探索直线平行的条件--北师大版
- 格式:ppt
- 大小:515.00 KB
- 文档页数:21
北师大版数学七年级下册2.2《探索直线平行的条件》教案1一. 教材分析《探索直线平行的条件》是北师大版数学七年级下册第2章第2节的内容。
本节课主要让学生通过探索活动,掌握直线平行的条件,理解平行线的性质,并能运用这些性质解决一些简单问题。
本节课的内容是学生进一步学习几何知识的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析学生在学习本节课之前,已经学习了直线、射线、线段的基本概念,对图形的基本性质有所了解。
但是,对于直线平行的条件和平行线的性质,学生可能还比较陌生。
因此,在教学过程中,需要引导学生通过探索活动,自主发现和总结直线平行的条件和平行线的性质。
三. 教学目标1.理解直线平行的条件,掌握平行线的性质。
2.能够运用直线平行的条件和平行线的性质解决一些简单问题。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.教学重点:直线平行的条件,平行线的性质。
2.教学难点:直线平行的条件的推导,平行线的性质的理解和运用。
五. 教学方法采用问题驱动的教学方法,引导学生通过探索活动,自主发现和总结直线平行的条件和平行线的性质。
在教学过程中,注重学生的主体地位,鼓励学生积极参与,培养学生的动手能力和思维能力。
六. 教学准备1.准备一些直线和平行线的模型,用于直观展示直线平行的条件和平行线的性质。
2.准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用直尺和三角板,展示一些直线和平行线,引导学生观察和思考:什么是直线?什么是平行线?直线和平行线有哪些性质?2.呈现(10分钟)呈现一些直线平行的例子,引导学生观察和思考:这些直线为什么是平行的?直线平行有哪些条件?3.操练(10分钟)让学生分组合作,利用直尺和三角板,尝试画出一些平行线,并总结直线平行的条件。
4.巩固(10分钟)让学生独立完成一些关于直线平行的练习题,巩固所学知识。
5.拓展(10分钟)引导学生思考:平行线除了具有直线平行的条件外,还有哪些性质?让学生通过探索活动,发现和总结平行线的性质。
北师大版数学七年级下册2.2《探索直线平行的条件》教学设计2一. 教材分析《探索直线平行的条件》是人教版初中数学七年级下册第2.2节的内容。
本节课的主要目的是让学生通过探究、合作、交流,掌握直线平行的条件,并能够运用这些条件解决实际问题。
教材通过引入“探索直线平行的条件”的活动,引导学生从实际问题中抽象出数学模型,进一步理解直线平行的本质特征。
二. 学情分析学生在七年级上学期已经学习了直线、射线、线段的基本概念,对图形的直观感受和空间想象力有一定的基础。
但学生的数学基础和学习习惯参差不齐,因此在教学过程中需要关注学生的个体差异,引导他们积极参与课堂活动。
三. 教学目标1.理解直线平行的概念,掌握直线平行的条件。
2.能够运用直线平行的条件解决实际问题。
3.培养学生的空间想象力,提高学生的数学思维能力。
4.培养学生的合作交流能力,提高学生的数学素养。
四. 教学重难点1.重点:直线平行的条件。
2.难点:如何运用直线平行的条件解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题中抽象出数学模型。
2.运用小组合作、交流探讨的方式,培养学生的合作意识和团队精神。
3.利用多媒体辅助教学,直观展示直线平行的现象,帮助学生理解直线平行的本质。
4.采用归纳总结的教学策略,引导学生自主总结直线平行的条件。
六. 教学准备1.准备相关的多媒体教学课件和教学素材。
2.准备直线平行的实例,用于引导学生从实际问题中抽象出数学模型。
3.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用多媒体展示一些实际的直线平行现象,如铁路、公路等,引导学生关注直线平行的特点。
提问:你们能发现这些直线平行的共同点吗?2.呈现(10分钟)呈现直线平行的实例,引导学生从实际问题中抽象出数学模型。
展示直线平行的条件,让学生初步感知直线平行的规律。
3.操练(15分钟)学生分组讨论,每组尝试找出直线平行的条件。
教师巡回指导,引导学生正确理解直线平行的本质。
北师大版七下数学《2.2探索直线平行的条件(2)》教案一. 教材分析本节课是北师大版七下数学《2.2探索直线平行的条件(2)》的内容。
在前一节课中,学生已经学习了探索直线平行的条件,了解到两条直线平行需要满足的条件。
本节课将进一步引导学生探究直线平行的性质,并通过实例来加深学生对直线平行性质的理解和应用。
二. 学情分析学生在六年级时已经学习了直线、射线、线段等基本概念,对直线有一定的认识。
但在实际操作中,部分学生可能对直线的性质和判定 still有些混淆。
此外,学生在之前的学习中已经接触过一些几何图形的性质和判定,因此具备一定的几何思维能力。
三. 教学目标1.让学生理解直线平行的性质,并能运用性质判断两条直线是否平行。
2.培养学生运用几何语言描述直线平行的性质,提高学生的几何思维能力。
3.通过实例分析,让学生学会将直线平行的性质应用于实际问题,提高学生的解决问题的能力。
四. 教学重难点1.教学重点:直线平行的性质及其应用。
2.教学难点:如何引导学生理解并证明直线平行的性质。
五. 教学方法1.采用问题驱动法,引导学生主动探究直线平行的性质。
2.利用几何画板软件,动态展示直线平行的性质,帮助学生直观理解。
3.通过实例分析,让学生将理论知识应用于实际问题,提高解决问题的能力。
4.采用小组合作学习,培养学生的团队合作精神。
六. 教学准备1.准备几何画板软件,用于动态展示直线平行的性质。
2.准备相关实例,用于引导学生将理论知识应用于实际问题。
3.准备小组合作学习任务单,指导学生进行合作学习。
七. 教学过程1.导入(5分钟)利用几何画板软件,动态展示两条直线平行的条件,引导学生回顾所学知识。
然后提出本节课的问题:直线平行还有哪些性质?2.呈现(10分钟)呈现直线平行的性质,引导学生用几何语言描述。
例如,如果两条直线都垂直于同一条直线,那么这两条直线互相平行。
同时,解释性质的含义和应用。
3.操练(10分钟)学生分组讨论,利用几何画板软件,尝试证明直线平行的性质。
2.2。
2 探索直线平行的条件教学目标1.理解并掌握内错角和同旁内角的概念,能够识别内错角和同旁内角;2.能够运用内错角、同旁内角判定两条直线平行.教学重、难点重点:能够运用内错角、同旁内角判定两条直线平行.难点:能够运用内错角、同旁内角判定两条直线平行.导学方法启发式教学、小组合作学习导学步骤导学行为(师生活动)设计意图回顾旧知,引出新课观察下列图形:猜想其中任意两条直线的位置关系,想想如何证明你的猜想.从学生已有的知识入手,引入课题探究点一:内错角与同旁内角【类型一】判断内错角、同旁内角如图,下列说法错误的是()新知探索例题A.∠A与∠B是同旁内角B.∠3与∠1是同旁内角C.∠2与∠3是内错角D.∠1与∠2是同位角解析:根据同位角、内错角、同旁内角的基本模型判断.A中∠A与∠B形成“U"型,是同旁内角;B中∠3与∠1形成“U”型,是同旁内角;C中∠2与∠3形成“Z”型,是内错角;D中∠1与∠2是邻补角,该选项说法错误.故选D.方法总结:在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F"型,内错角的边构成“Z”型,同旁内角的边构成“U”型.【类型二】一个角的内错角、同旁内角不唯一的图形问题如图所示,直线DE与∠O的两边相交,则∠O的内错角是________,∠8的同旁内角是________.引出研究本节课要学习知识的必要性,清楚新知识的引出是由于实际生活的需要学生积极参与学习活动,为学生动脑思考提供机会,发挥学生的想象力和创造性体现教师的主导作用学以致用,举一反三精讲解析:直线DE与∠O的两边相交,则∠O的内错角是∠4和∠7,∠8的同旁内角是∠1和∠O.故答案为∠4和∠7,∠1和∠O.易错点拨:找某角的内错角、同旁内角时,应从各个方位观察,避免漏数.探究点二:利用内错角、同旁内角判定两条直线平行【类型一】内错角相等,两直线平行如图所示,若∠ACE=∠BDF,那么CE∥DF吗?解析:要判定CE∥DF,需满足∠ECB=∠FDA,利用“内错角相等,两直线平行”即可判定.解:CE∥DF.理由如下:因为∠ACE=∠BDF,又因为∠ACE+∠ECB=180°,∠BDF+∠FDA=180°,所以∠ECB=∠FDA(等角的补角相等),所以CE∥DF(内错角相等,两直线平行).方法总结:综合运用补角的性质及等量代换,将已知条件转换为内错角相等来判定两条直线平行,充分运用转化思想.教师给出准确概念,同时给学生消化、吸收时间,当堂掌握例2由学生口答,教师板书,【类型二】同旁内角互补,两直线平行如图,已知点E在AB上,且CE平分∠BCD,DE平分∠ADC,且∠DEC=90°,试判断AD与BC的位置关系,并说明理由.解析:先根据三角形内角和定理得出∠EDC+∠ECD +∠DEC=180°。
北师大版七年级下册数学教学设计:2.2.2《探索直线平行的条件》一. 教材分析《探索直线平行的条件》这一节内容是北师大版七年级下册数学的重点章节,主要让学生掌握探索直线平行的条件,理解平行线的性质,并能够运用这些性质解决实际问题。
本节课的内容与学生的生活实际密切相关,有利于激发学生的学习兴趣,提高学生的数学素养。
二. 学情分析学生在进入七年级下册之前,已经学习了直线、射线、线段等基本概念,对几何图形有了一定的认识。
但是,对于探索直线平行的条件,学生可能还比较陌生,需要通过实例和操作活动来加深理解。
此外,学生可能对平行线的性质和判定定理还不够了解,需要在教学中逐步引导和培养。
三. 教学目标1.知识与技能:让学生掌握探索直线平行的条件,理解平行线的性质,并能够运用这些性质解决实际问题。
2.过程与方法:通过观察、操作、交流等活动,培养学生几何思维能力,提高学生解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和创新精神。
四. 教学重难点1.重点:探索直线平行的条件,理解平行线的性质。
2.难点:如何引导学生发现并证明直线平行的条件,以及如何应用平行线的性质解决实际问题。
五. 教学方法1.情境教学法:通过生活实例和实际问题,激发学生的学习兴趣,引导学生主动参与课堂。
2.操作教学法:通过动手操作和实践活动,让学生在实践中感知和理解直线平行的条件。
3.合作学习法:学生进行小组讨论和合作交流,培养学生的团队合作意识。
4.启发式教学法:教师引导学生思考问题,激发学生的思维,培养学生解决问题的能力。
六. 教学准备1.准备相关的教学素材,如PPT、图片、实物等。
2.准备教学工具,如直尺、三角板、量角器等。
3.设计好课堂练习题和家庭作业。
七. 教学过程1.导入(5分钟)利用生活实例或实际问题,引导学生思考直线平行的条件。
例如,展示两辆火车并行行驶的图片,让学生观察并描述这两辆火车的行驶轨迹。