直流传动控制系统1
- 格式:ppt
- 大小:424.00 KB
- 文档页数:16
直流传动控制系统简述直流传动控制系统的学习要求在了解机电传动自动调速系统的组成、生产机械对调速系统提出的调速技术指标要求以及调速系统的调速性质与生产机械的负载特性合理匹配的重要性之基础上,重点掌握自动调速系统中各个基本环节,各种反馈环节的作用及特点,掌握各种常用的自动调速系统的调速远离、特点及适用场合,以便根据生产机械的特点和要求来正确选择和使用机电传动控制系统。
一、 机电传动控制系统的组成和分类直流传动控制系统——以直流电动机为动力交流传动控制系统——以交流电动机为动力(一)、机电传动控制系统的组成组成:由电机、电器、电子部件组合而成。
①、 开环控制系统(单向控制)如下图11.1所示的G-M 系统。
开环控制系统往往不能满足高要求的生产机械的需要。
注:输入量—控制量,输出量—被控制量。
1.主要参数1)转速降(与无关) N t e da fa N T K K R R n 2Φ+=∆0n2)调速范围 (前提:生产机械对转速变化率的要求)3)静差度(或稳定度、转速变化率)4)关系: () ①由电机铭牌而定,,D 由生产机械要求而定。
②一定,不同的静差度就有不同的D ,故在说明系统达到D 时,同时说明所允许的最小S 。
③一定,,机械特性硬度。
2.提高机械特性硬度的方法——使电动机转速不变。
负载↑,n↓1)在电动机轴上安装一台测速发电机BR ,输出电势。
2)偏差电压(给定电压) ↑↑↑↑∆↓↓↑n E I U U E n T G g BR 励磁不变 (负反馈控制)minmax /n n D =000nn n n n S N N ∆=-=)1(22max S n S n D N -∆=Nn n n ∆-=02min max n S S ≤2N n ∆2S ↓∆↑N n D ,↑n K E BR BR =g U U =∆BRE -3)加一个放大器,,n 不变(负载变动)。
注:a )稍变化,更大变化。
b ),维持。
CRH动车组驱动装置原理解析CRH动车组是中国铁路高速动车组列车的简称,以其高速、高效、高品质的特点而闻名。
其中,动车组的驱动装置起着至关重要的作用,直接影响列车的运行性能和安全性。
本文将对CRH动车组驱动装置的原理进行解析,以便更好地理解这一关键部件。
一、直流传动系统CRH动车组采用的是直流传动系统,其中包括电机、牵引变流器、车辆控制器等部件。
电机是驱动装置的核心,通过传递电能将机械能转化为动力,推动列车前进。
牵引变流器则负责控制电流大小和方向,实现对电机的精确控制。
车辆控制器则起着协调各个部件工作的作用,确保整个系统的稳定运行。
二、牵引力分配系统在CRH动车组中,牵引力分配系统负责控制不同车厢的动力输出,以确保列车在运行过程中保持平稳和协调。
该系统通过检测车辆的速度、加速度和牵引力需求等参数,动态调整每个车厢的输出功率,使整列车辆的牵引力分配更加均衡和高效。
三、制动系统除了驱动装置外,CRH动车组的制动系统也是至关重要的部件。
制动系统可以通过对电机的反向控制和制动器的作用,实现列车的减速和停车。
通过与驱动装置的协调工作,制动系统能够确保列车在运行过程中的安全性和稳定性。
四、能量回收系统为提高列车的能效和节能表现,CRH动车组采用了能量回收系统。
该系统可以在制动和减速过程中将部分动能转化为电能存储,再次供给电动机使用,实现能量的循环利用。
通过这种方式,不仅可以降低列车的能耗,还可以减少对环境的影响。
总结:CRH动车组驱动装置采用先进的直流传动系统,配合牵引力分配、制动和能量回收等系统,实现列车的高效运行。
这些系统的密切配合和协调作用,确保了CRH动车组在高速运行过程中的安全性、稳定性和节能性能。
希望通过本文的解析,读者能更加深入地了解CRH动车组的驱动装置原理,为相关领域的学习和研究提供参考。
直流电机控制原理图
直流电机是一种常见的电动机,它通过直流电源驱动,能够将
电能转换为机械能,广泛应用于工业生产、交通运输、家用电器等
领域。
直流电机的控制原理图是直流电机控制系统的重要组成部分,它能够帮助我们了解直流电机的工作原理和控制方式,本文将介绍
直流电机控制原理图的相关知识。
首先,直流电机控制原理图包括直流电机、电源、控制器等组件。
直流电机通常由定子、转子、碳刷、电枢等部分组成,电源为
直流电源,控制器则是用来控制电机运行的设备。
在直流电机控制
原理图中,这些组件通过电气连线连接在一起,形成一个完整的控
制系统。
在直流电机控制原理图中,电源为直流电源,它可以是电池、
直流发电机、直流稳压电源等。
电源的电压和电流大小将直接影响
到直流电机的运行性能,因此在设计直流电机控制系统时,需要根
据实际需要选择合适的电源。
控制器是直流电机控制系统中的关键部件,它可以根据外部输
入信号控制电机的启停、正反转、速度调节等功能。
常见的直流电
机控制器有直流调速器、直流电机驱动器、直流电机控制板等,它们可以根据具体的控制要求选择使用。
在直流电机控制原理图中,还会包括一些辅助元件,如限流电阻、过载保护器、电流传感器等。
这些辅助元件能够提高电机控制系统的稳定性和安全性,保护电机免受过载、短路等异常情况的影响。
总的来说,直流电机控制原理图是直流电机控制系统的重要组成部分,它通过电气连线将直流电机、电源、控制器等组件连接在一起,形成一个完整的控制系统。
掌握直流电机控制原理图的相关知识,能够帮助我们更好地理解直流电机的工作原理和控制方式,为实际应用提供参考和指导。
直流电机控制器原理图直流电机控制器是指控制直流电机运行的设备,其主要作用是根据外部输入信号来控制电机的启动、停止、正反转以及调速等功能。
直流电机控制器原理图是直流电机控制系统的核心部分,通过原理图可以清晰地了解控制器的工作原理和电路结构,有利于工程师们进行系统设计和故障排查。
一般来说,直流电机控制器原理图包括电源模块、控制模块、驱动模块和保护模块等部分。
电源模块主要用于将外部交流电源转换为直流电源,为整个系统提供电能;控制模块则负责接收外部控制信号,并通过逻辑运算和电路控制来实现对电机的启停、正反转和调速等功能;驱动模块则是根据控制模块的输出信号,驱动电机正常运行;保护模块则用于监测电机和系统的工作状态,一旦出现异常情况,及时采取保护措施,避免损坏设备。
在直流电机控制器原理图中,控制模块是最核心的部分,它通常包括信号输入端、逻辑控制电路和输出端。
信号输入端可以接收外部控制信号,比如启停信号、正反转信号、调速信号等,这些信号经过处理后,通过逻辑控制电路的运算,最终输出给驱动模块,实现对电机的控制。
逻辑控制电路通常采用集成电路或者单片机等器件来实现,其结构复杂,但是可以实现多种控制功能,具有很高的灵活性和可靠性。
此外,直流电机控制器原理图中的驱动模块也是非常重要的部分,它的主要作用是根据控制模块的输出信号,驱动电机正常运行。
驱动模块通常采用功率器件和驱动电路来实现,其设计需要考虑到电机的功率大小、负载特性以及工作环境等因素,以确保电机能够稳定、高效地运行。
总的来说,直流电机控制器原理图是直流电机控制系统的核心部分,它的设计和实现直接影响到整个系统的性能和稳定性。
工程师们在进行系统设计和故障排查时,需要充分理解原理图的结构和工作原理,合理选择电路元件和器件,确保系统能够稳定、可靠地运行。
同时,随着科技的发展,直流电机控制器原理图也在不断地更新和优化,以满足不同应用场景的需求,提高系统的性能和可靠性。
直流电机PWM调速控制系统设计一、引言直流电机是一种常见的电动机,广泛应用于工业生产中的机械传动系统。
为了实现对直流电机的调速控制,可以采用PWM(脉宽调制)技术。
PWM调速控制系统通过控制脉冲宽度的变化来调整输出信号的平均电压,从而改变电机的转速。
本文将详细介绍直流电机PWM调速控制系统的设计原理、电路设计和控制算法等方面。
二、设计原理1、PWM调制原理PWM调制是一种通过改变脉冲宽度来控制平均电压的技术。
在PWM调速控制系统中,主要是通过改变脉冲的占空比来改变输出信号的平均电压,从而调整电机的转速。
2、直流电机调速原理直流电机的转速与电源电压成正比,转速调节的基本原理是改变电机的供电电压。
在PWM调速控制系统中,通过改变PWM信号的占空比,即每个周期高电平的时间占总周期时间的比例,来改变电机的供电电压,从而控制电机的转速。
三、电路设计1、输入电源电压变换电路为了适应不同的输入电源电压,需要设计输入电源电压变换电路。
该电路的功能是将输入电源电压通过变压器等元件进行变压或变换,使其适应电机的工作电压要求。
2、PWM信号发生电路PWM信号发生电路主要是负责产生PWM信号。
常用的PWM信号发生电路有555定时器电路和单片机控制电路等。
3、驱动电路驱动电路用于控制电机的供电电压。
常见的驱动电路有晶闸管调压电路、MOSFET驱动电路等。
通过改变驱动电路的控制信号,可以改变电机的转速。
四、控制算法在PWM调速控制系统中,需要设计相应的控制算法,来根据系统输入和输出变量进行调速控制。
常见的控制算法有PID控制算法等。
PID控制算法是一种经典的控制算法,通过对系统的误差、误差变化率和误差积分进行综合调节,来控制输出变量。
在PWM调速控制系统中,可以根据电机的转速反馈信号和设定转速信号,计算出误差,并根据PID 控制算法调节PWM信号的占空比,从而实现对电机转速的精确控制。
五、系统实现根据上述设计原理、电路设计和控制算法,可以实现直流电机PWM调速控制系统的设计。
单闭环直流调速系统简介单闭环直流调速系统是一种常见的电气传动系统,广泛应用于工业生产和机械控制领域。
该系统通过调节直流电机的电压和电流来实现对电机转速的精确控制。
本文将介绍单闭环直流调速系统的原理、主要组成部分以及工作原理。
原理单闭环直流调速系统的基本原理是通过调节电机的励磁电流和电压来改变电机的转速。
系统的闭环反馈控制可以实现对电机转速的精确控制。
具体的原理如下:1.转速测量:系统中通过安装转速传感器来测量电机的实时转速,并将测量值反馈给控制器。
2.错误计算:系统将设定的目标转速与实际转速进行比较,计算出误差值。
3.控制信号产生:根据误差值,系统控制器生成相应的调节信号。
4.调节信号传递:调节信号通过控制器输出,传递给电机的调速装置。
5.电机调速:电机的调速装置根据控制信号调整电机的电压和电流,从而实现对电机转速的控制。
组成部分单闭环直流调速系统主要包含以下几个组成部分:1.电机:直流电机是该系统的驱动设备,通过调整电机的电压和电流来实现转速控制。
2.电源:系统需要一个恒定的直流电源供应电机运行,并提供所需的电压和电流。
3.调速装置:调速装置是控制电机电压和电流的关键设备,通过改变输出电压和电流的大小来实现对电机转速的控制。
4.转速传感器:转速传感器用于测量电机的实际转速,并将测量值反馈给控制系统。
5.控制器:控制器是系统的核心部分,负责计算误差值并生成相应的调节信号。
6.显示器:显示器用于实时显示电机的转速和控制参数。
工作原理当系统启动时,电机会按照设定的初始转速开始运行。
转速传感器会实时测量电机的转速,并将测量值传递给控制器。
控制器根据设定的目标转速和实际转速计算出误差值。
控制器通过对误差值进行计算和处理,生成相应的调节信号。
调节信号经过控制器输出,传递给电机的调速装置。
调速装置根据调节信号调整电机的电压和电流,使电机的转速向目标转速靠近。
系统会周期性地重复上述过程,不断进行误差计算和调节信号生成,从而实现对电机转速的精确控制。