,当且仅当22a b =时取等号,显然成立,②正确;对于③,2y =≥=,=231x +=,显然这样的x 不存在,所以结论不正确,③错误;对于④,因为0x >,所以43x x+≥ 函数()4230y x x x=-->的最大值为2-,所以结论不正确,④错误. 故选:B. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.3.C解析:C 【分析】先利用条件化简222212144b b a a a b +⎛⎫-+-=- ⎪⎝⎭,巧用“1”的代换证明42b a +≥,再证明222242b a b a ⎛⎫+ ⎪⎝⎭≥+,即得到2214b a ⎛⎫- ⎪⎝⎭+的取值范围,根据等号条件成立得到最值. 【详解】依题意,0,0a b >>,20a b ab +-=可知121a b+=,则222212144b b a a a b +⎛⎫-+-=- ⎪⎝⎭,122224222b b b a a a a b a b ⎛⎫⎛⎫+=+⋅+=++≥+= ⎪ ⎪⎝⎭⎝⎭,当且仅当22b a a b=时,即2ba =时等号成立.22242b ba a ab ≥⋅⋅=+,当且仅当2b a =时,等号成立,则左右同时加上224b a +得,则222222442b b b a a ab a ⎛⎫≥+=⎛⎫+++ ⎪⎝⎝⎭⎭ ⎪,即222242b a b a ⎛⎫+ ⎪⎝⎭≥+,当且仅当2b a =时等号成立, 故2222428422b a b a ⎛⎫+ ⎪⎝⎭≥≥=+,当且仅当2b a =时,即2,4a b ==时等号成立, 故2222121744b b a a a b ⎛⎫-+-=-≤- ⎪⎝⎭+当且仅当2b a =时,即2,4a b ==时等号成立. 即22124b a a b -+-的最大值为7-. 故选:C. 【点睛】 关键点点睛:本题解题关键在于利用基本不等式证明的常用方法证明42b a +≥和222242b a b a ⎛⎫+ ⎪⎝⎭≥+,进而突破难点,取最值时要保证取等号条件成立.4.C解析:C 【分析】化简曲线为221(1)x y x -=≥,易知该曲线为双曲线,分别计算选项的取值范围,即可得答案; 【详解】设直线MA ,MB 的斜率分别为12,k k ,11(,)M x y ,则12tan ,tan k k αβ==-, 对A ,1111|tan tan |||111y yx x αβ⋅=⋅=+-; 对B ,C ,tan 0,tan 0αβ><,∴|tan tan |αβ->|tan tan |αβ+,1|tan tan ||tan |2tan αβαα-=+≥, 对D ,1k 小于双曲线渐近线的斜率,∴2tan tan 1tan ααβ=<, ∴|tan tan |αβ-最大,故选:C. 【点睛】通过将斜率转化为直线倾斜角的正切值,再结合基本不等式是求解的关键.5.C解析:C根据题意,求得v ,结合基本不等式即可比较大小. 【详解】设甲、乙两地之间的距离为2s ,则全程所需的时间为s s a b+, 22s abv s s a b a b∴==++,故D 正确;0b a >>2a b+<,2ab v a b ∴=<=+C 错误;又22222a b ab a b v a b a b +⎛⎫⋅ ⎪+⎝⎭=<=<++B 正确; 22220ab ab a a a v a a a b a b a b---=-=>=+++,v a ∴>,则a v <<A 正确.故选:C 【点睛】关键点点睛:由基本不等式可得22ab a b a b +≤≤≤+等式比较大小,属中档题.6.C解析:C 【分析】由等式3a b +=可以得到111a b -+-=,由1411a b +--乘以111a b -+-=所求得式子和基本不等式进行求解即可. 【详解】由3a b +=,可得111a b -+-=,10,10a b ->->,所以()141414(1)511111111a b a a b b a b a b --⎛⎫+=+=++ ⎪------⎝⎭-+-59≥+= 当且仅当12(1)b a -=-,即54,33b a ==时等号成立. 故选:C关键点点睛:本题注意观察待求式的分母,1,1a b --,结合已知条件,可变形为关于分母的式子111a b -+-=,这样就转化为“1”的常规技巧的应用.7.D解析:D 【分析】根据条件可知直线过圆心,求解出,a b 的关系式,利用常数代换法以及基本不等式求解出21a b +的最小值. 【详解】因为直线220ax by +-=(),a b R+∈平分圆222460xy x y +---=,所以直线220ax by +-=过圆心,又因为圆的方程()()221211x y -+-=,所以圆心为()1,2,所以222a b +=,即1a b +=,所以()21212333b a a b a b a b a b ⎛⎫+=+⋅+=++≥+=+ ⎪⎝⎭ 取等号时222a b =即a =,此时21a b ==,故选:D. 【点睛】本题考查圆的对称性与基本不等式的综合应用,其中涉及到利用常数代换法求解最小值,对学生的理解与计算能力要求较高,难度一般.利用基本不等式求解最值时注意说明取等号的条件.8.A解析:A 【分析】由于x >0,对不等式左侧分子分母同时除以x ,再求出左侧最大值即可求解. 【详解】由题:对于任意的x >0,不等式231xa x x ≤++恒成立,即对于任意的x >0,不等式113ax x≤++恒成立,根据基本不等式:10,335x x x >++≥+=,当且仅当1x =时,取得等号, 所以113x x++的最大值为15,所以15a ≥. 故选:A【点睛】此题考查不等式恒成立求参数范围,通过转化成求解函数的最值问题,结合已学过的函数模型进行求解,平常学习中积累常见函数处理办法可以事半功倍.9.A解析:A 【分析】运用因式分解法,化为一元一次不等式组,解不等式,求并集即可得到所求解集. 【详解】解:28610x x -+<即为(21)(41)0x x --<,即有210410x x ->⎧⎨-<⎩或210410x x -<⎧⎨->⎩,可得x ∈∅或1142x <<, 即解集为1(4,1)2,故选A . 【点睛】本题考查一元二次不等式的解法,考查运算能力,属于基础题.10.C解析:C 【分析】由1x >,得10x ->,则441111x x x x +=-++--,利用基本不等式,即可求解. 【详解】由题意,因为1x >,则10x ->,所以44111511x x x x +=-++≥=--, 当且仅当411x x -=-时,即3x =时取等号,所以41x x +-的最小值为5,故选C . 【点睛】本题主要考查了基本不等式的应用,其中解答中熟记基本不等式的使用条件,合理构造是解答的关键,着重考查了推理与运算能力,属于基础题.11.D解析:D【分析】本题先根据完全平方公式与基本不等式得到()22224a b a ab b ab +=++>,所以排除选项A2211aba b a b>=++,所以排除选项B ;接着根据基本>=,所以排除选项C ;最后根据基本不等式得到选项D 正确. 【详解】解:对于选项A :因为01a <<,1b >,所以()22224a b a ab b ab +=++>,故选项A 错误;对于选项B 2211aba b a b>=++,故选项B 错误;对于选项C>=C 错误;对于选项D :()22222222a b a ab b a b +>++=+, 所以a b +<,故选项D 正确. 故选:D . 【点评】本题考查基本不等式的应用、学生的运算能力和转换能力,是基础题.12.D解析:D 【分析】由3x >,得到30x ->,化简113333y x x x x =+=-++--,结合基本不等式,即可求解. 【详解】因为3x >,所以30x ->,则11333533y x x x x =+=-++≥=--, 当且仅当133x x -=-,即4x =时取等号, 故选:D. 【点睛】本题主要考查了利用基本不等式求最值问题,其中解答中熟记基本不等式的“一正、二定、三相等”的条件,合理运算是解得的关键,着重考查推理与运算能力.二、填空题13.【分析】运用换元法参变分离法来求解不等式恒成立问题【详解】不等式转化为化简为令又则即恒成立令又当时取最小值所以恒成立化简得解不等式得故答案为:【点睛】方法点晴:本题考查了不等式恒成立问题在求解过程中 解析:()2,3-【分析】运用换元法,参变分离法来求解不等式恒成立问题.【详解】不等式()21212x xm m ⎛⎫--< ⎪⎝⎭转化为2214x x m m +-<,化简为2211()22x x m m -<+, 令12xt =,又(],1x ∈-∞-,则[)2,t ∈+∞, 即22m m t t -<+恒成立,令2()f t t t =+,又[)2,t ∈+∞, 当2t =时,()f t 取最小值min ()(2)6f t f ==,所以,26m m -<恒成立,化简得260m m --<,解不等式得23m -<<.故答案为:()2,3-【点睛】方法点晴:本题考查了不等式恒成立问题,在求解过程中运用了参变分离法,注意题目中变量的取值范围.14.【分析】由条件可得利用均值不等式可得答案【详解】当且仅当即也即时取等号故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一正就是各项必须为正数;(2)【分析】由条件可得()2112112x y x y x y x y y x ⎛⎫+=+=++⎪⎭+⎝+,利用均值不等式可得答案. 【详解】 ()11332122212x y x y y x x y x y ⎛⎫+=+=+++++≥+= ⎪⎝⎭当且仅当2x y y x =,即x =,也即x y ⎧=⎪⎪⎨⎪=⎪⎩时取等号.故答案为:32+ 【点睛】 易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方15.8【分析】由题意利用两个向量垂直的性质基本不等式求得的最大值可得要求式子的最小值【详解】解:向量且若均为正数则当且仅当时取等号则故答案为:8【点睛】本题主要考查两个向量垂直的性质基本不等式的应用属于 解析:8【分析】由题意利用两个向量垂直的性质,基本不等式,求得xy 的最大值,可得要求式子的最小值.【详解】 解:向量(2,1)a y =-,(,3)b x =,且a b ⊥,∴23(1)0a b x y =+-=.若x ,y 均为正数,则23326x y xy +=,38xy∴,当且仅当3232x y ==时,取等号. 则32233838y x x y xy ++==,故答案为:8.【点睛】本题主要考查两个向量垂直的性质,基本不等式的应用,属于中档题.16.10【分析】由得出利用基本不等式即可得出答案【详解】(当且仅当时取等号)故答案为:10【点睛】本题主要考查了基本不等式的应用属于中档题 解析:10【分析】由49abc a b =+得出94c a b=+,利用基本不等式即可得出答案. 【详解】 49abc a b =+4994a b c ab ab +∴==+9410a b c a b a b ++=+++≥=(当且仅当3,2a b ==时,取等号)故答案为:10【点睛】本题主要考查了基本不等式的应用,属于中档题.17.32【分析】由是与的等比中项求得化简结合基本不等式即可求解【详解】由题意实数是与的等比中项可得解得所以当且仅当时即时等号成立所以的最小值是故答案为:【点睛】本题主要考查了利用基本不等式求最值以及等比 解析:32【分析】8a 与2b 的等比中项,求得31a b +=,化简626266()(3)20b a a b a b a b a b+=++=++,结合基本不等式,即可求解. 【详解】由题意,实数0a >,0b >8a 与2b 的等比中项,可得23228a b a b +=⨯=,解得31a b +=,所以626266()(3)202032b a a b a b a b a b +=++=++≥+=, 当且仅当66b a a b +时,即14a b ==时,等号成立, 所以62a b+的最小值是32. 故答案为:32.【点睛】本题主要考查了利用基本不等式求最值,以及等比中项公式的应用,其中解答中熟记等比中项公式,合理利用“1”的代换,结合基本不等式求解是解答的关键,着重考查推理与运算能力.18.【分析】根据平行四边形性质可得再结合基本不等式即可求出的最小值【详解】由平行四边形性质可得:由基本不等式可得:当且仅当时等号成立所以即所以所以的最小值为故答案为:【点睛】本题主要考查了向量的数量积的【分析】 根据平行四边形性质可得()22222a b a b a b++-=+,再结合基本不等式即可求出b 的最小值.【详解】 由平行四边形性质可得:()22222a b a b a b ++-=+,由基本不等式可得:()2222a b a b a b a b ++-++-≥,当且仅当a b a b +=-时等号成立, 所以()()22222a b ab a b ++-+≥,即()224212b +≥, 所以3b ≥,所以b 的最小值为.【点睛】 本题主要考查了向量的数量积的运算及基本不等式的应用,属于中档题.19.【分析】设将关于的函数利用基本不等式即可求出值域【详解】设当时当且仅当时等号成立;同理当时当且仅当时等号成立;所以函数的值域为故答案为:【点睛】本题考查函数的值域注意基本不等式的应用属于基础题解析:(),161667,⎡-∞-++∞⎣ 【分析】设6x t -=,将()f x 关于t 的函数,利用基本不等式,即可求出值域.【详解】设21663636,6,()16t t x t x t g t t t t++-==+==++, 当0t >时,()16g t ≥,当且仅当6t x ==时等号成立;同理当0t <时,()16g t ≤-,当且仅当6t x =-=-时等号成立;所以函数的值域为(),161667,⎡-∞-++∞⎣. 故答案为: (),161667,⎡-∞-++∞⎣. 【点睛】本题考查函数的值域,注意基本不等式的应用,属于基础题. 20.6【分析】由题得解不等式即得x+y 的最小值【详解】由题得所以所以所以x+y≥6或x+y≤-2(舍去)所以x+y 的最小值为6当且仅当x=y=3时取等故答案为6【点睛】本题主要考查基本不等式求最值意在考解析:6【分析】由题得2)34x y x+y+=xy +≤(,解不等式即得x+y 的最小值.【详解】 由题得2)34x y x+y+=xy +≤(, 所以2)4(x y x y +-+≥()-120, 所以6)(2)0x y x y +-++≥(, 所以x+y≥6或x+y≤-2(舍去),所以x+y 的最小值为6.当且仅当x=y=3时取等.故答案为6【点睛】本题主要考查基本不等式求最值,意在考查学生对该知识的理解掌握水平和分析推理能力.三、解答题21.无22.无23.无24.无25.无26.无。
初中数学试题分类汇编:一次函数与方程、不等式综合训练1(选择附答案)1.若函数y=kx﹣b的图象如图所示,则关于x的不等式kx﹣b>0的解集为()A.x<2 B.x>2 C.x<4 D.x>42.若直线l1经过点(﹣1,0),l2经过点(2,2),且l1与l2关于直线x=1对称,则l1和l2的交点坐标为()A.(1,4)B.(1,2)C.(1,0)D.(1,3)3.如图,若一次函数y=﹣2x+b的图象与两坐标轴分别交于A,B两点,点A的坐标为(0,3),则不等式﹣2x+b>0的解集为()A.x>32B.x<32C.x>3 D.x<34.在同一直角坐标系内,若直线y=2x-1与直线y=-2x+m的交点在第四象限,则m的取值范围是()A.m>—1 B.m<1 C.—1<m<1 D.—1≤m≤1 5.如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,2),则关于x的不等式x+m <kx﹣1的解集在数轴上表示正确的是()A.B.C.D.6.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是()7.如图,直线y 1=kx+2与直线y 2=mx 相交于点P(1,m),则不等式mx <kx+2的解集是( )A .x <0B .x <1C .0<x <1D .x >18.若以二元一次方程x +2y ﹣b=0的解为坐标的点(x ,y )都在直线y=﹣12x+b ﹣l 上,则常数b=( )A .12B .2C .﹣1D .19.如图,直线y =kx +b (k ≠0)经过点(-1,3),则不等式kx +b ≥3解集为( )A .x ≤-1B .x ≥-1C .x ≤3D .x ≥310.如图,直线y=ax+b 过点A (0,2)和点B (﹣3,0),则方程ax+b=0的解是( )A .x=2B .x=0C .x=﹣1D .x=﹣311.如图所示,函数1y x =和21433y x =+的图象相交于(–1,1),(2,2)两点.当12y y >时,x 的取值范围是( )12.如图所示,函数y=2x和y=ax+4的图象相交于点A(3 2,3),则关于x的不等式2x≥ax+4的解集为()A.x≤32B.x≤3C.x≥32D.x≥313.直线y=kx+b(k<0)与x轴交于点(3,0),关于x的不等式kx+b>0的解集是()A.x<3 B.x>3 C.x>0 D.x<014.如图,一次函数11y k x b=+,的图象1l与22y k x b=+的图象2l相交于点P,则方程组111222y k x by k x b=+⎧⎨=+⎩的解是()A.23xy=-⎧⎨=⎩B.32xy=⎧⎨=-⎩C.23xy=⎧⎨=⎩D.23xy=-⎧⎨=-⎩15.一次函数y kx b=+(0k≠)的图象如图所示,则关于x的不等式0kx b+>的解集为()A.1x>-B.1x<-C.2x>D.0x>16.如图,在平面直角坐标系xOy 中,如果一个点的坐标可以用来表示关于x ,x 的二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解,那么这个点是A .MB .NC .ED .F17.若直线y=-2x -4与直线y=4x +b 的交点在第三象限,则b 的取值范围是( ) A .-4<b<8 B .-4<b<0 C .b<-4或b>8 D .-4≤6≤818.直线y kx b =+与y mx =在同一平面直角坐标系中的图象如图所示,则关于 x 的不等式kx b mx +≤的解集为( )A .x >﹣2B .x <﹣2C .x ≥﹣1D .x <﹣119.如图,已知一次函数y=k x+b 的图象与x 轴,y 轴分别交于点(2,0),点(0,3).有下列结论:①关于x 的方程0kx b +=的解为2x =;②关于x 的方程3kx b +=的解为0x =;③当2x >时,0y <;④当0x <时,3y <.其中正确的是( )A .①②③B .①③④C .②③④D .①②④20.数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题可迎刃而解,且解法简洁.如图,直线y =3x 和直线y =ax +b 交于点(1,3),根据图象分析,方程3x =ax +b 的解为( )A .x =1B .x =﹣1C .x =3D .x =﹣321.如图,在同一直角坐标系中作出一次函数1y k x =与2y k x b =+的图象, 则二元一次方程组21y k x b y k x =+⎧⎨=⎩的解是( )A .20x y =-⎧⎨=⎩B .20x y =⎧⎨=⎩C .12x y =⎧⎨=-⎩D .12x y =⎧⎨=⎩22.如图所示,一次函数y =kx +b (k 、b 为常数,且k ≠0)与正比例函数y =ax (a 为常数,且a ≠0)相交于点P ,则不等式kx +b >ax 的解集是( )A .x >1B .x <1C .x >2D .x <223.已知点A (-1,3),点B (-1,-4),若常数a 使得一次函数y =ax +1与线段AB 有交点,且使得关于x 的不等式组45(3)65425x x a ⎧+≥⎪⎪⎨⎪-<-⎪⎩无解,则所有满足条件的整数a 的个数为( )24.一次函数1y kx b =+与2y x a =+的图象如图所示,有下列结论:①0a >;②0k >;③当4x <时,kx b x a +>+其中正确的结论有( )A .0个B .1个C .2个D .3个25.如图,函数y=2x 和y=ax+4的图象相交于A(m ,3),则不等式2x ax+4<的解集为( )A .3x 2>B .x 3>C .3x 2<D .x 3<26.如图,直线与y 轴交于点(0,3)、与x 轴交于点(a ,0),当a 满足时,k 的取值范围是( )A .B .C .D .27.一次函数y 1=kx +b 与y 2=x +a 的图象如下图所示,则下列结论:①k <0;②a >0;③b >0;④当x <3时,y 1<y 2;其中正确的个数是( )A .1个B .2个C .3个D .4个28.观察图中的函数图象,则关于的不等式的解集为( )A .B .C .D .29.已知一次函数y kx b =+的图象如图所示,当2x <时,y 的取值范围是( )A .4y <-B .40y -<<C .2y <D .0y <30.一次函数1y ax b 与2y cx d =+ 的图象如图所示,下列说法:①0ab < ;②函数y ax d =+ 不经过第一象限;③不等式ax b cx d ++> 的解集是3x < ;④()13a c db -=- .其中正确的个数有( )A .4B .3C .2D .1参考答案1.A【解析】【分析】观察函数图象得到即可.【详解】由图象可得:当2x <时,函数y kx b =-的图象在x 轴的上方,所以关于x 的不等式0kx b ->的解集是2x <,故选:A .【点睛】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.2.A【解析】【分析】根据对称的性质得出两个点关于直线x =1对称的对称点,再根据待定系数法确定函数关系式,求出交点坐标即可.【详解】解:∵直线l 1经过点(﹣1,0),l 2经过点(2,2),关于直线x =1对称,∴点(﹣1,0)关于直线x =1对称点为(3,0),点(2,2)关于直线x =1对称点为(0,2),∴直线l 1经过点(﹣1,0),(0,2),l 2经过点(2,2),(3,0),∴直线l 1的解析式为:y =2x+2,直线l 2的解析式为:y =﹣2x+6,解方程组2226y x y x =+⎧⎨=-+⎩得,14x y =⎧⎨=⎩∴l 1和l 2的交点坐标为(1,4),故选:A .【点睛】此题主要考查了一次函数图象与几何变换,正确得出l 1与l 2的交点坐标为l 1与l 2与y 轴的交点是解题关键.3.B【解析】【分析】根据点A的坐标找出b值,令一次函数解析式中y=0求出x值,从而找出点B的坐标,观察函数图象,找出在x轴上方的函数图象,由此即可得出结论.【详解】解:∵一次函数y=﹣2x+b的图象交y轴于点A(0,3),∴b=3,令y=﹣2x+3中y=0,则﹣2x+3=0,解得:x=32,∴点B(32,0).观察函数图象,发现:当x<32时,一次函数图象在x轴上方,∴不等式﹣2x+b>0的解集为x<32.故选:B.【点睛】本题考查了一次函数与一元一次不等式,解题的关键是找出交点B的坐标.本题属于基础题,难度不大,解决该题型题目时,根据函数图象的上下位置关系解不等式是关键.4.C【解析】【分析】联立两直线的解析式求出交点坐标,再根据交点在第四象限列出不等式组求解即可.【详解】解:联立方程组212y xy x m=-⎧⎨=-+⎩,解得:1412mxmy+⎧=⎪⎪⎨-⎪=⎪⎩,∵交点在第四象限,∴1412mm+⎧>⎪⎪⎨-⎪<⎪⎩,解得:11m-<<.故选:C.【点睛】本题考查了两直线的交点和一元一次不等式组的解法,属于常考题型,联立两函数解析式求交点坐标是常用的方法,要熟练掌握并灵活应用.5.D【解析】【分析】利用函数图象,找出直线y=x+m在直线y=kx-1的下方所对应的自变量的范围即可【详解】解析根据图象得,当x<-1时,x+m<kx-1故选D【点睛】此题考查在数轴上表示不等式的解集和一次函数与ー元一次不等式,解题关键在于判定函数图象的位置关系6.D【解析】试题分析:∵B点在正比例函数y=2x的图象上,横坐标为1,∴y=2×1=2,∴B(1,2),设一次函数解析式为:y=kx+b,∵过点A的一次函数的图象过点A(0,3),与正比例函数y=2x的图象相交于点B(1,2),∴可得出方程组,解得,则这个一次函数的解析式为y=﹣x+3.故选D.考点:1.待定系数法求一次函数解析式2.两条直线相交或平行问题.7.B【解析】【分析】根据两直线的交点坐标和函数的图象即可求出答案.【详解】解:∵直线y1=kx+2与直线y2=mx相交于点P(1,m),∴不等式mx<kx+2的解集是x<1,故选:B.【点睛】本题考查了对一次函数与一元一次不等式的应用,主要考查学生的观察图形的能力和理解能力,题目比较好,但是一道比较容易出错的题目.8.B【解析】【分析】直线解析式乘以2后和方程联立解答即可.【详解】因为以二元一次方程x+2y﹣b=0的解为坐标的点(x,y)都在直线y=﹣12x+b﹣l上,直线解析式乘以2得2y=﹣x+2b﹣2,变形为:x+2y﹣2b+2=0,所以﹣b=﹣2b+2,解得:b=2,故选B.【点睛】本题考查一次函数与二元一次方程问题,关键是直线解析式乘以2后和方程联立解答.9.B【解析】【分析】结合函数的图象利用数形结合的方法确定不等式的解集即可.【详解】解:观察图象知:当1x -时,3kx b +,故选:B .【点睛】本题考查了一次函数与一元一次不等式的知识,解题的关键是根据函数的图象解答,难度不大.10.D【解析】∵方程ax +b =0的解是直线y =ax +b 与x 轴的交点横坐标,∴方程ax +b =0的解是x =-3.故选D.11.B【解析】试题解析:当x≥0时,y 1=x ,又21433y x =+, ∵两直线的交点为(2,2),∴当x <0时,y 1=-x ,又21433y x =+, ∵两直线的交点为(-1,1),由图象可知:当y 1>y 2时x 的取值范围为:x <-1或x >2.故选B .12.C【解析】【分析】根据函数的图象即可写出不等式的解集.【详解】解:已知函数y=2x和y=ax+4的图象相交于点A(32,3),根据函数图象可以看出,当x=32时,2x=ax+4;当x>32时,2x>ax+4;当x<32时,2x<ax+4;故关于x的不等式2x≥ax+4的解集为32x .故选择C.【点睛】本题考查了一次函数与一元一次不等式,根据函数图像及交点坐标,判断关于x的不等式的解集是解答本题的关键.13.A【解析】【分析】由图知:一次函数与x轴的交点横坐标为3,且函数值y随自变量x的增大而减小,根据图形可判断出解集.【详解】解:直线y=kx+b(k<0)与x轴交于点(3,0),当x=3时,y=0,函数值y随x的增大而减小;根据y随x的增大而减小,因而关于x的不等式kx+b>0的解集是x<3.故选:A.【点睛】本题考查了一次函数与一元一次不等式,由于任何一元一次不等式都可以转化的ax+b>0或ax+b<0(a、b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大于(或小于)0时,求自变量相应的取值范围.14.A【解析】【分析】根据图象求出交点P的坐标,根据点P的坐标即可得出答案.【详解】解:∵由图象可知:一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2的交点P的坐标是(-2,3),∴方程组111222y k x b y k x b =+⎧⎨=+⎩的解是23x y =-⎧⎨=⎩, 故选A.【点睛】本题考查了对一次函数与二元一次方程组的关系的理解和运用,主要考查学生的观察图形的能力和理解能力,题目比较典型,但是一道比较容易出错的题目.15.A【解析】【分析】直接从一次函数的图象上即可得到答案.【详解】解:由题图可知,当x >﹣1时,y=kx b +>0,则不等式0kx b +>的解集为1x >-.故选A.【点睛】本题主要考查一次函数与不等式,解此题的关键在于从一次函数的图象上获取信息. 16.C【解析】【分析】本题可以通过直线与方程的关系得到两直线都过定点E ,得到本题结论.【详解】解:两直线都过定点E ,所以点E 表示关于x 、y 的二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解,故选C .【点睛】本题考查的是直线与方程的关系,还可以用解方程组的方法加以解决.【解析】【分析】联立y=-2x-4和y=4x+b,求解得交点坐标,x和y的值都用b来表示,再根据交点坐标在第三象限表明x、y都小于0,即可求得b的取值范围:【详解】解:由244y xy x b=--⎧⎨=+⎩解得4683bxby+⎧=-⎪⎪⎨-⎪=⎪⎩∵交点在第三象限,∴4683bb+⎧-<⎪⎪⎨-⎪<⎪⎩,解得48 bb>-⎧⎨<⎩∴-4<b<8.故选A.18.C【解析】【分析】根据函数图象交点左侧直线y=kx+b图象在直线y=mx图象的下面,即可得出不等式kx+b≤mx 的解集.【详解】解:由图可知,在x≥-1时,直线y=mx在直线y=kx+b上方,关于x的不等式kx+b≤mx的解是x≥-1.故选:C.本题考查了一次函数与一元一次不等式:观察函数图象,比较函数图象的高低(即比较函数值的大小),确定对应的自变量的取值范围.也考查了数形结合的思想.19.A【解析】【分析】根据一次函数的性质及一次函数与一元一次方程的关系对各结论逐一判断即可得答案.【详解】∵一次函数y=k x+b 的图象与x 轴,y 轴分别交于点(2,0),点(0,3),∴x=2时,y=0,x=0时,y=3,∴关于x 的方程0kx b +=的解为2x =;关于x 的方程3kx b +=的解为0x =, ∴①②正确,由图象可知:x>2时,y<0,故③正确,x<0时,y>3,故④错误,综上所述:正确的结论有①②③,故选A.【点睛】本题考查一次函数图象上点的坐标特征及一次函数与一元一次方程的关系,利用数形结合的思想是解题关键.20.A【解析】【分析】根据方程的解即为函数图象的交点横坐标解答.【详解】解:∵直线y =3x 和直线y =ax +b 交于点(1,3)∴方程3x =ax +b 的解为x =1.故选:A .【点睛】本题主要考查了一次函数与一元一次方程.函数图象交点坐标为两函数解析式组成的方程组21.D【解析】【分析】观察图象,直接根据两直线的交点坐标写出方程组的解,即可作答.【详解】解:由题图可知:一次函数1y k x =与2y k x b =+的图象交于(1,2),所以方程组21y k x b y k x =+⎧⎨=⎩的解是:12x y =⎧⎨=⎩; 故选:D .【点睛】函数1y k x =与2y k x b =+的交点坐标就是方程组21y k x b y k x =+⎧⎨=⎩的解,明确此知识点是解题的关键.22.D【解析】分析:以函数的交点为分界线,然后看谁的图像在上面就是谁大.详解:根据函数图像可得:当x >2时,kx+b <ax ,故选C .点睛:本题主要考查的是不等式与函数之间的关系,属于中等难度题型.解决这个问题的关键就是看懂函数图像.23.D【解析】【分析】根据一次函数y=ax+1与线段AB 有交点,求得-2≤a≤5,且a≠0,再解不等式组得18525x x a ⎧≥⎪⎪⎨⎪-⎪⎩< ,由题意得a≤4,据此a 的值为-2,-1,1,2,3,4,即可得整数a 的个数.【详解】解:把点A (﹣1,3)代入y =ax +1得,3=﹣a +1,解得a =﹣2,把点B (﹣1,﹣4)代入y =ax +1得,﹣4=﹣a +1,解得a =5,∵一次函数y =ax +1与线段AB 有交点,∴﹣2≤a ≤5,且a ≠0, 解不等式组45365425x x a ⎧⎛⎫+≥ ⎪⎪⎪⎝⎭⎨⎪--⎪⎩< 得18525x x a ⎧≥⎪⎪⎨⎪-⎪⎩< , ∵不等式组无解,∴a ﹣25 ≤185, 解得:a ≤4,则所有满足条件的整数a 有:﹣2,﹣1,1,2,3,4.故选D .【点睛】本题考查一次函数的图象与性质,解一元一次不等式组,熟练掌握解一元一次不等式组的方法是解题的关键.24.B【解析】【分析】利用一次函数的性质分别判断后即可确定正确的选项.【详解】解:①∵2y x a =+的图象与y 轴的交点在负半轴上,∴a <0,故①错误;②∵1y kx b =+的图象从左向右呈下降趋势,∴k <0,故②错误;③两函数图象的交点横坐标为4,当x <4时,1y kx b =+ 在2y x a =+的图象的上方,即y 1>y 2,故③正确;故选:B.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标.利用数形结合是解题的关键.25.C【解析】【分析】【详解】解:∵函数y=2x和y=ax+4的图象相交于点A(m,3),∴3=2m,解得m=32.∴点A的坐标是(32,3).∵当3x2<时,y=2x的图象在y=ax+4的图象的下方,∴不等式2x<ax+4的解集为3x2 <.故选C.26.C【解析】【分析】【详解】解:把点(0,3)(a,0)代入,得b=3.则a=,∵,∴,解得:k≥1.故选C.【点睛】本题考查一次函数与一元一次不等式,属于综合题,难度不大.27.B【解析】【分析】根据一次函数12,y kx b y x a =+=+的图象及性质逐一分析可得答案.【详解】解:根据图象1y kx b =+经过第一、二、四象限,∴k <0,b >0, 故①③正确;∵2y x a =+与y 轴负半轴相交,∴a <0, 故②错误;当x <3时,图象1y 在2y 的上方,所以:当x <3时,1y >2y ,故④错误.所以正确的有①③共2个.故选:B .【点睛】本题考查了一次函数图象的性质,一次函数与不等式的关系,准确识图并熟练掌握一次函数的性质是解题的关键.28.D【解析】【分析】根据图象得出两图象的交点坐标是(1,2)和当x <1时,ax <bx+c ,推出x <1时,ax <bx+c ,即可得到答案.【详解】解:由图象可知,两图象的交点坐标是(1,2),当x >1时,ax >bx+c ,∴关于x 的不等式ax-bx >c 的解集为x >1.故选:D .【点睛】本题主要考查对一次函数与一元一次不等式的关系的理解和掌握,能根据图象得出正确结论是解此题的关键.29.D【解析】观察图象得到直线与x轴的交点坐标为(2,0),且图象经过第一、三象限,y随x的增大而增大,所以当x<2时,y<0.【详解】解:∵一次函数y=kx+b与x轴的交点坐标为(2,0),且图象经过第一、三象限,∴y随x的增大而增大,∴当x<2时,y<0.故选:D.【点睛】本题考查了一次函数的性质:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,当k >0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y 随x的增大而减小.30.A【解析】【分析】仔细观察图象:①a的正负看函数y1=ax+b图象从左向右成何趋势,b的正负看函数y1=ax+b图象与y轴交点即可;②c的正负看函数y2=cx+d从左向右成何趋势,d的正负看函数y2=cx+d与y轴的交点坐标;③以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大;④看两直线都在x轴上方的自变量的取值范围.【详解】由图象可得:a<0,b>0,c>0,d<0,∴ab<0,故①正确;函数y=ax+d的图象经过第二,三,四象限,即不经过第一象限,故②正确,由图象可得当x<3时,一次函数y1=ax+b图象在y2=cx+d的图象上方,∴ax+b>cx+d的解集是x<3,故③正确;∵一次函数y1=ax+b与y2=cx+d的图象的交点的横坐标为3,∴3a+b=3c+d∴3a−3c=d−b,∴a−c=13(d−b),故④正确,【点睛】本题考查了一次函数与一元一次不等式,一次函数的图象与性质,利用数形结合是解题的关键.。
19.3.1 一次函数与一元一次方程、不等式基础对点练知识点1 一次函数与一元一次方程1.已知方程ax +b =0的解为x =32-,则一次函数y =ax +b 图象与x 轴交点的横坐标为( )A .3B .23-C .﹣2D .32-【答案】D【解析】【分析】关于x 的一元一次方程ax +b =0的根是x =32-,即x =32-时,函数值为0,所以直线过点(32-,0),于是得到一次函数y =ax +b 的图象与x 轴交点的坐标.【详解】解:方程ax +b =0的解为x =32-,则一次函数y =ax +b 的图象与x 轴交点的坐标为(32-,0),即一次函数y =ax +b 图象与x 轴交点的横坐标为32-.故选:D .【点睛】本题主要考查了一次函数与一元一次方程:任何一元一次方程都可以转化为ax +b =0 (a ,b 为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y =ax +b 确定它与x 轴的交点的横坐标的值.2.函数1y kx =-与x 轴的交点坐标为(13-,0),则关于x 的方程10kx -=的解为( )A.1x =B.13x =-C.1x =-D.13x =【答案】B 3.已知方程()00kx b k +=¹的解是3x =,则函数()0y kx b k =+¹的图象可能是( )A .B .C .D .【答案】C【解析】【分析】由方程0kx b +=的解是3x =可得函数y kx b =+的图象与x 轴的交点坐标为()3,0,据此判断即可.【详解】解:因为方程0kx b +=的解是3x =,所以函数y kx b =+的图象与x 轴的交点坐标为()3,0.故选C .【点睛】本题考查了一次函数与一次方程的关系,解题的关键是正确理解方程0kx b +=的解是3x =Û函数y kx b =+的图象与x 轴的交点坐标为()3,0,注意方程与函数及函数图象的转化.4.如图所示,一次函数()0y kx b k =+¹的图象经过点()3,2P ,则方程2kx b +=的解是( )A .1x =B .2x =C .3x =D .无法确定【答案】C【解析】【分析】将点()3,2P 代入直线解析式,然后与方程对比即可得出方程的解.【详解】解:一次函数()0y kx b k =+¹的图象经过点()3,2P ,∴23k b =+,∴3x =为方程2kx b =+的解,故选:C .【点睛】题目主要考查一次函数与一元一次方程的联系,理解二者联系是解题关键.5.一次函数37y x =+的图象与y 轴的交点坐标是二元一次方程218x by -+=的解,则b 的值是 。
例1 从2014年起,中国的鞋号已“变脸”,新的国家标准要求鞋号用毫米数标注.据了解大多数市民还不了解此新标准,小明对新旧鞋号的标注变化进行了对比研究,发现新标准鞋子毫米数y与旧鞋号x之间存在着一次函数关系,并得到相关数据如下:旧鞋号 x 36 38 40新标准毫米数y230 240 250(1)请你帮助小明根据上述数据归纳出新标准毫米数与旧鞋号标注之间的换算关系式,并用一句简明的数学语言来表示;(2)如果小明的爸爸穿的一双42号凉鞋坏了,准备买一双同样尺寸的新凉鞋,那么应买一双多少毫米数的新凉鞋?例2 某种拖拉机的油箱可储油40L,加满油并开始工作后,•油箱中的余油量y(L)与工作时间x(h)之间为一次函数关系,如图所示.(1)求y与x的函数解析式.(2)一箱油可供拖位机工作几小时?知识点2 图像法解决实际问题注:读图时一定要明确横纵坐标表示的量所代表的意义。
例3 某公司推销一种产品,设x(件)是推销产品的数量,y(元)是推销费,如图表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求yl 与y2的函数表达式;(2)解释图中表示的两种方案是如何付推销费的;(3)如果你是推销员,应如何选择付费方案.二、典型例题题型1 运用一次函数的关系解决生活中的实际问题例 1 如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数表达式;(2)若桌面上有12个饭碗,整齐叠放成一摞,求出它的高度;(3)若桌面上有若干个饭碗,整齐叠放成一摞,已测得它的高度为37.5cm,你能求出此时有多少个饭碗吗?题型2利用图表信息解决实际问题例2 某厂家生产两种款式的布质环保购物袋,每天共生产4500个,两种购物袋的成本和售价如下表,设每天生产A种购物袋x个,每天共获利y元.(1)求y与x的函数关系式;(2)如果该厂每天最多投入成本10000元,那么每天最多获利多少元?题型3 建立一次函数模型解决实际问题例3 某下岗职工购进一批苹果到农贸市场零售,已知买出的苹果数量x(kg)与收入y(元)的关系如下表:在平面直角坐标系中描点,观察点的分布情况,探求收入y(元)与买出数量x(kg)之间的函数关系式。
【巩固练习】
一.选择题
1. 函数y kx b =+的图象如图所示,则关于x 的不等式kx b +<0的解集是( )
A .x >0
B .x <0
C .x >2
D .x <2
2. 观察函数1y 和2y 的图象,当x =1,两个函数值的大小为( )
A .1y >2y
B .1y <2y
C .1y =2y
D .1y ≥2y
3. 已知关于x 的不等式1ax +>0(a ≠0)的解集是x <1,则直线1y ax =+与x 轴的交点是( )
A .(0,1)
B .(-1,0)
C .(0,-1)
D .(1,0)
4.(2014秋•常熟市校级期末)同一平面直角坐标系中,一次函数y=k 1x+b 的图象与一次函数y=k 2x 的图象如图所示,则关于x 的方程k 1x+b=k 2x 的解为( )
A .x=0
B .x=﹣1
C .x=﹣2
D .x=1
5. 如图,1l 反映了某公司的销售收入与销售量的关系,2l 反映了该公司产品的销售成本与销售量的关系,当该公司赢利(收入大于成本)时,销售量( )
A .小于3吨
B .大于3吨
C .小于4吨
D .大于4吨
6. 如图,已知函数13y x b =+和23y ax =-的图象交于点P (-2,-5),则下列结论正确的是( )
A .x <-2时,1y <2y
B .x <-2时,1y >2y
C .a <0
D .b <0
二.填空题
7. 若直线y kx b =+与x 轴交于(6,0)点,那么关于x 的方程0kx b +=的解为_________.
8. 已知直线121y x =-和21y x =--的图象如图所示,根据图象填空.当x ______时,1y =2y ;当x _______时,1y <2y ;方程组211
y x y x =-⎧⎨=--⎩的解是______.
9. 一次函数1y kx b =+与2y x a =+的图象如图,则下列结论①0k <;②0a >;③当3x <时,12y y <中,正确的是______.
10.(2015•姜堰市一模)如图,一次函数y=kx+b (k >0)的图象与x 轴的交点坐标为(﹣2,0),则关于x 的不等式kx+b <0的解集是 .
11. 已知13y x =-+,234y x =-,如果1y >2y ,则x 的取值范围是_______
12. 已知不等式5x -+>33x -的解集是x <2,则直线5y x =-+与33y x =-的交点坐
标是_______.
三.解答题
13. 在同一直角坐标系中
(1)作出函数2y x =-+和24y x =-的图象.
(2)用图象法求不等式2x -+>24x -的解集.
14.(2014春•江西期末)如图,根据函数y=kx+b (k ,b 是常数,且k≠0)的图象,求:
(1)方程kx+b=0的解;
(2)式子k+b 的值;
(3)方程kx+b=﹣3的解.
15.在如图所示的坐标系下,
(1)画出函数4y x =-+与2y x =-的图象,并利用图象解答下列问题:
(2)求方程组42
x y x y +=⎧⎨-=⎩;
(3)解不等式42x x -+>-.
【答案与解析】
一.选择题
1. 【答案】C ;
【解析】从图象可知,当x >2时,y <0.
2. 【答案】B ;
【解析】从图象得到,当x =1时,函数2y 对应的点在上边,故有1y <2y .
3. 【答案】D ;
【解析】由于关于x 的不等式1ax +>0(a ≠0)的解集是x <1,即当x =1时,函数
的值为0,故可得到直线1y ax =+与x 轴的交点坐标.
4. 【答案】B ;
【解析】解:由函数图象,得两直线的交点坐标是(﹣1,﹣2),
k 1x+b=k 2x 的解为x=﹣1,
故选:B .
5. 【答案】D ;
【解析】当x >4时,1l >2l .
6. 【答案】A ;
【解析】A 、由图象可知x <-2时,1y <2y ,故正确;B 、由图象可知x <-2时,1y
<2y ,故错误;C 、由23y ax =-经过一、三象限是a <0,经过四象限是a >0,故错误;D 、由函数13y x b =+一、二、三象限,可知b >0,故错误.
二.填空题
7. 【答案】x =6;
8. 【答案】=0;<0;01x y =⎧⎨
=-⎩; 9. 【答案】① ;
【解析】由图象可知,k <0,a <0,当3x <时,1y 的图象在2y 的上方,所以12y y >,
所以只有①正确.
10.【答案】x <﹣2;
【解析】解:∵y=kx+b 的图象过点(﹣2,0),
∴由图象可知,当x <﹣2时,y >0,
∴kx+b<0的解集是x <﹣2.
故答案是:x <﹣2.
11.【答案】74
x <; 【解析】由13y x =-+,234y x =-,1y >2y ,可得不等式3x -+>34x -,解不等
式即可求得x 的取值范围.
12.【答案】(2,3);
【解析】已知不等式5x -+>33x -的解集是x <2,则当x =2时,-x +5=3x -3;
即当x =2时,函数5y x =-+与33y x =-的函数值相等;因而直线
5y x =-+与33y x =-的交点坐标是:
(2,3). 三.解答题
13.【解析】
解:(1)对于2y x =-+,当x =0时,y =2;当y =0时,x =2,
即2y x =-+过点(0,2)和点(2,0),过这两点作直线即为2y x =-+的图象; 对于24y x =-,当x =0时,y =-4;当y =0时,x =2,
即24y x =-过点(0,-4)和点(2,0),过这两点作直线即为24y x =-的图象. 图象如下图:
(2)从图象得出,当x <2时,函数2y x =-+的图象在函数24y x =-的上方,
∴不等式2x -+>24x -的解集为:x <2.
14.【解析】
解:(1)如图所示,当y=0时,x=2.
故方程kx+b=0的解是x=2;
(2)根据图示知,该直线经过点(2,0)和点(0,﹣2),则
,
解得 ,
故k+b=1﹣2=﹣1,即k+b=﹣1;
(3)根据图示知,当y=﹣3时,x=﹣1.
故方程kx+b=﹣3的解是x=﹣1.
15.【解析】
解:(1)图象如图所示:
(2)由图象可知:方程组42
x y x y +=⎧⎨-=⎩的解为:31x y =⎧⎨=⎩.
(3)由图象可知:不等式42x x -+>-的解集为:x <3.。