半导体的导电性
- 格式:pdf
- 大小:933.28 KB
- 文档页数:4
半导体的特性
半导体主要有以下特性。
1、半导体:导电能力随着掺入杂质、输入电压(电流)、温度和光照条件的不同而发生很大变化,人们把这一类物质称为半导体。
2、载流子:半导体中存在的两种携带电荷参与导电的“粒子”。
自由电子:带负电荷。
空穴:带正电荷。
特性:在外电场的作用下,两种载流子都可以做定向移动,形成电流。
3、电子技术的核心是半导体半导体之所以得到广泛的应用,是因为人们发现半导体有一下的三个特性。
(1)掺杂性:在纯净的半导体中掺入及其微量的杂质元素,则它的导电能力将大大增强。
(2)热敏性:温度升高,将使半导体的导电能力打发增强。
(3)光敏性:对半导体施加光线照射时,光照越强,导电能力越强。
3.P型半导体和N型半导体(重点)N型半导体:主要靠电子导电的半导体。
即:电子是多数载流子,空穴是少数载流子。
P型半导体:主要靠空穴导电的半导体。
即:空穴是多数载流子,电子是少数载流子。
PN结:经过特殊的工艺加工,将P型半导体和N型半导体紧密地结合在一起,则在两种半导体的交界面就会出现一
个特殊的接触面,称为PN 结。
第四章半导体的导电性本章主要内容载流子在外加电场作用下的漂移运动半导体的迁移率、电导率和电阻率随温度和杂质浓度的变化规律迁移率的本质-----散射4.1 载流子的漂移运动迁移率1、欧姆定律对于金属,电流I = V(电压)/R(电阻)V-I关系是直线对于半导体,流过不同截面的电流强度不一定相同,“即电流分布不均匀,而欧姆定律不能说明材料内部各处电流的分布情况。
电流密度:通过垂直于电流方向的单位面积的电流J = ∆I/∆S单位:A/cm2或A/m2欧姆定律微分形式:上式把通过导体中某一点的电流密度和该处的电导率及电场强度直接联系了起来。
S故: 半导体导电= 电子导电J = Jn + Jp = (nqu平均自由程:载流子在连续两次散射间自由运动的平均路程平均自由时间:载流子通过平均自由程所需的平均时间τ电场:载流子加速---定向运动;散射:载流子运动方向改变---杂乱无章,各个方向;半导体的主要散射机构:离化杂质散射晶格散射中性杂质散射位错散射(P为散射几率)起因:常温下,浅施主带正电• 双曲线,电离杂质处于一个焦点 • 速度小,作用时间长,偏离角θ大,τ小 • 弹性散射,不改变入射电子能量,只改变运动方向 τ ∝ T3/2/NI 杂质浓度(2)、晶格散射 晶格原子在其平衡位置附近不断进行热振动,且各个 原子的振动不是孤立的。
分析表明:晶格中原子的振动都 是由若干不同的基本波动按波的叠加原理组合而成,这些 基本波动称为格波。
q代表格波波矢, q 的方向即波的传播方向晶格散射:载流子在运动过程中遭受振动的晶格原子的散射, 失去在电场中获得的能量,失去动量。
在能带具有单一极值的半导体中 起主要散射作用的是长波。
即波 长比原子间距大很多倍的格波。
电子热运动速度~105m/s 电子波波长约10-8m 根据动量守恒要求,声子波长 范围应在同一量级,即10-8m,而 晶体中原子间距为10-10m,因而 起主要散射作用的是长波。
半导体的导电特性根据物质的导电能力可分为导体、半导体和绝缘体三大类,顾名思义半导体的导电能力介于导体绝缘体之间。
硅、锗、硒及大多数金属氧化物和硫化物都是半导体。
半导体的导电特性热敏性:当环境温度升高时,导电能力显著增强(可做成温度敏感元件,如热敏电阻)。
光敏性:当受到光照时,导电能力明显变化(可做成各种光敏元件,如光敏电阻、光敏二极管、光敏三极管等)。
掺杂性:往纯净的半导体中掺入某些杂质,导电能力明显改变(可做成各种不同用途的半导体器件,如二极管、三极管和晶闸管等)。
1.本征半导体本征半导体:完全纯净的、不含其它杂质的半导体通称本征半导体。
用得最多的是硅和锗,图1所示是硅和锗的原子结构图,它们都是四价元素,在原子的最外层轨道上都有四个价电子。
(a) 锗Ge (b) 硅Si图1 硅和锗的原子结构在本征半导体中,每个原子的一个价电子与另一原子的一个价电子组成一个电子对,并且对两个原子所共有,因此称为共价键。
由共价键结构形成的半导体其原子排列都比较整齐,形成晶体结构,因此半导体又称为晶体,如图2所示。
图2 晶体中原子的排列方式本征半导体的导电机理在本正半导体的晶体结构中,每一个原子与相邻的四个原子结合,每一个原子的一个价电子与另一个原子的一个价电子组成一个电子对。
这对价电子是每两个相邻原子共有的,它们把相邻原子结合在一起,构成所谓的共价键结构,如图3所示。
图3 硅单晶中的共价键结构在共价键结构的晶体中,每个原子的最外层都有八个价电子,因此都处于比较稳定的状态。
只有当共价键中的电子获得一定能量(环境温度升高或受到光照射)后,价电子方可挣脱原子核的束缚成为自由电子,并且在共价键中留下一个空位,称为空穴。
如图4所示。
图4 空穴和自由电子的形成在一般情况下,本征半导体中自由电子和空穴的数量都比较少,其导电能力很低。
由于本征半导体中的自由电子和空穴总是成对出现,因此在一定温度下,它们的产生和复合将达到动态平衡,使自由电子和空穴维持在一定数目上。
物质的半导体与导电性物质的导电性是指物质对电流的传导能力,而物质的半导体性质则是介于导体和绝缘体之间的一类特殊物质。
在现代电子技术中,半导体材料被广泛应用于各种器件中,如晶体管、二极管等。
本文将探讨物质的半导体与导电性之间的关系以及其在电子技术中的应用。
一、导电性介绍导电性是物质对电流传导的能力。
在导体中,电流是以自由电子的形式传导的。
导体中的自由电子可在外加电场的作用下自由移动,因此导体具有很好的导电性能。
金属是常见的导体,其中的电子云结构使得金属中的电子可以自由地传导电流。
二、半导体的性质相比于导体,半导体的导电性能介于导体和绝缘体之间。
半导体材料中的电子处于较为固定的能级中,不能自由移动,但在一定温度下,他们可以通过热激发或施加外加电场的方式进行导电。
半导体材料的导电性与其晶体结构及施加于其上的电场有关。
三、半导体的掺杂为了提高半导体材料的导电性,常常通过掺杂的方式来引入杂质原子。
掺杂是指将少量其他元素的原子引入到半导体晶体中,取代原有晶体中的原子。
常用的掺杂原子有磷、硅等。
掺杂后的半导体分为两类:P型和N型。
P型半导体中,掺入的杂质原子减少了电子的数量,形成了空穴,因此P型半导体的导电主要是通过正电荷的空穴进行的。
N型半导体中,掺入的杂质原子增加了电子的数量,因此N型半导体的导电主要是通过电子进行的。
四、半导体器件的应用半导体材料的特殊性质使得其在电子技术领域有广泛的应用。
以下是几种常见的半导体器件及其应用:1. 晶体管:晶体管是一种由半导体材料构成的三层结构器件,可以用来放大和开关电子信号。
它是现代电子技术中最重要的器件之一,被广泛应用于各种电子产品中,如计算机、手机等。
2. 二极管:二极管是由P型和N型半导体材料构成的二层结构器件。
通过合适的电场作用,二极管可以实现电流只能向一个方向流动的特性。
因此,二极管常被用作整流器、稳压器等电子电路中。
3. 光电二极管:光电二极管是一种能够将光信号转化为电信号的器件。
半导体的导电性
1载流子的漂移运动和迁移率
欧姆定律
电流密度
指通过垂直于电流方向的单位面积的电流
漂移速度和迁移率
1.有外加电压时,导体内部的自由电子受到电场力的作用,沿着电场的反方向作定向运动构成电
流。
电子在电场力作用下的这种运动称为漂移运动,定向运动的速度称为漂移速度。
2.当导体内部电场E恒定时,电子应具有一个恒定不变的平均漂移速度v_d。
电场强度增大时,
电流密度J也相应地增大,因而,平均漂移速度v_d也随着电场强度E的增大而增大,反之亦
然。
3.电子的迁移率μ的大小反映了载流子在外电场的作用下,载流子运动能力的强弱。
半导体的电导率和迁移率
1.半导体的导电作用是电子导电和空穴导电的总和。
2.导电的电子是在导带中,它们是脱离了共价键可以在半导体中自由运动的电子;而导电的空穴
是在价带中,空穴电流实际上是代表了共价键上的电子在价键间运动时所产生的电流。
3.在相同电场作用下,导带电子平均漂移速度>价带空穴平均漂移速度,就是说,电子迁移率>空
穴迁移率。
2载流子的散射
载流子散射的概念
1.在一定温度下,半导体内部的大量载流子即使没有电场作用,它们也不是静止不动的,而是永
不停息地作着无规则的、杂乱无章的运动,称为热运动。
2.载流子无规则热运动与热振动着的晶格原子、电离了的杂质离子发生碰撞,速度方向发生改
变,即电子波在传播时遭到了散射。
3.自由载流子,实际上只在两次散射之间才真正是自由运动的,其连续两次散射间自由运动的平
均路程称为平均自由程,而平均时间称为平均自由时间。
4.存在外电场时,一方面载流子受到电场力的作用,作定向漂移运动;另一方面载流子仍不断地
遭到散射,使运动方向不断发生改变。
→运动方向和速度大小不断变化→漂移速度不能无限地积累→加速运动只在两次散射之间存在→平均漂移速度
半导体的主要散射机构
散射原因:周期性势场被破坏而存在附加势场。