Lerner et al.Feature Extraction by NN Nonlinear Mapping 1 Feature Extraction by Neural Netw
- 格式:pdf
- 大小:94.82 KB
- 文档页数:15
名词解释中英文对比<using_information_sources> social networks 社会网络abductive reasoning 溯因推理action recognition(行为识别)active learning(主动学习)adaptive systems 自适应系统adverse drugs reactions(药物不良反应)algorithm design and analysis(算法设计与分析) algorithm(算法)artificial intelligence 人工智能association rule(关联规则)attribute value taxonomy 属性分类规范automomous agent 自动代理automomous systems 自动系统background knowledge 背景知识bayes methods(贝叶斯方法)bayesian inference(贝叶斯推断)bayesian methods(bayes 方法)belief propagation(置信传播)better understanding 内涵理解big data 大数据big data(大数据)biological network(生物网络)biological sciences(生物科学)biomedical domain 生物医学领域biomedical research(生物医学研究)biomedical text(生物医学文本)boltzmann machine(玻尔兹曼机)bootstrapping method 拔靴法case based reasoning 实例推理causual models 因果模型citation matching (引文匹配)classification (分类)classification algorithms(分类算法)clistering algorithms 聚类算法cloud computing(云计算)cluster-based retrieval (聚类检索)clustering (聚类)clustering algorithms(聚类算法)clustering 聚类cognitive science 认知科学collaborative filtering (协同过滤)collaborative filtering(协同过滤)collabrative ontology development 联合本体开发collabrative ontology engineering 联合本体工程commonsense knowledge 常识communication networks(通讯网络)community detection(社区发现)complex data(复杂数据)complex dynamical networks(复杂动态网络)complex network(复杂网络)complex network(复杂网络)computational biology 计算生物学computational biology(计算生物学)computational complexity(计算复杂性) computational intelligence 智能计算computational modeling(计算模型)computer animation(计算机动画)computer networks(计算机网络)computer science 计算机科学concept clustering 概念聚类concept formation 概念形成concept learning 概念学习concept map 概念图concept model 概念模型concept modelling 概念模型conceptual model 概念模型conditional random field(条件随机场模型) conjunctive quries 合取查询constrained least squares (约束最小二乘) convex programming(凸规划)convolutional neural networks(卷积神经网络) customer relationship management(客户关系管理) data analysis(数据分析)data analysis(数据分析)data center(数据中心)data clustering (数据聚类)data compression(数据压缩)data envelopment analysis (数据包络分析)data fusion 数据融合data generation(数据生成)data handling(数据处理)data hierarchy (数据层次)data integration(数据整合)data integrity 数据完整性data intensive computing(数据密集型计算)data management 数据管理data management(数据管理)data management(数据管理)data miningdata mining 数据挖掘data model 数据模型data models(数据模型)data partitioning 数据划分data point(数据点)data privacy(数据隐私)data security(数据安全)data stream(数据流)data streams(数据流)data structure( 数据结构)data structure(数据结构)data visualisation(数据可视化)data visualization 数据可视化data visualization(数据可视化)data warehouse(数据仓库)data warehouses(数据仓库)data warehousing(数据仓库)database management systems(数据库管理系统)database management(数据库管理)date interlinking 日期互联date linking 日期链接Decision analysis(决策分析)decision maker 决策者decision making (决策)decision models 决策模型decision models 决策模型decision rule 决策规则decision support system 决策支持系统decision support systems (决策支持系统) decision tree(决策树)decission tree 决策树deep belief network(深度信念网络)deep learning(深度学习)defult reasoning 默认推理density estimation(密度估计)design methodology 设计方法论dimension reduction(降维) dimensionality reduction(降维)directed graph(有向图)disaster management 灾害管理disastrous event(灾难性事件)discovery(知识发现)dissimilarity (相异性)distributed databases 分布式数据库distributed databases(分布式数据库) distributed query 分布式查询document clustering (文档聚类)domain experts 领域专家domain knowledge 领域知识domain specific language 领域专用语言dynamic databases(动态数据库)dynamic logic 动态逻辑dynamic network(动态网络)dynamic system(动态系统)earth mover's distance(EMD 距离) education 教育efficient algorithm(有效算法)electric commerce 电子商务electronic health records(电子健康档案) entity disambiguation 实体消歧entity recognition 实体识别entity recognition(实体识别)entity resolution 实体解析event detection 事件检测event detection(事件检测)event extraction 事件抽取event identificaton 事件识别exhaustive indexing 完整索引expert system 专家系统expert systems(专家系统)explanation based learning 解释学习factor graph(因子图)feature extraction 特征提取feature extraction(特征提取)feature extraction(特征提取)feature selection (特征选择)feature selection 特征选择feature selection(特征选择)feature space 特征空间first order logic 一阶逻辑formal logic 形式逻辑formal meaning prepresentation 形式意义表示formal semantics 形式语义formal specification 形式描述frame based system 框为本的系统frequent itemsets(频繁项目集)frequent pattern(频繁模式)fuzzy clustering (模糊聚类)fuzzy clustering (模糊聚类)fuzzy clustering (模糊聚类)fuzzy data mining(模糊数据挖掘)fuzzy logic 模糊逻辑fuzzy set theory(模糊集合论)fuzzy set(模糊集)fuzzy sets 模糊集合fuzzy systems 模糊系统gaussian processes(高斯过程)gene expression data 基因表达数据gene expression(基因表达)generative model(生成模型)generative model(生成模型)genetic algorithm 遗传算法genome wide association study(全基因组关联分析) graph classification(图分类)graph classification(图分类)graph clustering(图聚类)graph data(图数据)graph data(图形数据)graph database 图数据库graph database(图数据库)graph mining(图挖掘)graph mining(图挖掘)graph partitioning 图划分graph query 图查询graph structure(图结构)graph theory(图论)graph theory(图论)graph theory(图论)graph theroy 图论graph visualization(图形可视化)graphical user interface 图形用户界面graphical user interfaces(图形用户界面)health care 卫生保健health care(卫生保健)heterogeneous data source 异构数据源heterogeneous data(异构数据)heterogeneous database 异构数据库heterogeneous information network(异构信息网络) heterogeneous network(异构网络)heterogenous ontology 异构本体heuristic rule 启发式规则hidden markov model(隐马尔可夫模型)hidden markov model(隐马尔可夫模型)hidden markov models(隐马尔可夫模型) hierarchical clustering (层次聚类) homogeneous network(同构网络)human centered computing 人机交互技术human computer interaction 人机交互human interaction 人机交互human robot interaction 人机交互image classification(图像分类)image clustering (图像聚类)image mining( 图像挖掘)image reconstruction(图像重建)image retrieval (图像检索)image segmentation(图像分割)inconsistent ontology 本体不一致incremental learning(增量学习)inductive learning (归纳学习)inference mechanisms 推理机制inference mechanisms(推理机制)inference rule 推理规则information cascades(信息追随)information diffusion(信息扩散)information extraction 信息提取information filtering(信息过滤)information filtering(信息过滤)information integration(信息集成)information network analysis(信息网络分析) information network mining(信息网络挖掘) information network(信息网络)information processing 信息处理information processing 信息处理information resource management (信息资源管理) information retrieval models(信息检索模型) information retrieval 信息检索information retrieval(信息检索)information retrieval(信息检索)information science 情报科学information sources 信息源information system( 信息系统)information system(信息系统)information technology(信息技术)information visualization(信息可视化)instance matching 实例匹配intelligent assistant 智能辅助intelligent systems 智能系统interaction network(交互网络)interactive visualization(交互式可视化)kernel function(核函数)kernel operator (核算子)keyword search(关键字检索)knowledege reuse 知识再利用knowledgeknowledgeknowledge acquisitionknowledge base 知识库knowledge based system 知识系统knowledge building 知识建构knowledge capture 知识获取knowledge construction 知识建构knowledge discovery(知识发现)knowledge extraction 知识提取knowledge fusion 知识融合knowledge integrationknowledge management systems 知识管理系统knowledge management 知识管理knowledge management(知识管理)knowledge model 知识模型knowledge reasoningknowledge representationknowledge representation(知识表达) knowledge sharing 知识共享knowledge storageknowledge technology 知识技术knowledge verification 知识验证language model(语言模型)language modeling approach(语言模型方法) large graph(大图)large graph(大图)learning(无监督学习)life science 生命科学linear programming(线性规划)link analysis (链接分析)link prediction(链接预测)link prediction(链接预测)link prediction(链接预测)linked data(关联数据)location based service(基于位置的服务) loclation based services(基于位置的服务) logic programming 逻辑编程logical implication 逻辑蕴涵logistic regression(logistic 回归)machine learning 机器学习machine translation(机器翻译)management system(管理系统)management( 知识管理)manifold learning(流形学习)markov chains 马尔可夫链markov processes(马尔可夫过程)matching function 匹配函数matrix decomposition(矩阵分解)matrix decomposition(矩阵分解)maximum likelihood estimation(最大似然估计)medical research(医学研究)mixture of gaussians(混合高斯模型)mobile computing(移动计算)multi agnet systems 多智能体系统multiagent systems 多智能体系统multimedia 多媒体natural language processing 自然语言处理natural language processing(自然语言处理) nearest neighbor (近邻)network analysis( 网络分析)network analysis(网络分析)network analysis(网络分析)network formation(组网)network structure(网络结构)network theory(网络理论)network topology(网络拓扑)network visualization(网络可视化)neural network(神经网络)neural networks (神经网络)neural networks(神经网络)nonlinear dynamics(非线性动力学)nonmonotonic reasoning 非单调推理nonnegative matrix factorization (非负矩阵分解) nonnegative matrix factorization(非负矩阵分解) object detection(目标检测)object oriented 面向对象object recognition(目标识别)object recognition(目标识别)online community(网络社区)online social network(在线社交网络)online social networks(在线社交网络)ontology alignment 本体映射ontology development 本体开发ontology engineering 本体工程ontology evolution 本体演化ontology extraction 本体抽取ontology interoperablity 互用性本体ontology language 本体语言ontology mapping 本体映射ontology matching 本体匹配ontology versioning 本体版本ontology 本体论open government data 政府公开数据opinion analysis(舆情分析)opinion mining(意见挖掘)opinion mining(意见挖掘)outlier detection(孤立点检测)parallel processing(并行处理)patient care(病人医疗护理)pattern classification(模式分类)pattern matching(模式匹配)pattern mining(模式挖掘)pattern recognition 模式识别pattern recognition(模式识别)pattern recognition(模式识别)personal data(个人数据)prediction algorithms(预测算法)predictive model 预测模型predictive models(预测模型)privacy preservation(隐私保护)probabilistic logic(概率逻辑)probabilistic logic(概率逻辑)probabilistic model(概率模型)probabilistic model(概率模型)probability distribution(概率分布)probability distribution(概率分布)project management(项目管理)pruning technique(修剪技术)quality management 质量管理query expansion(查询扩展)query language 查询语言query language(查询语言)query processing(查询处理)query rewrite 查询重写question answering system 问答系统random forest(随机森林)random graph(随机图)random processes(随机过程)random walk(随机游走)range query(范围查询)RDF database 资源描述框架数据库RDF query 资源描述框架查询RDF repository 资源描述框架存储库RDF storge 资源描述框架存储real time(实时)recommender system(推荐系统)recommender system(推荐系统)recommender systems 推荐系统recommender systems(推荐系统)record linkage 记录链接recurrent neural network(递归神经网络) regression(回归)reinforcement learning 强化学习reinforcement learning(强化学习)relation extraction 关系抽取relational database 关系数据库relational learning 关系学习relevance feedback (相关反馈)resource description framework 资源描述框架restricted boltzmann machines(受限玻尔兹曼机) retrieval models(检索模型)rough set theroy 粗糙集理论rough set 粗糙集rule based system 基于规则系统rule based 基于规则rule induction (规则归纳)rule learning (规则学习)rule learning 规则学习schema mapping 模式映射schema matching 模式匹配scientific domain 科学域search problems(搜索问题)semantic (web) technology 语义技术semantic analysis 语义分析semantic annotation 语义标注semantic computing 语义计算semantic integration 语义集成semantic interpretation 语义解释semantic model 语义模型semantic network 语义网络semantic relatedness 语义相关性semantic relation learning 语义关系学习semantic search 语义检索semantic similarity 语义相似度semantic similarity(语义相似度)semantic web rule language 语义网规则语言semantic web 语义网semantic web(语义网)semantic workflow 语义工作流semi supervised learning(半监督学习)sensor data(传感器数据)sensor networks(传感器网络)sentiment analysis(情感分析)sentiment analysis(情感分析)sequential pattern(序列模式)service oriented architecture 面向服务的体系结构shortest path(最短路径)similar kernel function(相似核函数)similarity measure(相似性度量)similarity relationship (相似关系)similarity search(相似搜索)similarity(相似性)situation aware 情境感知social behavior(社交行为)social influence(社会影响)social interaction(社交互动)social interaction(社交互动)social learning(社会学习)social life networks(社交生活网络)social machine 社交机器social media(社交媒体)social media(社交媒体)social media(社交媒体)social network analysis 社会网络分析social network analysis(社交网络分析)social network(社交网络)social network(社交网络)social science(社会科学)social tagging system(社交标签系统)social tagging(社交标签)social web(社交网页)sparse coding(稀疏编码)sparse matrices(稀疏矩阵)sparse representation(稀疏表示)spatial database(空间数据库)spatial reasoning 空间推理statistical analysis(统计分析)statistical model 统计模型string matching(串匹配)structural risk minimization (结构风险最小化) structured data 结构化数据subgraph matching 子图匹配subspace clustering(子空间聚类)supervised learning( 有support vector machine 支持向量机support vector machines(支持向量机)system dynamics(系统动力学)tag recommendation(标签推荐)taxonmy induction 感应规范temporal logic 时态逻辑temporal reasoning 时序推理text analysis(文本分析)text anaylsis 文本分析text classification (文本分类)text data(文本数据)text mining technique(文本挖掘技术)text mining 文本挖掘text mining(文本挖掘)text summarization(文本摘要)thesaurus alignment 同义对齐time frequency analysis(时频分析)time series analysis( 时time series data(时间序列数据)time series data(时间序列数据)time series(时间序列)topic model(主题模型)topic modeling(主题模型)transfer learning 迁移学习triple store 三元组存储uncertainty reasoning 不精确推理undirected graph(无向图)unified modeling language 统一建模语言unsupervisedupper bound(上界)user behavior(用户行为)user generated content(用户生成内容)utility mining(效用挖掘)visual analytics(可视化分析)visual content(视觉内容)visual representation(视觉表征)visualisation(可视化)visualization technique(可视化技术) visualization tool(可视化工具)web 2.0(网络2.0)web forum(web 论坛)web mining(网络挖掘)web of data 数据网web ontology lanuage 网络本体语言web pages(web 页面)web resource 网络资源web science 万维科学web search (网络检索)web usage mining(web 使用挖掘)wireless networks 无线网络world knowledge 世界知识world wide web 万维网world wide web(万维网)xml database 可扩展标志语言数据库附录 2 Data Mining 知识图谱(共包含二级节点15 个,三级节点93 个)间序列分析)监督学习)领域 二级分类 三级分类。
colmap中feature_extractor参数详解-回复[colmap中feature_extractor参数详解]Feature Extraction(特征提取)是计算机视觉中的一个重要任务,它是从图像中提取出具有代表性的特征点或特征描述子的过程。
在[colmap]([colmap]( Generator)。
检测器用于在图像中检测出特征点的位置,而描述子生成器则根据特征点的位置生成对应的特征描述子。
特征提取器的主要参数在配置文件中进行指定,其具体格式为:feature_extractor {image_path = 文件夹路径database_path = 数据库路径image_list_path = 图片列表路径single_camera = falsesingle_camera_id = -1single_camera_thread_id = 0single_camera_min_num_points = 50log_file = 特征提取日志文件路径feature_extractor = 特征提取算法adaptive_scale_levels = 是否自适应尺度adaptive_scale_params = 自适应尺度参数...}下面将逐个介绍每个参数及其作用:1. image_path:指定包含图像的文件夹路径,feature_extractor将在此文件夹中查找图像进行特征提取。
2. database_path:指定[colmap](3. image_list_path:指定包含图像路径的文本文件路径,文本文件中每行包含一个图像路径,以便于选择特定的图像进行特征提取。
4. single_camera:是否只使用单个相机进行特征提取,默认值为false。
当设置为true时,将仅使用单个相机进行特征提取。
5. single_camera_id:指定要使用的单个相机的ID,默认值为-1。
Colmap是一个用于多视图几何和深度学习的开源库,其中包含许多有用的工具和算法。
其中的FeatureExtractor组件是用于提取特征点的工具,它可以用于从图像中提取特征点并计算它们的描述子。
以下是使用Colmap的FeatureExtractor组件时的一些常用参数:1.Image Size: 这个参数定义了输入图像的大小,如果图像大小不等于输入的大小,将会进行重新采样。
这个参数是用于在计算特征描述子之前,将图像尺寸调整为统一的大小。
2.Patch Size: 这个参数定义了用于计算特征描述子的补丁大小。
在计算每个补丁的特征描述子时,将会使用这个大小作为输入。
3.Patch Step: 这个参数定义了在计算特征描述子时,每个补丁之间的步长。
这个参数用于控制特征点在图像中的空间分辨率。
4.Border Padding: 这个参数用于在计算特征描述子时,在补丁周围添加额外的像素。
这个参数可以确保在计算特征描述子时,不会因为补丁边缘的像素值不准确而导致误差。
5.Feature Type: 这个参数定义了要使用的特征类型。
Colmap支持多种特征类型,包括SIFT、SURF、ORB等。
选择适合您任务的特征类型是很重要的。
6.Maximal Number of Features: 这个参数定义了在每个图像中提取的最大特征点数量。
如果图像中的特征点数量超过这个值,将会随机选择一些特征点进行提取。
7.Write Image: 这个参数用于控制是否将提取的特征点写入到图像文件中。
如果设置为True,将会将特征点绘制到原始图像上并保存为一个新的图像文件。
这些参数可以帮助您调整FeatureExtractor组件的行为,以便更好地满足您的需求。
请注意,这些参数的具体值取决于您的任务和数据集,因此可能需要进行一些实验来确定最佳的参数值。
文章题目:从图像中提取特征的重要性和方法1. 引言从古至今,人类一直在努力探索和理解周围世界的信息和规律。
随着科技的飞速发展,图像处理技术已经成为科学研究、工程应用和日常生活中的重要组成部分。
提取图像中的特征,已经成为图像处理和计算机视觉领域的基础性工作之一。
本文将深入探讨从图像中提取特征的重要性和方法。
2. 什么是图像特征图像特征是指图像中具有独特性和可区分性的局部区域或点。
通常包括边缘、角点、纹理等。
提取特征的目的在于通过运用这些独特的信息,来描述和识别图像中的对象、结构和模式。
3. 图像特征的重要性提取图像特征对于图像处理和计算机视觉领域具有重要意义。
通过特征提取可以减少图像数据的复杂度,从而简化图像分析的过程。
图像特征的提取使得图像的内容更易于理解、比较和识别,为图像检索、物体识别和图像分割等任务提供了基础。
图像特征在机器学习和深度学习领域的应用也非常广泛,例如在图像分类、目标检测和人脸识别等方面发挥着重要作用。
4. 图像特征的提取方法提取图像特征的方法多种多样,常用的包括颜色特征、形状特征、纹理特征和局部特征等。
其中,局部特征是目前应用最广泛的一种方法。
局部特征的提取通常分为三个步骤:特征检测、特征描述和特征匹配。
常用的局部特征算法包括SIFT、SURF、ORB等。
这些算法能够有效地提取图像中的局部不变特征,具有良好的鲁棒性和可靠性。
5. 总结和展望通过本文的介绍,我们对图像特征的提取有了更深入的了解。
图像特征的提取在图像处理和计算机视觉领域中具有重要的地位和作用。
随着技术的不断进步,图像特征提取的方法也在不断演进和完善。
未来,随着深度学习和神经网络技术的发展,图像特征的提取将会变得更加精准和高效。
6. 个人观点作为一名图像处理工程师,我深深地体会到图像特征的重要性和挑战性。
在实际工作中,我通常会根据具体的应用场景和需求,选择合适的特征提取方法和算法,以确保图像处理的准确性和效率。
我相信随着技术的不断发展,图像特征的提取将会变得更加智能化和自动化,为人们的生活和工作带来更多便利和可能性。
extract feature的近义词
- extract characteristics:这个表达与“extract feature”非常相似,只是使用了“characteristics”这个词来代替“feature”,意思仍然是从数据或信息中提取出关键的特征或特性。
- identify features:“identify”的意思是“识别、确定”,所以“identify features”表示识别或确定数据或信息中的特征。
- extract key elements:“key elements”表示关键元素,这个表达方式强调从数据或信息中提取出关键的组成部分或要素。
- seize the essentials:“seize”表示抓住、紧握,“essentials”表示必需品或关键要素,因此“seize the essentials”意味着抓住关键特征或要点。
- distill important characteristics:“distill”的意思是提炼、提取精华,所以“distill important characteristics”表示从复杂的信息中提炼出重要的特征或关键要素。
这些表达方式在不同的语境中可能有微小的差异,但它们的基本含义都是从数据、信息或其他来源中提取出关键的特征或元素。
根据具体的上下文和使用场景,你可以选择最合适的表达方式来传达相同的意思。
Feature Extraction on rule-based for ENVI EX 中文说明背景介绍Feature Extraction是根据空间、光谱和纹理特征从高分辨率的影像中提取出来相关信息或者是多光谱影像中提取相关信息的有效手段。
我们可以一次性提取多个目标地物比如道路、建筑、交通工具、桥梁、河流和田地。
Feature Extraction是被设计来用多种图像数据来进行可优化的、用户友好型和可重复的图像信息提取工作。
这样可以在进程细节上花费更少的时间而对结果分析阶段进行注重的研究。
Feature Extraction是基于对象的方式来进行影像分类。
一种对象是具有特定空间、光谱(亮度和彩色)和纹理的自定义的感兴趣区。
传统的遥感分类技术是基于像元的,也就是说是依据单个像素的光谱特征值来进行分类,这种技术针对高光谱影像很实用,但是对全色影像和多光谱影像去不很理想。
所以,针对高空间分辨率的全色或者多光谱影像,基于对象的分类技术能够依据所被分类的对象有一定的灵活性。
Feature Extraction 工作流程Feature Extraction可以分为几部分:将整幅影像划分为多个像素的集合区---计算每个集合区中的各类特征值---建立对象---依据对象进行分类(基于规则的或者监督分类)或者提取对象地物每一个步骤如果发现不正确或者不恰当,都可以再返回修改和重新设定。
Find object ----- Extract objectExtracting object with Rule-Based Classification基于规则的对象提取基于规则的对象提取过程允许我们依据对象的属性进行规则的建立。
对于很多对象类型,这种基于规则的方法常常优于监督分类。
基于规则的分类是依靠工作者对被提取对象的了解和反复推断来进行的。
比如说,对于道路来说,它们都是长条形的,而建筑物很有可能是矩形的,而植被有高的NDVI指数值,相比来说,树木比草地更有纹理。
colmap中feature_extractor参数详解-回复[colmap中feature_extractor参数详解]Colmap是一个开源的计算机视觉库,用于从大规模图像或视频数据集中重建稠密、高质量的三维模型。
在Colmap中,feature_extractor是其中一个重要的参数,它是用来提取图像特征的。
在本文中,我们将详细介绍feature_extractor参数的作用以及其各个子参数的具体含义,并逐步解答与之相关的问题。
1. feature_extractor是什么?feature_extractor是Colmap中的一个模块,用于从输入的图像数据中提取出特征点和特征描述子。
特征点是图像中具有独特性质的点,常用来表示图像中的显著特征,例如角点、边缘等。
特征描述子是用来描述特征点周围像素信息的向量,常用来判断两个特征点的相似度。
2. feature_extractor有哪些重要子参数?feature_extractor包括很多具体的子参数,下面是其中几个重要的子参数:- ImageReader:指定图像读取器,用于读取输入图像的格式。
可以选择的选项有OpenCV、PNG、JPEG等。
- ImageListFile:指定包含图像文件路径的列表文件。
- ImageDirectory:指定包含图像文件的目录。
- SiftExtraction:指定是否使用SIFT算法进行特征提取。
- RootSift:指定是否对SIFT特征进行根号斜率归一化处理。
3. ImageReader子参数的作用是什么?ImageReader子参数用于指定图像读取器,它决定了Colmap在读取输入图像时使用的读取格式。
根据需要,可以选择适合的图像读取器,以确保图像数据能够正确解析。
常用的选项有OpenCV、PNG、JPEG等。
4. ImageListFile和ImageDirectory子参数的作用是什么?ImageListFile子参数用于指定一个包含图像文件路径的列表文件。
extractfeature函数ExtractFeature函数:从数据中提取特征在机器学习和数据分析领域,提取特征是非常重要的一步。
特征是指数据中的某些属性或特点,可以用来描述数据的某些方面。
在机器学习中,我们通常需要将数据转换为特征向量的形式,以便于算法的处理。
ExtractFeature函数就是用来从数据中提取特征的函数。
ExtractFeature函数的作用ExtractFeature函数的作用是从数据中提取特征。
具体来说,它可以将数据转换为特征向量的形式。
特征向量是一个n维向量,其中每个维度对应着数据中的一个特征。
例如,如果我们要对一组图片进行分类,那么每个图片可以表示为一个特征向量,其中每个维度对应着图片中的某些特征,比如颜色、纹理、形状等等。
ExtractFeature函数的实现ExtractFeature函数的实现通常需要根据具体的数据类型和特征类型进行定制。
下面以图像数据为例,介绍一下如何实现ExtractFeature函数。
我们需要将图像数据转换为灰度图像。
这可以通过将RGB图像的三个通道取平均值来实现。
然后,我们可以将灰度图像划分为若干个小块,每个小块可以表示为一个特征向量。
这个特征向量可以包含若干个维度,比如均值、方差、梯度等等。
这些维度可以用来描述小块中的某些特征。
接下来,我们可以对每个小块进行特征提取。
这可以通过计算小块中的各种统计量来实现。
比如,我们可以计算小块中像素的均值、方差、梯度等等。
这些统计量可以作为特征向量的维度。
我们可以将所有小块的特征向量合并成一个大的特征向量。
这个大的特征向量可以作为整个图像的特征向量。
这个特征向量可以包含若干个维度,比如每个小块的均值、方差、梯度等等。
这些维度可以用来描述整个图像的某些特征。
总结ExtractFeature函数是从数据中提取特征的函数。
它可以将数据转换为特征向量的形式,以便于算法的处理。
在实现ExtractFeature 函数时,需要根据具体的数据类型和特征类型进行定制。
matlab中的extracthogfeatures函数-回复Matlab中的extractHOGFeatures函数是一个用于提取图像的方向梯度直方图(Histogram of Oriented Gradients,简称HOG)特征的函数。
HOG特征是一种用于图像识别和目标检测的特征表示方法,它能够有效地描述图像中的形状和纹理。
本文将以提问的方式,一步一步地回答有关extractHOGFeatures函数的问题。
1. 什么是HOG特征?HOG特征是一种被广泛应用于计算机视觉和图像处理领域的特征提取方法。
它通过计算图像中每个像素点的局部梯度方向和幅值,并将其转化为方向梯度直方图来描述图像的纹理和形状信息。
HOG特征在图片中提取目标的位置、姿态和形状等信息方面起到了非常关键的作用。
2. extractHOGFeatures函数有哪些输入和输出参数?extractHOGFeatures函数的输入参数包括待提取特征的图像,以及一些可选的参数。
其中最重要的是CellSize参数和BlockSize参数,用于控制HOG描述符的计算范围和尺度。
函数的输出参数是一个包含提取的HOG 特征的向量。
3. 请解释一下CellSize和BlockSize参数的作用。
CellSize参数用于确定图像被划分为多少个小单元格。
每个小单元格内的像素梯度方向和幅值将贡献到对应的方向梯度直方图中,从而构成了HOG特征。
较小的CellSize可以提取更细节的特征,但会导致维度较高的特征向量。
另一方面,较大的CellSize可以提取更粗糙的特征,但特征向量的维度较低。
BlockSize参数用于确定计算HOG特征的块的大小。
块是由多个相邻的小单元格组成的区域。
将方向梯度直方图在块内进行归一化处理可以增强特征的鲁棒性。
BlockSize参数指定了块的大小,例如[2 2]表示每个块由2x2个小单元格组成。
4. extractHOGFeatures函数还有哪些可选参数?除了CellSize和BlockSize参数外,extractHOGFeatures函数还有其他几个可选参数。
feature extractor 特征一、特征提取器简介特征提取器(Feature Extractor)是一种算法,主要用于从原始数据中提取有意义的特征。
这些特征可以是数值、向量或高维空间中的点。
特征提取器在许多领域都有广泛的应用,如图像处理、语音识别、自然语言处理等。
二、特征提取器的作用特征提取器的主要作用如下:1.降低数据维度:通过提取有用特征,减少冗余和噪声,降低数据维度,使数据更易于处理。
2.数据预处理:为后续的分析和建模做好准备,如归一化、标准化等。
3.提高模型性能:提取到的特征更能反映数据的本质,有助于提高模型预测准确率。
三、特征提取器的种类1.传统特征提取器:如霍夫变换、傅里叶变换等,主要用于图像处理领域。
2.深度学习特征提取器:如卷积神经网络(CNN)、循环神经网络(RNN)等,主要用于自然图像处理、语音识别等领域。
3.基于机器学习的特征提取器:如主成分分析(PCA)、线性判别分析(LDA)等,主要用于高维数据降维和分类任务。
四、如何在实际应用中选择合适的特征提取器1.分析问题领域:了解领域特点,选择与问题相关的特征提取器。
2.评估提取效果:通过交叉验证、可视化等方法评估不同特征提取器的性能。
3.考虑计算资源和时间:根据硬件条件和需求选择合适的算法。
五、特征提取器在机器学习中的应用1.图像识别:如人脸识别、车牌识别等。
2.语音识别:如语音信号处理、语音助手等。
3.自然语言处理:如文本分类、情感分析等。
4.推荐系统:通过提取用户和物品的特征,提高推荐准确率。
六、未来发展趋势和挑战1.深度学习特征提取器:随着深度学习技术的不断发展,更多高效、可解释的深度特征提取器将不断涌现。
2.跨领域特征提取:通过融合不同领域的知识,实现跨领域的特征提取。
3.无监督特征提取:减少人工干预,自动学习数据的内在特征。
4.实时特征提取:适应动态数据变化,实现实时特征提取。
总之,特征提取器在各个领域具有重要意义。
Feature Extraction by Neural Network Nonlinear Mappingfor Pattern ClassificationB. Lerner, H. Guterman, M. Aladjem, and I. DinsteinDepartment of Electrical and Computer EngineeringBen-Gurion University of the NegevBeer-Sheva 84105, IsraelAbstractFeature extraction has been always mutually studied for exploratory data projection and for classification. Feature extraction for exploratory data projection aims for data visualization by a projection of a high-dimensional space onto two or three-dimensional space, while feature extraction for classification generally requires more than two or three features. Therefore, feature extraction paradigms for exploratory data projection are not commonly employed for classification and vice versa. We study extraction of more than three features, using neural network (NN) implementation of Sammon’s nonlinear mapping to be applied for classification. Comparative classification experiments reveal that Sammon’s method, which is primarily an exploratory data projection technique, has a remarkable classification capability. The classification performance of (the unsupervized) Sammon’s mapping is highly comparable with the performance of the principal component analysis (PCA) based feature extractor and is slightly inferior to the performance of the (supervized) multilayer perceptron (MLP) feature extractor. The paper thoroughly investigates a random and a non-random initializations of Sammon’s mapping. Only one experiment of Sammon’s mapping is required when the eigenvectors corresponding to the largest eigenvalues of the sample covariance matrix are used to initialize the projection. This approach tremendously reduces the computational load and substantially raises the classification performance of Sammon’s mapping using only very few eigenvectors._________________________The 13th International Conference on Pattern Recognition, ICPR13, Vienna, vol. 4, 320-324, 1996. Corresponding author: Boaz Lerner, University of Cambridge Computer Laboratory, New Museums Site, Cambridge CB2 3QG, UK. Email: boaz.lerner@1. IntroductionFeature extraction is the process of mapping the original features (measurements) into fewer features which include the main information of the data structure. A large variety of feature extraction methods based on statistical pattern recognition or on artificial neural networks appears in the literature [1]-[9]. In all the methods, a mapping f transforms a pattern y of a d -dimensional feature space to a pattern x of an m -dimensional projected space, m <d , i.e.,x f y =(),(1)such that a criterion J is optimized. The mapping f(y) is determined amongst all the transformations g(y), as the one that satisfies [9],{}{}J f y g J g y ()max ()= .(2)The mappings differ by the functional forms of g(x) and by the criteria they have to optimize.Feature extraction methods can be grouped into four categories [4] based on a priori knowledge used for the computation of J : supervized versus unsupervized, and by the functional form of g (x ): linear versus nonlinear. In cases where the target class of the patterns is unknown,unsupervized methods are the only way to perform feature extraction. In other cases, supervized paradigms are preferable. Linear methods are simpler and are often based on an analytical solution but they are inferior to nonlinear methods when the classification task requires complex hypersurfaces. Widespread unsupervized methods for feature extraction are PCA [3], [9] (a linear mapping) and Sammon’s nonlinear mapping [6]. The PCA attempts to preserve the variance of the projected data, whereas Sammon’s mapping tries to preserve the interpattern distances. The MLP when acting as a feature extractor provides a supervized nonlinear mapping of the input space into its hidden layer(s).Feature extraction for exploratory data projection enables high-dimensional data visualization for better data structure understanding and for cluster analysis. In feature extraction for classification, it is desirable to extract high discriminative reduced-dimensionality features which reduce the classification computational requirements. However, feature extraction criteria for exploratory data projection regularly aim to minimize an error function, such as the mean squareerror or the interpattern distance difference whereas feature extraction criteria for classification aim to increase class separability as possible. Hence, the optimum extracted features (regarding a specific criterion) calculated for exploratory data projection are not necessarily the optimum features regarding class separability and vice versa. In particular, two or more classes may have principal features that are similar. Moreover, feature extraction for exploratory data projection is used for two or three-dimensional data visualization, whereas classification usually needs more than two or three features. Consequently, feature extraction paradigms for exploratory data projection are not generally used for classification and vice versa.This paper studies the application of feature extraction paradigms for exploratory data projection to be also employed for classification. It uses Sammon’s nonlinear mapping which is primarily an exploratory data projection technique. The classification accuracy of a NN implementation of Sammon’s mapping for more than three features is compared with the accuracy of the PCA based and the MLP feature extractors which are usually employed for classification. In addition, the paper extensively compares and investigates the trade-offs between a random and a nonrandom initializations of Sammon’s mapping.2. Paradigms of feature extraction for exploratory data projection and classificationSammon [6] proposed a feature extraction method for exploratory data projection. This method is an unsupervized nonlinear paradigm that attempts to maximally preserve all the interpattern distances. We extend in this study the domain of the method to be applicable for classification purposes. The classification capability using Sammon’s mapping is compared to two well-known feature extraction paradigms for classification. The first is the PCA which is an unsupervized linear paradigm and the second is the MLP feature extractor which is a supervized nonlinear paradigm. The outline of the experiments is shown in Fig. 1.A. Sammon’s mappingThe criterion to minimize in Sammon’s mapping is Sammon's stress (error), defined as:[]E d i j d i j d i j d i j j i n i n j i ni n =−=+=−=+=−∑∑∑∑11112111***(,)(,)(,)(,)(3)where d *(i,j) and d(i,j) are the distances between pattern i and pattern j in the input space and in the projected space, respectively. The Euclidean distance is frequently used. Sammon’s stress is a measure of how well the interpattern distances are preserved when the patterns are projected from a high-dimensional space to a lower dimension space. The minimum of Sammon’s stress is achieved by carrying out a steepest-descent procedure. As in steepest-descent based approaches,local minima in the error surface is often unavoidable. This implies that a repetitive number of experiments with different random initializations have to be performed before the initialization with the lowest stress is obtained. However, several methods which make use of some knowledge of the feature data may be more effective. For example, the initialization could be based on the first norms of the feature vectors [2] or on the projections of the data onto the space spanned by the principal axes of the data [2], [4]. The second drawback of Sammon’s mapping is its computational load which is O(n 2). In each iteration n (n -1)/2 distances, along with the error derivatives, must be calculated. As the number of vectors (n ) increases, the computational requirements (time and storage) grow quadratically.Fig. 1. The experiments’ layout.Mao and Jain [4] have suggested a NN implementation of Sammon’s mapping. Fig. 2 shows the NN architecture they have used in their paper. It is a two layer feedforward network whereas the number of input units is set to be the feature space dimension, d , and the number of outputunits is specified as the extracted feature space dimension, m . No rule for determining the number of hidden layers and the number of hidden units in each hidden layer is suggested. They derived a weight updating rule for the multilayer feedforward network that minimizes Sammon’s stress based on the gradient descent method. The general updating rule for all the hidden layers,l =1,...,L -1 and for the output layer (l = L ) is:∆∆∆jk l jk l jk l j l jk l jl E y y ()()()(()((()()()())ωη∂∂ωηµµννµν= =−=−−−−1)1)(4)where ωjk is the weight between unit j in layer l -1 and unit k in layer l , η is the learning rate, y j (l) is the output of the j th unit in layer l and µ and ν are two patterns. The ∆jk (l)’s are the errors accumulated in each layer and backpropagated to a preceding layer, similarly to the standard backpropagation. However, in the NN implementation of Sammon’s mapping the errors in the output layer are functions of the interpattern distances.input layer hidden layer output layerFig. 2. A two-layer perceptron NN for Mao and Jain’s implementation of Sammon’s mapping and for the MLP feature extractor.In Mao and Jain’s implementation the network is able to project new patterns after training, a property Sammon’s mapping does not have. Mao and Jain suggested to use data projections alongthe PCA axes as an initialization to Sammon’s mapping. They employed a two stage training phase using the standard backpropagation algorithm for the first stage and their modified unsupervized backpropagation algorithm for a refinement in the second stage. Our Sammon’s mapping study has been stimulated by Mao and Jain’s research. The NN based Sammon’s mapping implementation we use is similar to the implementation suggested by Mao and Jain but it is simpler. Only one training stage using Mao and Jain’s unsupervized backpropagation algorithm (their second stage) is used. In addition, Mao and Jain in their research employed a PCA based initialization for Sammon’s mapping whereas we employed and compared both random and PCA based initializations.B. The PCA based feature extractorAmong the unsupervized linear projection methods the PCA is probably the most widely used.The PCA, also known as the Karhunen-Loe've expansion, attempts to reduce the dimensionality of the feature space by creating new features that are linear combinations of the original features.The procedure begins with a rotation of the original data space followed by ranking the transformed features and picking out few projected features. This procedure finds the subspace in which the original sample vectors may be approximated with the least mean square error for a given dimensionality.Let x = f(y) be a linear mapping of a random feature vector y , y ∈ R d , x ∈ R m and m < d . The approximation y ^,y j j x u j m ^==∑1(5)with the minimum mean square error,{}ε=−−E y y y y t ()()^^ (6)is obtained when u j (∀ j=1,m ) are the eigenvectors associated with the m largest eigenvalues λj of the covariance matrix Ψ of the mixture density (λ1≥λ2≥...≥λm ≥...≥λd ). The expansion coefficient x j associated with u j is the j th PCA feature of x ,j j tx u y =.(7)C. The MLP feature extractorWhen acting as a classifier, the MLP hidden unit outputs can be used as an implementation of a nonlinear projection of high-dimensional input (feature) space to a much simpler (abstract) feature space [10]. Patterns represented in this space are more easily separated by the network output layer. Furthermore, visualization of the last hidden internal representations may supply an insight to the data structure, hence, to play as a mean of data projection. Using this approach, the classifier acts ideally as feature extractor and as exploratory data projector. Although not acting as a classifier, the MLP feature extractor training is based on class label information, hence it is supervized. The number of input units (Fig. 2) is specified to be the number of features and the number of output units to be the number of pattern classes. The hidden layer dimension is set according to the task, either exploratory data projection or a classification.3. The experimentsA. The data setThe data set was derived from chromosome images which were gathered in Soroka Medical Center, Beer-Sheva, Israel. The chromosome images were acquired and segmented in a process described elsewhere [11]. The experiments were held with 300 patterns from three types of chromosomes (types "13", "19" and "x"), 100 patterns from each type. The chromosome patterns were represented in feature space by 64 density profile (d.p.) features (integral intensities along sections perpendicular to the medial axis of the chromosome) [11].B. The classifierA two layer feedforward NN trained by the standard backpropagation learning algorithm was chosen to be used as a classifier. The number m, of input units was set by the projected space dimension and the number of output units was determined by the number of classes (three classes in our case). Higher complex architectures were not considered as candidates for the classifier because only low-dimensional extracted features were employed as the classifier input. The classifier parameters which were adapted for the chromosome data in a previous investigation [12] were: learning rate of 0.1, momentum constant of 0.95, 10 hidden units and a training periodof 500 epochs. Each experiment with the classifier was repeated ten times with different randomly chosen initial weight matrices and the results were averaged. Although only one experiment of the classifier is sufficient to compare the feature extraction paradigms, averaging over several classifier initializations yields more objective results. Exactly the same ten classifier initializations were used for examining all the feature extraction paradigms.C. The methodologyC1. GeneralThe general scheme of the experiments was outlined in Fig. 1. As Fig. 1 indicates, the paradigms extract features from the 64-dimensional chromosome patterns. The outputs of the three feature extraction paradigms are used to project the samples into two-dimensional maps and to train and test the MLP classifier. The two-dimensional projection maps are visually analyzed and compared to the two-dimensional scatter plots of two of the original features. The probability of correct classification of the test set is evaluated for one to seven extracted features and compared to these probabilities based on the first 10 and all the 64 d.p. features. The first 10 d.p. features which are extracted from the upper tip of the chromosome, provide the cytotechnician an enhanced discriminative capability. In addition, they were ranked by a feature selection algorithm among the best d.p. features [11].Twenty-one randomly chosen training and test sets were derived from the entire chromosome data set for the classification experiments. Each training set contained randomly selected 90% of the data set while the reminder patterns were reserved for the test (the holdout method [3]). Each feature extraction paradigm was applied to these data sets. Classification results were averaged over the twenty-one data sets and the ten classifier initializations (see Sec. 3B).C2. Sammon’s mappingIn a preliminary study, ten random generator seeds were tested to initialize Sammon’s mapping. The seed which was responsible for the highest classification performance was chosen to initialize the weight matrices of the random initialization. The second initialization of Sammon’s mapping was based on all the eigenvectors of the sample covariance matrix estimated from the training data set. In the exploratory data analysis experiments, the two Sammon’sprojections were obtained by setting the network output dimension to 2. For the classification experiments the network output dimension was changed in the [1,7] range. Sammon’s mapping parameters for both initializations were: learning rate of 1, momentum constant of 0.5, 20 hidden units and a training period of 40 epochs. This set of parameters yielded the ultimate performances in a preliminary study.C3. The PCA based feature extractorIn this study we use the classical implementation of PCA. The eigenfeatures of the training set were sorted by a descending order corresponding to the eigenvalue magnitudes. The first one to seven eigenfeatures were used for classification and the first two eigenfeatures were used to plot the two-dimensional projection map.C4. The MLP feature extractorA two layer perceptron NN trained by the backpropagation algorithm was employed as a feature extractor. The input layer was 64-dimensional and the output was 3-dimensional (3 classes). The number of the hidden layer units was set to be 2 in the exploratory data projection experiments and it was changed from 1 to 7 in the classification experiments.D. ResultsD1. Projection mapsA comparison is made between the two-dimensional projection maps of the chromosome feature set projected by the three feature extraction paradigms. The evaluation of the projection maps is only based on visual judgment which is, to our opinion, the most qualitatively way to evaluate these maps, except for complex psychophysical experiments. Furthermore, a quantitative evaluation of the feature extraction paradigms for projection purposes is appeared to be inherently biased toward one of the paradigms. For example, Sammon’s stress, when was used to evaluate projection methods, ranked Sammon’s mapping as the best projection method [4]. To our knowledge, there is no criterion to judge objectively the projection methods.In Fig. 3, the two-dimensional projection maps of the three paradigms are given. For a comparison, a scatter plot of the first two original d.p. features is given in Fig. 3a. These two(a)(b)(c)(d)Fig. 3. The two-dimensional projection maps of: (a) two d.p. features (the 1st and the 2nd ), (b)Sammon’s mapping, (c) the PCA based feature extractor and (d) the MLP feature extractor (o, *and x for chromosome types 13, 19 and x, respectively).features are amongst the most discriminative d.p. features [11]. The second projection map (Fig.3b) is formed by Sammon’s mapping onto two-dimensional space. Random initialization is preferred to be used in Sammon’s mapping experiments mainly because the PCA based initialization is frequently yields very similar maps to the PCA based feature extractor maps [4].The third projection map (Fig. 3c) is produced by data projection along the two principal components. The fourth projection map (Fig. 3d) is produced by the two hidden units of the two layer perceptron feature extractor. All the maps are based on the test set and on the parameters ofthe networks which were previously specified (Sections 3C2-3C4). The maps were obtained in an experiment in which 50% of the data set were used for training. Producing the same maps for the case which was experimented in the classification experiment (90% of the data set used for training) is of less interest because only ten test patterns per class were available for the experiment. The figure reveals the difference in the way the three feature extraction paradigms project data. Visually analyzed, the maps of the PCA based and the MLP NN feature extractors are more perceptive than the map of Sammon’s mapping and the pattern spread is more evident. Moreover, the ratio of the cluster between scatter to the cluster within scatter of these two maps is larger. Not to be forgotten however, that projecting along the axes with the data largest and second largest variances, as the PCA does, is the easiest way to interpret projection maps. Considering discriminative power, the map of the MLP feature extractor is superior. It is important to mention, however, that the MLP is a supervized feature extraction paradigm where the other two are unsupervized. However, the MLP severely distorts the structure of the data and the interpattern distances while the PCA based feature extractor and Sammon’s mapping preserve them very well. Another interesting point to observe is the way the MLP shrinks each class pattern to almost one point (or line), a quality which eases the classification process. These shrinked clusters are (almost) concentrated in three of the four map corners corresponding to the ultimate values of the hidden unit activation function (sigmoid). All the projection maps, especially these of the PCA based and the MLP paradigms reveal that the projected features are less correlated between themselves than the original features (Fig. 3a).D2. ClassificationWe have used the MLP NN probability of correct classification of the test set as the criterion to evaluate the classification performances of the three feature extraction paradigms. The comparison of the probabilities of correct classification using the three feature extraction paradigms is given in Fig. 4 for 1 to 7 extracted features. Each point in the graph is an average over 210 experiments (see Sec. 3C1). For a comparison, the probabilities of correct classification using the original first 10 and all the 64 d.p. features are 86.6% and 83.7%, respectively.As is shown in Fig. 4, the MLP feature extractor is responsible for achieving the best probability of correct classification. Sammon’s mapping and the PCA based feature extractorFig. 4. The probability of correct classification using the three paradigms for increasing number of extracted features (. for the PCA, -. for Sammon’s mapping (random initialization) and solid line for the two layer perceptron).Fig. 5. The probability of correct classification based on two initializations of Sammon’s mapping for increasing number of projections (-. for the random initialization and -- for the PCA based initialization).lead to similar results which are inferior to the MLP feature extractor. Only three extracted features are needed using each of the paradigms to achieve superior classification performances compare to these achieved by the first 10 or all the 64 d.p. features. In Fig. 5 the random and the PCA based initializations of Sammon’s mapping are compared. The experiments were held for the same previous ranges of projections as in Fig. 4. The superiority of the PCA based initialization over the random initialization is apparent. Moreover, decreasing randomality aids the PCA based initialization to achieve more stable classification results than the random initialization.Fig. 6. The probability of correct classification using 2 Sammon’s mapping projections. The average (dashed line) and the standard deviation (dashdot line) of 10 random initializations are compared to the PCA based initialization (solid line) for increasing number of eigenvectors.Fig. 6 presents the results of another experiment to compare both Sammon’s mapping initializations for only two extracted features. Ten Sammon’s mapping random initializations were examined and the average and the standard deviation of the probability of correct classification of the 10 experiments are plotted. The average and the standard deviation are compared to the probability of correct classification using the PCA based initialization when additional eigenvectors are appended to the input-hidden initial weight matrix. Fig. 6 shows that only very few (six or more) eigenvectors are sufficient to initialize the PCA based feature extractor tooutperform the average performance of the random based initialization. Furthermore, the substantial advantage of the PCA based initialization over the random initialization is that only one experiment of Sammon’s mapping is required. The random initialization requires several experiments with different random generator seeds before selecting the best (or the averaged) initialization. Concerning the fact that the computational complexity of Sammon’s mapping is O(n2) for n patterns, this advantage is crucial.4. DiscussionWe study the classification capabilities of the well-known Sammon’s mapping, which is originally applied for exploratory data projection. A comparison of the classification performance of a NN implementation of Sammon’s mapping [4] with the PCA based and the MLP feature extractors, is made. The three paradigms are evaluated using a chromosomial feature set.Although originally aimed and used for exploratory data projection, Sammon’s mapping has an admirable classification capability. Only one experiment of Sammon’s mapping is required when the PCA eigenvectors of the sample covariance matrix corresponding to the largest eigenvalues are used to initialize the algorithm. This fact has an enormous computational impact on the feature extraction process. In addition, the improved initial directions, the PCA provides, enable a classification performance improvement based on only very few eigenvectors. A combination of a nonlinear feature extraction paradigm and class information improves the discriminative capability. The MLP feature extractor which is a supervized nonlinear paradigm, is found in this study as the best feature extraction paradigm for both exploratory data projection and classification.References1.H. Bourland, and Y. Kamp, “Auto-association by multilayer perceptrons and singular valuedecomposition,” Biol. Cybern., vol. 59, pp. 291-294, 1988.2.Y. Chien, Interactive Pattern Recognition. NY: Marcel Dekker, Inc., 1978.3.K. Fukunaga, Introduction to Statistical Pattern Recognition (2nd ed.). New York: AcademicPress, 1990.4.J. Mao, and A. K. Jain, “Artificial neural networks for feature extraction and multivariate dataprojection,” IEEE Trans. Neural Networks, vol. 6, pp. 296-317, 1995.5.E. Oja, “Principal components, minor components and linear neural networks,” NeuralNetworks, vol. 5, pp. 927-935, 1992.6.J. W. Sammon Jr., “A nonlinear mapping for data structure analysis,” IEEE Trans. Comput.,vol. 18, pp. 401-409, 1969.7.T. D. Sanger, “Optimal unsupervized learning in a single-layer linear feedforward neuralnetwork,” Neural Networks, vol. 2, pp. 459-473, 1989.8.T. Kohonen, “The self organizing map,” Proc. IEEE, vol. 78, pp. 1464-1480, 1990.9.P. A. Devijver, and J. Kittler, Pattern Recognition- A Statistical Approach. NJ :Prentice Hall,1982.10.R. P. Gorman, and T. J. Sejnowski, “Analysis of hidden units in a layered network trained toclassify sonar targets,” Neural Networks, vol. 1, pp. 75-89, 1988.11.B. Lerner, H. Guterman, I. Dinstein, and Y. Romem, “Medial axis transform based featuresand a neural network for human chromosome classification,” Pattern Recognition, vol. 28, pp.1673-1683, 1995.12.B. Lerner, H. Guterman, I. Dinstein, and Y. Romem, “Human chromosome classification usingmultilayer perceptron neural network,” Int. J. Neural Systems, vol. 6, pp. 359-370, 1995.。