半导体导电性
- 格式:doc
- 大小:44.00 KB
- 文档页数:2
半导体的特性
半导体是一种具有介于导体和绝缘体之间的电导性能的材料。
其特
性包括:
1. 导电性:半导体具有介于导体和绝缘体之间的导电性能。
在绝缘
体中,电子无法自由移动,而在导体中,电子可以自由移动。
半导体
的特点是在常温下,其导电性由掺杂与温度控制。
2. 能带结构:半导体的原子排列形成了能带结构,其中包含导带和
价带。
绝缘体的导带与价带之间的能隙非常大,而导体几乎没有能隙。
半导体的能隙介于导体和绝缘体之间,通常为1-3电子伏特。
3. 温度对导电性的影响:与导体不同,半导体的电导性能与温度密
切相关。
随着温度的升高,半导体的电导性能也会增加。
4. 掺杂:通过在半导体晶体中掺入少量的杂质,可以显著地改变其
导电性质。
杂质的掺杂可以分为N型和P型。
N型掺杂引入一个附加
的自由电子,而P型掺杂引入一个附加的空穴。
5. PN结:将N型和P型的半导体材料接触在一起形成PN结。
PN
结具有整流作用,即在正向偏置时,电流可以流动,而在反向偏置时,电流被阻塞。
6. 半导体器件:半导体的特性使其成为制造各种电子器件的理想材料,如二极管、晶体管、场效应管和集成电路等。
总的来说,半导体的特性使其成为现代电子技术的基础,广泛应用于计算机、通信、光电等领域。
物理学中的半导体和导电性半导体和导电性是物理学中的重要概念,涉及到固体物理学、量子力学等多个领域。
本文将详细介绍半导体的基本性质、分类以及导电性的相关原理。
半导体的基本性质半导体是一种电导率介于导体和绝缘体之间的材料。
在晶体结构中,半导体的原子排列有序,形成了周期性的势场。
由于量子力学原理,半导体中的电子受到原子核和晶格振动的束缚,只能在一定的能量范围内运动。
这些电子被称为价带电子,而空余的能级称为导带。
在室温下,价带电子受到热激发,部分会跃迁到导带,留下相同数量的空穴。
半导体的分类根据半导体中价带电子和空穴的数量,可以将其分为两类:n型半导体和p型半导体。
在n型半导体中,价带电子数量多于空穴数量,因此电子是主要的载流子。
而在p型半导体中,空穴数量多于价带电子数量,空穴是主要的载流子。
此外,通过在n型和p型半导体之间形成PN结,可以实现半导体器件的制作。
导电性原理半导体的导电性主要取决于载流子的运动。
在应用外部电场的作用下,载流子会受到电场力的作用,发生迁移。
半导体中的载流子分为电子和空穴,它们在电场力作用下,分别向相反方向迁移。
这种现象称为漂移现象。
随着电场的增强,漂移电流也随之增大,从而实现了半导体材料的导电性。
半导体器件半导体器件是利用半导体的特殊性质制作的各种电子器件。
常见的半导体器件包括二极管、晶体管、集成电路等。
这些器件在电子设备中发挥着重要的作用,如整流、放大、开关等。
半导体和导电性是物理学中的重要概念。
本文从半导体的基本性质、分类、导电性原理以及半导体器件等方面进行了详细的介绍。
希望这篇文章能帮助您更好地理解半导体和导电性的相关知识。
## 例题1:解释n型和p型半导体中的载流子分别是什么?解题方法:回顾半导体的基本性质部分,n型半导体中的载流子是价带电子,而p型半导体中的载流子是空穴。
例题2:说明PN结的形成过程。
解题方法:结合半导体分类部分,描述n型和p型半导体接触时,由于载流子数量的差异,形成的PN结。
半导体的导电性质与PN结的应用半导体是一类电子导电性介于导体与绝缘体之间的材料。
它的导电性质与其内部结构及杂质掺入情况密切相关。
在半导体中,导电主要依靠载流子的运动,而载流子分为带负电的电子和带正电的空穴。
本文将探讨半导体的导电性质以及PN结的应用。
一、半导体的导电性质半导体的导电性质与其能带结构密切相关。
能带是指材料中电子能量的分布情况。
半导体中常见的能带有价带和导带。
价带上的电子几乎全部被占据,而导带则几乎没有电子。
两者之间的能量间隙称为禁带宽度。
当材料处于室温时,通常情况下,半导体的禁带宽度为0.5到2.5电子伏特。
在纯净的半导体中,导电主要是通过热激发产生的。
在室温下,一小部分由于热运动而获得足够能量的电子可以从价带跃迁到导带中,形成载流子。
这些载流子在晶格中自由移动,从而导致了半导体的导电性。
此时,半导体的导电性主要是由自由电子和自由空穴的运动贡献的。
二、PN结的应用PN结是由P型半导体和N型半导体通过熔化或扩散等方式形成的结构。
PN结的形成不仅改变了半导体的导电性质,还引发了许多重要的应用。
1. 整流器PN结具有整流特性,即在外加正向电压下,电流可以顺利通过;而在反向电压下,电流几乎无法通过。
这使得PN结成为整流器的关键组件。
利用这一特性,我们可以将交流电转换为直流电,满足各种电子设备的需求。
2. 发光二极管(LED)发光二极管是一种重要的光电器件,广泛应用于照明、指示和显示等领域。
LED利用PN结中的电流-电压特性,使得电流通过时,电子与空穴结合,从而产生光辐射。
通过选择不同的材料和控制电流,可以实现不同颜色和亮度的光发射。
3. 太阳能电池太阳能电池利用光的能量将其转换为电能的装置。
其中,PN结起到了关键作用。
在太阳能电池中,N型半导体与P型半导体之间形成的PN结承担了光吸收和电荷分离的功能。
当光照射到PN结上时,光子的能量被吸收,并促使电子从价带跃迁到导带,形成电流。
4. 反向恒流源PN结的反向击穿特性使得它可以用作反向恒流源。
半导体与电子器件半导体的导电性与器件的工作原理半导体是一种介于导体与绝缘体之间的材料,具有较好的电导性能。
在现代电子技术中,半导体材料被广泛应用于各种电子器件中,如晶体管、二极管、集成电路等。
本文将介绍半导体的导电性及其在电子器件中的工作原理。
一、半导体的导电性半导体的导电性是由其特殊的能带结构决定的。
在半导体中,能带可以分为价带和导带。
价带中的电子是被束缚在原子核周围的,无法自由运动;而导带中的电子是能够自由移动的。
两者之间被称为禁带,即存在能量差异。
在纯净的半导体中,禁带宽度较大,导带的电子数量很少,因此半导体呈现出绝缘体的导电性质。
但通过掺杂,即向半导体中引入杂质,可以改变其导电性能。
掺杂分为两种类型:N型掺杂和P型掺杂。
N型掺杂是指向半导体中引入杂质,这些杂质的原子结构比半导体中的主体原子结构多出一个外层电子。
这些外层电子能够进入导带,形成移动自由的电子,从而增加半导体的导电性能。
P型掺杂是指向半导体中引入杂质,这些杂质的原子结构比半导体中的主体原子结构少一个外层电子。
因此,这些杂质原子会形成空穴,即正电荷载体,从而也增加了半导体的导电性能。
掺杂后的N型和P型半导体可以通过形成P-N结的方式来提高导电性能。
P-N结是将P型和N型半导体材料放置在一起形成的结构。
P-N 结横跨的区域称为耗尽层。
当施加正向偏压时,耗尽层变薄,导电性增强;当施加反向偏压时,耗尽层变厚,导电性减弱。
二、电子器件的工作原理1. 晶体管晶体管是一种用于放大和开关电路的重要电子器件。
它由三个区域构成:发射区、基区、集电区。
发射区为N型半导体,基区为P型半导体,集电区为N型半导体。
在晶体管工作时,可以通过施加适当的电压来控制电流的流动。
当在基极施加正向偏压时,基极与发射极之间形成薄的空穴层,流经发射区的电子开始与空穴复合,导电性增强。
此时晶体管处于放大状态。
当在基极施加反向偏压时,空穴被排斥,流经发射区的电子数量减少,导电性降低。
半导体的导电特性根据物质的导电能力可分为导体、半导体和绝缘体三大类,顾名思义半导体的导电能力介于导体绝缘体之间。
硅、锗、硒及大多数金属氧化物和硫化物都是半导体。
半导体的导电特性热敏性:当环境温度升高时,导电能力显著增强(可做成温度敏感元件,如热敏电阻)。
光敏性:当受到光照时,导电能力明显变化(可做成各种光敏元件,如光敏电阻、光敏二极管、光敏三极管等)。
掺杂性:往纯净的半导体中掺入某些杂质,导电能力明显改变(可做成各种不同用途的半导体器件,如二极管、三极管和晶闸管等)。
1.本征半导体本征半导体:完全纯净的、不含其它杂质的半导体通称本征半导体。
用得最多的是硅和锗,图1所示是硅和锗的原子结构图,它们都是四价元素,在原子的最外层轨道上都有四个价电子。
(a) 锗Ge (b) 硅Si图1 硅和锗的原子结构在本征半导体中,每个原子的一个价电子与另一原子的一个价电子组成一个电子对,并且对两个原子所共有,因此称为共价键。
由共价键结构形成的半导体其原子排列都比较整齐,形成晶体结构,因此半导体又称为晶体,如图2所示。
图2 晶体中原子的排列方式本征半导体的导电机理在本正半导体的晶体结构中,每一个原子与相邻的四个原子结合,每一个原子的一个价电子与另一个原子的一个价电子组成一个电子对。
这对价电子是每两个相邻原子共有的,它们把相邻原子结合在一起,构成所谓的共价键结构,如图3所示。
图3 硅单晶中的共价键结构在共价键结构的晶体中,每个原子的最外层都有八个价电子,因此都处于比较稳定的状态。
只有当共价键中的电子获得一定能量(环境温度升高或受到光照射)后,价电子方可挣脱原子核的束缚成为自由电子,并且在共价键中留下一个空位,称为空穴。
如图4所示。
图4 空穴和自由电子的形成在一般情况下,本征半导体中自由电子和空穴的数量都比较少,其导电能力很低。
由于本征半导体中的自由电子和空穴总是成对出现,因此在一定温度下,它们的产生和复合将达到动态平衡,使自由电子和空穴维持在一定数目上。
物质的半导体与导电性物质的导电性是指物质对电流的传导能力,而物质的半导体性质则是介于导体和绝缘体之间的一类特殊物质。
在现代电子技术中,半导体材料被广泛应用于各种器件中,如晶体管、二极管等。
本文将探讨物质的半导体与导电性之间的关系以及其在电子技术中的应用。
一、导电性介绍导电性是物质对电流传导的能力。
在导体中,电流是以自由电子的形式传导的。
导体中的自由电子可在外加电场的作用下自由移动,因此导体具有很好的导电性能。
金属是常见的导体,其中的电子云结构使得金属中的电子可以自由地传导电流。
二、半导体的性质相比于导体,半导体的导电性能介于导体和绝缘体之间。
半导体材料中的电子处于较为固定的能级中,不能自由移动,但在一定温度下,他们可以通过热激发或施加外加电场的方式进行导电。
半导体材料的导电性与其晶体结构及施加于其上的电场有关。
三、半导体的掺杂为了提高半导体材料的导电性,常常通过掺杂的方式来引入杂质原子。
掺杂是指将少量其他元素的原子引入到半导体晶体中,取代原有晶体中的原子。
常用的掺杂原子有磷、硅等。
掺杂后的半导体分为两类:P型和N型。
P型半导体中,掺入的杂质原子减少了电子的数量,形成了空穴,因此P型半导体的导电主要是通过正电荷的空穴进行的。
N型半导体中,掺入的杂质原子增加了电子的数量,因此N型半导体的导电主要是通过电子进行的。
四、半导体器件的应用半导体材料的特殊性质使得其在电子技术领域有广泛的应用。
以下是几种常见的半导体器件及其应用:1. 晶体管:晶体管是一种由半导体材料构成的三层结构器件,可以用来放大和开关电子信号。
它是现代电子技术中最重要的器件之一,被广泛应用于各种电子产品中,如计算机、手机等。
2. 二极管:二极管是由P型和N型半导体材料构成的二层结构器件。
通过合适的电场作用,二极管可以实现电流只能向一个方向流动的特性。
因此,二极管常被用作整流器、稳压器等电子电路中。
3. 光电二极管:光电二极管是一种能够将光信号转化为电信号的器件。
半导体的导电特性半导体是一种介于导体和绝缘体之间的物质。
它的导电特性与其他材料有所不同,因此对于理解和应用半导体的各种电子器件至关重要。
本文将深入探讨半导体的导电特性,包括本征导电、掺杂与载流子浓度、载流子迁移率以及PN结的导电特性等。
1. 本征导电半导体材料的本征导电是指在纯净无杂质状态下,通过自由载流子实现的导电现象。
半导体晶体中的自由电子和空穴是通过热激发或光激发的方式生成的。
具体而言,半导体中的自由电子主要来自于价带的电子跃迁,而空穴则是通过连带效应产生的。
在本征导电状态下,半导体的导电能力较弱。
2. 掺杂与载流子浓度为了提高半导体的导电性能,常常会对其进行掺杂。
掺杂是向半导体中加入少量杂质原子,以改变半导体的导电特性。
根据掺杂杂质的电性,可以将掺杂分为N型和P型两种。
N型半导体中掺入少量五价元素,如磷或砷,这些杂质原子提供了额外的自由电子,因此N型半导体中的导电能力增强。
P型半导体中掺入少量三价元素,如硼或铝,这些杂质原子提供了额外的空穴,因此P型半导体中的导电能力提高。
掺杂后的半导体中,载流子浓度变得非常高,因为掺杂引入了大量的自由电子或空穴。
这种载流子浓度的增加极大地改善了半导体的导电性能。
3. 载流子迁移率除了载流子浓度,载流子的迁移率也是决定半导体导电特性的重要因素之一。
载流子迁移率指的是自由载流子在半导体中运动时的移动速度。
迁移率取决于材料的特性以及杂质的种类和浓度。
在半导体晶体结构中,载流子的运动受到晶格缺陷、杂质和温度等因素的影响。
晶格缺陷会散射载流子,从而降低其迁移率。
而杂质的种类和浓度也会影响载流子的迁移率,高浓度的杂质会增加散射,降低迁移率。
此外,温度的升高也会导致晶格振动增加,进而增加自由载流子的散射,降低迁移率。
4. PN结的导电特性PN结是半导体中最基本的器件之一,其导电特性在电子学和光电子学领域有广泛应用。
PN结由N型半导体和P型半导体通过正向或反向偏置连接而成。
半导体的导电性及掺杂半导体材料是一类介于导体和绝缘体之间的材料,具有特殊的导电性质。
本文将探讨半导体的导电性以及如何通过掺杂来改变其导电性。
一、半导体材料的导电性质半导体的导电性质是由其特殊的能带结构决定的。
在半导体中,存在着价带和导带之间的禁带。
价带是指电子处于低能量状态时所占据的能带,而导带则是指电子处于高能量状态时所占据的能带。
禁带是二者之间的能量间隔。
在固体材料中,原子核和价带中的电子形成了共价键,这些价带中的电子都是成对出现的,无法自由移动。
而在半导体中,由于禁带的存在,价带中的电子无法跃迁到导带中,导致半导体无法导电。
二、本征半导体和掺杂半导体半导体可以分为本征半导体和掺杂半导体两种类型。
本征半导体是指未经过任何掺杂的纯净半导体材料。
在本征半导体中,导带中的电子数量很少,因此导电性较差。
通常情况下,本征半导体的导电性取决于其材料的温度。
掺杂半导体是指通过掺杂过程向半导体材料中引入其他杂质元素,从而改变其导电性质的半导体材料。
常见的掺杂元素有硼、磷、砷等。
掺杂的过程会使得半导体材料中的导电性质发生显著改变,从而使电子或空穴数量增加,提高导电能力。
三、掺杂对半导体导电性的影响掺杂的类型和浓度决定了半导体材料的导电性质。
1. N型半导体N型半导体是指通过向半导体中引入电子供体杂质元素,如磷或砷,使得电子数量增多的材料。
在N型半导体中,杂质原子释放的额外电子进入导带,从而增加了导电性能。
这些额外的电子被称为自由电子,它们能够自由地在半导体中移动并参与导电过程。
2. P型半导体P型半导体是指通过向半导体中引入电子受体杂质元素,如硼,使得空穴数量增多的材料。
在P型半导体中,杂质原子缺少一个电子,形成了一个空穴。
空穴可以看作是正电荷的移动载流子。
空穴在半导体中移动,从而参与了导电过程。
通过掺杂N型半导体和P型半导体,可以制造出PN结。
PN结是一种广泛应用于半导体器件中的结构,如二极管和晶体管等。
PN结的导电性质由P区和N区的不同导电性决定,使得半导体器件具有特殊的电子控制功能。
在电场和磁场作用下,半导体中的电子和空穴的运动会引起各种电荷的输运现象
半导体的导电性强弱随温度和杂质的含量变化而变化。
1. 从能带角度理解半导体的导电性
半导体在绝对零度时,被电子占据的最高能带为满带,上面临近的能带是空带,当有一定温度时,电子从满带激发到空带,原来的空带变为不满带,在电场作用下,电子的状态在布里渊区中的分布不再对称,半导体导电。
2. 从晶格角度理解半导体的导电性
在一定温度下,共价键上的电子e 挣脱了价键的束缚,进入到晶格空间形成准自由电子,这个电子在外电场的作用下运动而形成电子电流。
在价键的电子进入晶格后留下空穴,当这个空穴被电子重新填充后,会在另一个位置产生新的空穴,这一过程为空穴电流
3. 载流子的散射
理想完整晶体中电子处于严格周期势场中,v (k )不变,实际晶体由于存在缺陷,相当于在原有严格周期性势场上叠加了附加势场,从而引起了载流子状态的改变成为载流子的散射
连续两次散射间的平均自由时间,散射主要有晶格振动散射和电离杂质散射。
(1)电离杂质原因是:电离杂质因为形成库仑场,附加在周期场上,局部破坏了周期势场。
散射几率:
(2)晶格振动散射:晶体中格波氛围声学支和光学支。
声学支描述原胞的整体运动,光学支描述一个原胞内两个原子的相对运动。
一个原胞有n 个原子,则三维情况下总的格波数为3n ,其中3支声学波,3(n-1)支光学波。
①声学波散射原因:纵波的振动形式使原子形成疏密分布,半导体体积在疏处膨胀,密处压缩,使能带发生振动,产生附加势。
②光学波散射原因:原子的相对运动使电荷分布形成正电荷区和负电荷区,产生电场,形成附加势。
4. 载流子的漂移运动,迁移率
(1) 在有外加电场存在时,载流子沿一定方向的有规则运动,称为漂移运动。
它是引起电
荷流动的原因。
考虑平均,则电子和空穴的漂移速率分别为 ετ *-
=n n n m q v 和 ετ *=p
p p m q v ,*p m 和p τ分别为空穴的有效质量和弛豫时间。
电子和空穴迁移率为 *=n
n n m q τμ 和 *=p p p m q τμ 。
迁移率的物理意义是在单位电场强度电场作用下,载流子所获得的漂移速度的绝对值,描述载流子在电场中做漂移运动的难易程度。
电场不太强时,电流密度εμ n n nq j =与微分形式的欧姆定律εσ =j 可见电子的
电导率为n n nq μσ=类似可得空穴的电导率为p p pq μσ=
(2) 当半导体中出现不均匀的载流子分布时,载流子做扩散运动。
p D 和n D 分别叫做空穴和电子的扩散系数
空穴扩散电流密度p qD p ∇-=
电子扩散电流密度n qD n ∇=
5. 迁移率和电导率随温度和杂志浓度的变化
(1) 电离杂质散射时对迁移率的影响
声学波散射时对迁移率的影响
光学波散射对迁移率的影响
以Si,Ge 为例:当掺杂水平较低时,升学波散射起主要作用
当掺杂水平较高,两种因素起作用
当掺杂水平较高,低温时,电离杂质散射贡献较大
较高温度时,声学波散射贡献大
轻掺杂
重掺杂
(2) 电阻率与杂质及温度的关系
轻掺杂
重掺杂
纯净样本
掺杂样品
6.非均匀半导体会有自建场,把有电流通过的金属和半导体样品放入在磁场中,在垂直与电流和磁场的方向上会出现一个电势差,这个现象为霍尔效应。
R 为霍尔系数(P 型半导体)。