当前位置:文档之家› 快速灰分测定仪

快速灰分测定仪

快速灰分测定仪
快速灰分测定仪

快速灰分测定仪

鹤壁市天鑫煤质化验设备厂HF-2快速灰分测定仪是根据国家标准GB/T212《煤的工业分析方法》设计制造,对煤样进行快速灰化并测定其灰分产率的设备。仪器测定原理为将带样灰皿置于一链式输送带上,以一定速度从有一定倾斜度的马蹄形管式高温炉的高端输入炉体;随着灰皿慢进入炉内,煤样逐渐灰化,灰化产生的气体产物沿炉膛从高端排出;煤样通过815温区灰化完全后,从炉子低端输出;取下灰皿、称量,根据残留物质量计算煤的灰分产率。

仪器特点:沿炉膛轴向形成不同的温度带,有足够长的815℃高温带和500℃中温带,可使煤样按GB/1212规定的缓慢灰化模式进行灰化。

1传送带速度可调,可根据煤的特性设定传送速度,保证煤样灰化完全。

2炉膛有一定的倾斜度,有足够的空气自然流人炉内供煤燃烧。

3煤样运行方向和空气及燃烧气体产物流向相反,煤中硫于低温区氧化生成的硫氧化物一经生成即从炉膛高端排除,不会与煤中碳酸盐于高温区分解产生的氧化钙接触,从而避免了硫的固定。

基本结构:仪器分上、下两部分:炉体上部为管式电热炉,传送链条贯穿炉膛;体下部为传动装置、显示、控制装置。

快灰测定仪外形图 l-煤样入口;2-管式高温炉;3-煤样出口;4—传送链条;5-控制箱仪器采用数字处理技术进行炉温测控,自动调节,自动补偿;送链条采用耐高温材料冲压成型,在高温下运行平稳,使用寿命长。驱动采用柔性方式,速度均匀磨损小,噪音低。在高效率伺服控制单元控制下,链条运行可靠平稳。

二、主要技术指标

炉膛尺寸700mm×75mm×45mm(长×宽×高)

控温范围100~ lOOO°

高温恒温区温度(815±3)℃,长度>20

升温时间由室温升至815℃约60min

传送速度空气

助燃气

测定精密度和准确度符合国标GB/T212要求

电源 220

功率 1500w

质量 40kg

整机尺寸 1000mm x 290mm x 42mm

三、安装、使用、日常维护及注意事项

1.仪器的使用

1)开机

插上电源插头,面板“电源指示”灯亮,表示电源已接通。

2)传送链条速度调节

打开“煤样传送”开关,传送链条缓慢移动。旋动“速度调整”旋钮速度加快;逆时针转,速度减慢),将传送速度调至需要值,通常使用链速为17mm/min,(煤样穿行炉体约40min),调速电压约为6-6.5V。使用者可参考以下电压值,将传送速度调至其他值:电压7. 5V,链速约21mm/min;电压15V,链速约35 mm/min。电压—链速关系各台略有差异,用户可自行校准得到准确的对应值。

3)控制温度设定

(1)选择“温度控制”按键上方的“设定”挡,将“温度设定”旋钮l至815°此时数码显示值为设定温度值。

(2)再选择“温度控制”按键上方的“控制”挡,打开“温度控制”开关,仪器进入自动控制状态,此时数码显示值为炉膛温度值。

4)关机

先关闭“温度控制”开关(即“设定”挡位),再关闭“煤样传送”开!最后关闭“电源开关”。

2.日常维护及注意事项

(1)如遇熔断管熔断,应查明原因后换上容值相同的新熔断管,不可随意改变

(2)传送链条要松紧适度,不可太紧,也不可过松。链条松紧应在常温下调整一打开左面板观察链条,调节炉体右端的链条松紧螺钉,调整链条到其略有下垂即可,切不可高温下调整,以免冷却后链条收缩而断裂。

如遇链条及传动部件有异常响声或卡链现象,应及时关闭传动开关,进行检查,以免损坏电机及传动装置,排除故障后才可继续运转。链条长期运转,偶有位置偏移现象,使用者应在操作中注意校正。

机箱内电路及元器件不可随意拆卸、更换,如有电路故障应与制造厂联系。

电源电压过低或过高导致仪器工作异常,应设调压器保持正常电压,调压器容量在2kw 以上。高温时请勿搬运或振动仪器。

快速灰分测定仪操作规程(正式)

快速灰分测定仪操作规程(正 式) Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 快速灰分测定应符合《选煤厂技术检查规 定》的要求,适用于生产过程中产品灰分的快 速测定。 1、接通电源,打开运行开关,核查调整结 构的运行情况。 2、调整好传送结构的运行速度。 3、关闭运行开关,打开加热开关,将炉温 设定在815±10C°恒温。

4、打开运行开关,在预先灼烧和称出重量(准确到0.002克)的灰皿中,称取粒度为0.2毫米以下的分析煤样0.5±0.01ɡ(准确0.0002克),均匀平辅在灰皿中,将灰皿依次排放置于炉膛高端入口处传送链条上.使其随传送链条运行燃烧后至炉膛低端出口,在炉堂内禁止煤样有火苗燃烧现象,否则此次试验无效。 5、取下灰皿在空气中冷却5分钟,再放到干燥器中冷却至室温(约20分钟),然后计算灰分。 6、经常检查各部分工作情况,并精心维护。 请在这里输入公司或组织的名字 Please enter the name of the company or organization here

清华ZZ-89D型在线式测灰仪在华丰煤矿选煤厂的应用

清华在线灰分仪在华丰煤矿选煤厂的应用 王强,孔祥伟 (新汶矿业集团有限责任公司华丰煤矿选煤厂,山东宁阳271400) 摘要:介绍了清华在线灰分仪的特点,并对其在华丰煤矿选煤厂的应用情况和应用效果进行了分析。结果表明,清华在线灰分仪具有方便、实时、准确等特点,商品煤质量得到保障,减少了煤质事故的发生,每年创造经济效益287万元,具有良好的社会效益和经济效益。最后对清华在线灰分仪的维护和管理进行了分析说明。 关键词:灰分仪;测量值;化验值;灰分;重复性;稳定性华丰煤矿选煤厂是一座矿井型选煤厂,1960年建成投产,初期设计能力为30万t/a,经改造扩建,现在生产能力达到120万t/a 以上。入洗原煤为本矿矿井生产气煤,采用原煤准备-跳汰分选-电磁高频筛分离-压滤处理尾煤的联合工艺流程。主产品是灰分小于8.00%、硫分小于0.80%的优质“双八”品牌精煤,主要销往上海焦化厂、浦东煤气厂等国有大中型企业。 为适应市场发展的需要,满足用户对精煤数、质量需求的不断提高,扩大选煤厂的生产能力,华丰煤矿选煤厂对跳汰机进行了技术改造,并取得了突破性的进展。但如何控制和稳定煤炭质量,减少资源损失一直是选煤厂面临的主要问题。灰分是表征煤炭质量的最主要指标,传统的煤灰分化验法工序复杂,显示结果滞后时间长,指导生产不及时,常造成精煤超灰或超差,与用户之间产生质量纠纷。因此,实现生产过程中的灰分快速检测是选煤厂亟待解决的问题。

1 清华在线灰分仪特点 清华大学工程物理系研制的ZZ-89系列煤灰分仪采用双能量γ透射吸收方案,具有煤灰分动态测量技术特点,已有多年的应用经验。清华在线灰分仪具有安装方便、操作简单、对煤样粒度适应性强等优点,同时还具有较高的测量精度、稳定性和重复性。 (1)测量精度高 测量精度主要取决于以下几个误差:①计数的统计误差(测量时间超过10 min可以忽略);②测量系统本身的偶然误差小于0.2%;③常规灰分化验过程中的偶然误差,控制在0.2%左右;④煤灰中元素组成的随机变化,尤其是铁含量变化引起的误差。 其中最后一个因素是误差的主要来源。对精煤而言,煤灰中Fe2O3质量分数增加或减少1%,引起的灰分测量值误差约为±0.7%。经过多次比对实验表明,清华在线灰分仪对低灰分的精煤测量精度小于0.5%;对高灰分的原煤测量精度一般小于1%。 (2)测量稳定性好 对灰分值固定的测量对象,取8 h内连续测量的“10 min灰分”值,全部值与任意一个“10 min灰分”值的最大偏差值不会超过±0.5%。 (3)多次测量重复性好 这是清华在线灰分仪的重要指标。多次操作重复性的定义是对同一个煤样,多次重新装桶测量所测得的一系列灰分值的均方差。这一指标反映单次测量结果的可信度,它取决于样品桶中煤能够以同等机会被γ束扫视到的程度。

水分检测仪中文操作手册

1 HALO-H2O 超高精度高纯气体微量水分仪用户操作手册 指导手册 M7000 系列 版本 B

2 重要标识 这个警告标志提醒用户人身安全 这是高压标志提示有高压存在 这个警告标志提醒用户有激光射线存在 警告标签 注意:在操作HALO-H2O之前请确认已阅读手册中所有的警告注释,为了您的使用方便我们已经列出所有的警示信息,您必须在操作仪器之前通读此手册,否则可能对仪器造成损害。  使用有毒,易燃易爆或混合后易爆气体(如氢气和氧气混合)之前,请先用惰性气体彻底吹扫管路,否则气体管路中的残余气体可能会引起爆炸等危险,对仪器造成损害。  使用合格的独立电源线(1米,120V或220V, 2极3相电源,接地,耐压15A)  在进行任何维修维护装箱之前,请切断电源

3 目录 1. 规格和图表 1.1 规格 1.2 尺寸图 1.3 单HALO-H2O 尺寸图 1.4 HALO-H2O 前面板 1.5 HALO-H2O 后面板 2. 安装HALO-H2O 2.1 总论 2.2 拆包 2.3 产品序列号 2.4 采样管路的准备 2.5 组装采样管路 2.6 采样管路渗漏试验 2.7 HALO-H2O 的放置 2.8 排空压力的考虑 2.9 采样管路进口和出口的连接 2.10 封盖采样管路进口和出口,防止污染 2.11 连接考虑 3. 启动和操作 3.1 介绍 3.2 用户界面 3.3 操作模式 3.4 其他工具栏功能 4. 远程操作 4.1 概述 4.2 界面连接 4.3 指令 5. 发现并修理故障及日常维护 5.1 概述 5.2 定期检修 5.3 故障指南

工业分析灰分的测定

工业分析灰分的测定 一、岗位描述: 煤的灰分是指煤中所有可燃物质在一定温度下灰化并灼烧至质量恒定,以残留物的质量与煤样质量的百分数。 焦炭灰分是称取一定质量的焦炭试样,于815℃下灰化以其残留物的质量占焦炭试样质量的百分数,作为灰分含量。 二、操作流程: 接试样—天平秤样—马弗炉灼烧—取出冷却—天平秤样—计算结果—报告结果—填写化验单填写台帐 三、岗位具体操作规程: 常采用快速灰分化法,用预先于815℃灼烧至质量恒定的灰皿,称取粒度小于0.2mm并搅拌均匀的试样0.5t0.01g精确至0.0002g,使试样均匀摊平。将盛有试样的灰皿送入温度为815t10℃的箱形高温炉门口,在10min内逐渐将其移入炉膛恒温区,关上炉门并使其留有约15mm的缝隙,同时打开炉门上的小孔和炉后烟囱,于815t10℃下灼烧1h。1h后从炉中取出放在空气中冷却约

5min,移入干燥器中冷却至室温称量,后计算结果。 四、岗位的日常检维修: 1、做灰分检验所用仪器与设备有天平,马弗炉,巡检天平首先看是否预热,是否归零,是否稳定,马弗炉是否达到所要求温度,温控仪程序是否准确、正常等。 2、天平如果不稳定或者不归零,都需维修,正常情况下需厂家维修或不能使用另行购买。马弗炉温度不达要求就应看电热偶是否烧坏,炉丝是否烧断,如有此现象都需重新更换新的备件。如温控仪按键失灵或损坏需更换面板等。 五、岗位的日常操作: 正常情况下都需按照GB17212—2001规程来操作,如果进行检查性灼烧每次20min,直到连续两次灼烧质量差在0.001g内为止,用最后一次灼烧质量为计算依据,如遇到结果不稳定,应改为缓慢灰化法重新测定,灰分低于15%时,不必进行检查性灼烧。 六、岗位的危险辨识: 所用仪器设备都是带电或高温,操作时检验人员要有自身保护意识,能够辨识是否有设备短

结构和部件(灰分仪)

ZZ-89A型在线式γ射线煤灰分仪 说明书之四 结构和部件 清华大学工程物理系 1996年9月 目录 §1.可旋转C型探测器架 (1) §1.1 NaI(Tl)闪烁探头及放大器板 §1.2加热筒和探头恒温控制 §1.3放射源及其屏蔽准直铅罐 §1.4标准测块和扫灰装置 §2.现场仪表柜 (5) §2.1供电电器 §2.2现场用开关电源 §2.3定位控温和驱动电路板 §3.控制室仪表柜 (6) §3.1净化电源和插梢板 §3.2稳峰电路板、高压电路板和开关电源 §3.3 PC-486工控机 §3.4灰分仪专用计算机接口电路板 §3.5温度显示仪 §4.其他部件 (9) §4.1打印机及打印机桌 §4.2四位数字式灰分显示仪 §4.3各种电缆 附图:结构组成和连接关系 ZZ-89A型在线式γ煤灰分仪包括C形可旋转探测器架,现场仪表柜,控制室仪表柜三部分;每个部分又由多种部件组成,下面对各部件予以描述。前半部的说明实际上是对后面的《结构组成和连接关系》有关图表的详尽说明,请对照着阅读。 §1.可旋转C型探测器架 这是γ煤灰分仪的传感器部分。上臂固定探头箱外壳,内有闪烁探头和恒温加热筒等;放射源屏蔽准直铅罐装在下臂上;下面动力箱内装有电动机,减速箱,齿轮箱,皮带轮等驱动C形架旋转的部件,

动力箱中还装有两个反射式光耦,指示C 形架是处于输煤皮带外的“校验”位置, 还是处于皮带内的“测量”位置。无论 是强电供给还是弱电信号,全部集中到 方立柱上的接线箱中,使整个C形探测 器架成为内部已安装,连线妥当的整体。 图 1 C形探测器架简图 §1.1 NaI(Tl)闪烁探头 闪烁探头由40×40NaI(Tl)闪烁晶体,GDB-44F(或性能相当)的光电倍增管和专门设计的具有长距离传输功能的放大器组成。其外形为一φ85×265的圆简。NaI(Tl)晶体极易吸水潮解,且其中含有极毒的Tl(铊)元素,所以晶体密封包装在有透光玻璃盖的铝盒 中。晶体盒固定在圆筒前端。 光电倍增管的管座和放大器板等 与后盖组成一个整体,分三层,层间 有压簧,保证光电倍增管的端窗与NaI (Tl)晶体盒的玻璃盖之间密切接 触。后盖上有两个航空插座,其中大 四芯座接光电倍增管高压,另一个小 四芯座是引入±12V电源供放大器图 2 NaI(Tl)晶体 用,并引出γ脉冲信号的。 透射过煤层的γ进入NaI(Tl)晶体,与晶体中的原子发生相互作用,产生次级电子,次级电子的能量与产生它的γ射线的能量有关。次级电子在晶体中损失能量时发闪烁光,闪烁光透过玻璃盖经光电倍增管端窗,进入光电倍增管。光电倍增管是能使极微弱的闪烁脉冲光变换成一定大小电信号的器件,其端窗内部是半透明的光阴极,光阴极的作用是把闪烁光转变为光电子,这些光电子被阴极与第一个联极(打那极)之间电场加速,在打向第一个联极时,具有足够能量,能从第一联极上产生更多个电子。以后,相似地在各联极之间都发生倍增,经过10个联极,最终到达阳极时,能得到倍增了上百万倍的电子数。所以,每一个在NaI (Tl)晶体中发生了相互作用的γ光子,经上述过程,能在光电倍增管的阳极上产生一个电流脉冲,该电流脉冲在阳极负载电阻上形成一个负极性的电压脉冲,经放大器放大后,传输到控制室仪表柜中的稳峰器输入端。 从γ光子射入晶体发生相互作用,直 到电压脉冲产生,每个中间过程是按比例 的但都有涨落。所以电压脉冲的大小平均 而言与发生作用的γ光子的能量成正比。 例如137Cs(662keV)γ光子因光电效应 过程最后生成的电压脉冲平均幅度大约是 241Am(60keV)γ光子脉冲幅度的11倍。

煤炭的五项基本指标之灰分

煤炭灰分的测定 煤中灰分的方法分为缓慢灰化法和快速灰化法。 缓慢灰化法 1、方法提要 称取一定量的空气干燥煤样,放入马弗炉中,以一定的速度加热到815℃,灰化并灼烧到质量恒定。以残留物的质量占煤样质量的百分数作为煤样的灰分。 2、仪器、设备 1)马弗炉:炉膛具有足够的恒温区,能保持温度为815℃。炉后壁的上部带有直径为25—30mm的烟囱,下部离炉底20—30mm处有一个插电热偶的小孔,炉门上有一个直径为20mm的通气孔。 马弗炉的恒温区应在关闭炉门下测定,并至少每年测定一次。高温计(包括毫伏计和热电偶)至少每年校订一次。 2)灰皿:瓷质,长方形,底长45mm,底宽22mm,高14mm 3)干燥器:内装变色硅胶或粒状无水氯化钙。 4)分析天平:感量0.1mg. 5)耐热瓷板或石棉板。 3、分析步骤 1)在预先灼烧至质量恒定的灰皿中,称取粒度小于0.2mm的空气干燥煤样(1±0.1)g,称准至0.0002g,均匀的摆平在灰皿中,使其每平方厘米的质量不超过0.15g. 2)将灰皿送入炉温不超过100℃的马弗炉恒温区中,关上炉门并使炉门留有15mm左右的缝隙。在不少于30min的时间内将炉温缓慢升至500℃,并在此温度下保持30min.继续升温到815℃,并在此温度下灼烧1h. 3)从炉中取出灰皿,放在耐热瓷板或石棉板上,在空气中冷却5min左右,移入干燥器皿中冷却至室温(约20min)后称量。 4)进行检查性灼烧。每次20min,直到连续两次灼烧后的质量变化不超过0.0010g 为止。以最后一次灼烧的质量为技术依据。灰分低至15.00%时,不必进行检查性灼烧。快速灰化法 快速灰化法包括两种方法即:方法A和方法B 方法A 1)方法提要 将装有煤样的灰皿放在预先加热至815℃的灰分快速测定仪的传送带上。煤样自动送入仪器内完全灰化,然后送出。以残留物质量占煤样质量的百分数作为煤样的灰分。 2)专用仪器:快速灰分测定仪 3)分析步骤 a)将快速灰分测定仪预先加热至815℃ b)开动传送带并将其传送速度调到17mm/min左右或其他合适的速度。 C)在预先灼烧至质量恒定的灰皿中,称取粒度小于0.2mm的空气干燥煤样0..5g,称准至0.0002g,均匀地摆平在灰皿中,使其每平方厘米的质量不超过0.08g d)将盛有煤样的灰皿放在快速灰分测定仪的传送带上,灰皿即自动送入炉中。 e)当灰皿从炉内送出时,取下,放在耐热瓷板或石棉板上,在空气中冷至5min左右,移入干燥器中冷却至室温(约20min)后称量。 方法B

KF-1水分测定仪说明书共6页

KF-1型水分测定仪说明书 一、原理 本仪器为卡尔费休(Kart fischer)滴定法测定水分仪器,采用“永停法”来确定终点:根据半电池反应:I2+2E=2I 溶液中同时存在I2及I时上述反应分别在两个电极上进行,即在一个电极上I2被还原,而在另一个电极上I被氧化,因此在两个电极之间有电流通过。如果溶液中只有I而无I2则电极间无电流通过。当滴定终点时溶液中有微量卡尔费休试剂存在才有I及I2同时存在,这时溶液导电,电流表指针偏转,指示达到终点。 反应式:I2+SO2+3C5H5N+CH2→2C4H5.HSO4CH3 根据滴定反应中消耗的碘来计算水分 二、仪器的性能及适用范围 1、仪器性能 A电源:220V±10% 50HZ B相对湿度:小于80% C环境湿度:5摄氏度-40摄氏度 D测量范围:1ppm-100ppm E相对误差:小于等于3%(平行测定以水为标准样品,测定卡氏试剂的水当量)注意:它的水当量必须大于等于3.00毫克/毫升 2、适用范围 本仪器主要用于测定化肥,医药。化工原料及其他工业产品的水分含量。一般测定水分含量在0.1%-10%时用10ml自动滴定管(最小分度为0.05ml)

根据资料及美国材料协会标准ASTM,使用卡氏法可直接测定的化合物包括: 有机化合物-饱和的不饱和碳化物,缩醛,酸类,酰基卤,醇类,稳定的酰,酰胺,弱的胺,酐,二硫化物,酯类,醚卤化物,碳氢化合物,稳定的酮,过氧化物,原酸酯,亚硫酸盐,硫氢酸盐及硫醚。 无机化合物-酸,酸性氧化物,氧化铝,酐,过氧化钡,碳化钙,氧化铜,干燥剂,硫酸肼,部分有机盐和无机盐。 采用KF-1型自动水分测定仪,可达到与国外仪器同样的效果,本产品经辽宁省江苏省上海市等各药检所与瑞士(METTLE)公司生产的DL-18型做对比测试,验证,具有同样的准确性和稳定性,而价格仅为进口仪器的百分之五,可以称为国产唯一准确,可靠,经济实惠的卡氏水分测定仪器。并被许多行业推荐为贯彻国家标准的仪器,其生产计量许可证批号为011 30020号。 该仪器曾获市产品稳定证书,市星火杯奖,近又获上海市质量技术监督局颁发的计量合格确认单位,质量、信誉双保障示范单位并荣获中国质量万里行荣誉证书。 三、仪器特点 1、电源电压为220V,经过变化整流,稳压保证仪器的稳定。 2、电磁搅拌器采用进口直流电机无极调速,搅拌速度可以任意调节。 3、滴定系统采用标准磨口,便于不同容量规格的滴定系统互换使用。 4、用空气加压排除反应瓶中的废液,操作方便,整个操作过程在密闭 系统中进行,安全可靠。

残炭和灰分测定

一、残炭测定原理 残炭测定法(电炉法)的测定原理近似康氏残炭测定法。是将式样放入带毛细管的特殊坩埚中,在空气进不去和规定加热条件下,使式样受热蒸发分解,保持规定时间测得的焦黑色残留物,用重量百分含量表示。 二、仪器 电炉法残炭测定仪器:包括加热加控温设备、坩埚、坩埚盖、钢浴盖。 高温炉:0~1000W,能加热到恒温800±20℃。 干燥器。 坩埚钳。 细砂。 分析天平:感量0.1mg。 托盘天平:250或500g。 三、试验方法 1.准备工作 再仪器的每个装坩埚的空穴底部装入已煅烧过的细砂5~6ml。将测定仪给定规定的温度范围520±5℃,接通电源加热升温。 2.将清洁的瓷坩埚放在事先已加热到800±20℃的高温炉中煅烧1h之后(新的坩埚煅烧不少于2h)取出,现在空气中放置1~2min,然后转入干燥器中冷却约40min,取出坩埚在分析天平称出瓷坩埚的重量,称准至0.0002g。按上法重复煅烧、冷却、称量,直至两次称量间的差数不大于0.0004g为止。 3.再已恒重的坩埚中称入试样,称准至0.01g。润滑油或柴油10%残留物称7~8g;重质燃烧有1.5~1g;渣油沥青0.7~1g。称试样时,将试样摇匀约5min,粘稠的和含蜡油品要先加热到50~60℃才进行摇匀。含水量大于0.5%的油品要进行脱水。 4.用坩埚钳子将盛有试样的瓷坩埚放入温炉已达520±5℃的电炉空穴中,立即盖上坩埚盖,切勿使瓷坩埚及盖偏斜靠壁。未用空穴均应盖上钢浴盖。 5.当试样在温度炉中加热到开始从坩埚盖的毛细管中逸出蒸气时,立刻引火点燃蒸气,使它燃烧,在燃烧结束时用钢浴盖将穴盖上,煅烧试样的残留物。试样从开始加热,经过蒸气的煅烧,到残留物煅烧结束,共需30min。 6.当残留物煅烧结束时,打开钢浴盖和坩埚盖,并立即从电炉空穴中取出瓷坩埚,再空气中放置1~2min,移入干燥器中冷却约40min后,再分析天平称量坩埚的残留物的重量,称准至0.0002g。 7.测定时坩埚内的残留物应该是发亮的,且第二次实验时残留物应该同样,否则重新进行测定。 四、计算 1.试样的残炭X%,按下列计算: X=m1/m*100 式中:m1-残贪物的重量,g;m-试样的重量,g。 2.实验数据、计算及结果 试油名称 坩埚重量,g 试油重量,g 残炭量,g 残炭值,%(m) 允许差数,%

测灰仪自校方法

在线测灰仪自校方法 一.类型及安装位置: (1)LB420 型安装于精煤26#入仓皮带、138#原煤入仓皮带 (2)COALSCAN 2500型安装于原煤 171#皮带 (3)COALSCAN 2100型安装于洗混煤46#上仓皮带及152皮带。 (4)COALSCAN 2800型安装于156#皮带 二、维护与保养: ⑴网络组负责清扫灰分仪射源驱动离合器外露部分及探头。 ⑵调度室负责灰分仪电源及通讯设备的维护和保养。 三、灰分仪的零点计数率标定: ⑴采制样工应熟知灰分仪的基本知识,掌握灰分仪标定的基本操作,标定过程中应严密注意 ⑵零点标定前应提前通知洗煤司机,并在皮带走廊现场观察有无施工人员,确认无工作人员后方可通知调度员开机并进行标定。 ⑶标定结束后通知调度员对皮带进行停机。 ⑷一般情况下应每周对一台测灰仪进行一次零点标定。 ⑸特殊情况下,由总工程师安排对灰分仪进行动态标定。 四、灰分仪的动态标定: ⑴灰分仪发生故障故障排除后,技检车间应及时对灰分仪进行动态标定。 ⑵正常情况下,技检车间每周对一台灰分仪进行一次动态标定以校验参数。 ⑶特殊情况下,由总工程师安排对灰分仪进行动态标定。 ⑷技检车间将每次标定结果做好记录。

灰分仪动态标定方法如下: COALSCAN 2500型灰分仪动态标定方法 ①连接现场键盘,选择菜单1进入分析模式。 ②当灰分仪出现测值后,立即采取第一个子样,以后每隔30秒钟采取一次,共采取6个子样合并作为一个标定煤样。采样时要求沿皮带分左,中,右三点循环采样,不得交错重复,每个子样不少于3公斤。 ③记录采样后键盘显示的“A”值(灰分仪三分钟测值) ④重复以上操作,每台灰分仪采取2-3个标定用煤样,制备成分析煤样并化验出结果“Ad%”。 ⑤化验室试验结果“Ad%”与灰分仪测定结果“CS”值进行对比,取对照误差的平均值校正灰分仪参数“B0”值即完成标定。 COALSCAN 2100型、SDDG-05A型灰分仪动态标定方法 ①记录某一时间“T1”,同时向皮带上放置取样标志。 ②在皮带机头见到标志后即用特制采样器横截煤流全断面采取煤样,以后每隔20秒钟接取一次,把9次接取的全部煤样混合作为第一个标定用煤样(重量不少于30KG),9个子样全部采完后记录时间“T2” ③重复以上操作,共采取1-3个标定用煤样,各制备成分析煤样并化验出结果“Ad%”。 ④在灰分仪上查询“T1→T2”等时间间隔内的显示值“A”值 ⑤把化验室试验结果“Ad%”与灰分仪测定结果“A”值进行对比,取对照误差的平均值校正灰分仪参数“D”值即完成标定。 五、校准误差性:

灰分测定方法

灰分测定方法 本标准包括两种测定煤中灰分的方法,即缓慢灰化法和快速灰化法。缓慢灰化法为仲裁法;快速灰化法可作为例常分析方法。 3.1 缓慢灰化法 3.1.1 方法提要 称取一定量的空气干燥煤样,放入马弗炉中,以一定的速度加热到815±10 ℃,灰化并灼烧到质量恒定。以残留物的质量占煤样质量的百分数作为灰分产率。 3.1.2 仪器、设备 3.1.2.1 马弗炉:能保持温度为815±10℃。炉膛具有足够的恒温区。炉后壁的上部带有直径为25~30mm的烟囱,下部离炉膛底20~30mm处,有一个插热电偶的小孔,炉门上有一个直径为20mm的通气孔。 3.1.2.2 瓷灰皿:长方形,底面长45mm,宽22mm,高14mm(见图4)。 3.1.2.3 干燥器:内装变色硅胶或无水氯化钙。 3.1.2.4 分析天平:感量0.0001g。 3.1.2.5 耐热瓷板或石棉板:尺寸与炉膛相适应。 3.1.3 分析步骤 3.1.3.1 用预先灼烧至质量恒定的灰皿,称取粒度为0.2mm以下的空气干燥煤样1 ±0.1g,精确至0.0002g,均匀地摊平在灰皿中,使其每平方厘米的质量不超过 0.15g。 3.1.3.2 将灰皿送入温度不超过100℃的马弗炉中,关上炉门并使炉门留有15mm 左右的缝隙。在不少于30min的时间内将炉温缓慢升至约500℃,并在此温度下保持 30min。继续升到815±10℃,并在此温度下灼烧1h。 3.1.3.3 从炉中取出灰皿,放在耐热瓷板或石棉板上,在空气中冷却5min左右,移入干燥器中冷却至室温(约20min)后,称量。 3.1.3.4 进行检查性灼烧,每次20min,直到连续两次灼烧的质量变化不超过0.001g 为止。用最后一次灼烧后的质量为计算依据。灰分低于15%时,不必进行检查性灼烧。 3.2 快速灰化法 本标准包括两种快速灰化法:方法A和方法B。 3.2.1 方法A 3.2.1.1 方法提要 将装有煤样的灰皿放在预先加热至815±10℃的灰分快速测定仪的传送带上,煤样自动送入仪器内完全灰化,然后送出。以残留物的质量占煤样质量的百分数作为灰分产率。 3.2.1.2 专用仪器:快速灰分测定仪(见附录A) 3.2.1.3 分析步骤 a.将灰分快速测定仪预先加热至815±10℃。 b.开动传送带并将其传送速度调节到17mm/min左右或其他合适的速度。 c.用预先灼烧至质量恒定的灰皿,称取粒度为0.2mm以下的空气干燥煤样0.5 ±0.01g,精确至0.0002g,均匀地摊平在灰皿中。 d.将盛有煤样的灰皿放在灰分快速测定仪的传送带上,灰皿即自动送入炉中。 e.当灰皿从炉内送出时,取下,放在耐热瓷板或石棉板上,在空气中冷却5min 左右,移入干燥器中冷却至室温(约20min)后,称量。 3.2.2 方法B 3.2.2.1 方法提要 将装有煤样的灰皿由炉外逐渐送入预先加热至815±10℃的马弗炉中灰化并灼烧至质

快速水分测定法的验证

快速水分测定法的验证 1、概述 药品生产过程中需要水分控制,快速水分测定仪用于水分测定能够缩短水分检验的时间,减少检验人员的劳动强度,降低检验成本,方便管理人员迅速作出决策,从而保证生产工序的持续进行。但快速水分测定仪存在误差,针对这一点特制订本报告,使用快速水分测定仪法与《中国药典2010年版》附录规定的水分测定法进行对比验证。 2、验证目的 对快速水分测定法与《中国药典2010年版》附录规定的水分测定法进行对比验证。通过对比研究确定快速水分测定仪能够有效的保证药品生产过程中对水分的控制,有效地保证药品质量。 3、适用范围 本标准适用于快速水分测定方法的验证。 4、验证领导小组成员及职责 5、验证进度计划 验证小组提出完整的验证计划,经批准后实施。 从年月日至年月日 6、相关文件

2010年版药典一部附录ⅨH 水分测定法;2010年版药典一部附录ⅩⅧA中药质量标准分析方法验证指导原则;实验室控制系统GMP实施指南第11章分析方法的验证和确认;药品生产验证指南第三篇第一章检验方法验证;药品生产质量管理规范(2010年修订)第四章第四节分析方法验证。 7、验证内容 7.1为了确保验证数据的准确可靠,采取以下几个先行保障措施 仪器:已经过校正并在有效期内 人员:均经过培训,熟悉方法及使用的仪器 对照品:均购自中国食品药品鉴定研究院 材料:所用材料,包括试剂、实验用容器等,均符合检验要求,不给实验带来污染、误差。 检查人:日期:确认人:日期: 7.2验证方法 快速水分测定仪设定不同的烘烤温度,不同的烘烤时间。对样品进行水分的测定,并与标准烘箱法作比较,确定最佳烘烤温度,烘烤时间。在此条件下进行方法准确度及精密度的测定。 7.2.1最佳烘烤温度,烘烤时间的确定 选择5批样品分别进行标准烘箱法水分测定以及烘烤温度,烘烤时间下的快速水分测定仪法水分测定。两法相比较,寻求最佳条件。 7.2.1.1最佳烘烤温度的确定 水存在的状态分2种:自由水和结合水。结合水含物理结合水和化学结合水,温度升高,烘干时间减少,误差差异过大,其次有可能造成对化学结合水的破坏,温度过低不适宜于“快速”二字。根据实际生产中对产品水分反应时间的要求,将快速法的烘烤时间定为5min,以6种不同的烘烤温度处理后与标准法比较。实验结果如下: 7.2.1.2 最佳烘烤时间的确定 固定快速法在最佳烘烤温度的条件下,以6种不同的时间处理后与标准法比较。实验结果和分析如下: 品名: *****

灰分测试作业指导书

文件制/修订履历表 制/修订人制/修订内容影响页次审核批准版本发行日期

1.目的 本试验方法规定试样进行灰分测试试验的操作; 2.适用范围 本作业指导书适用于灰分测试试验的评定。 3.术语和定义 马弗炉:是一种通用的加热设备,依据外观形状可分为箱式炉、管式炉、坩埚炉。 4.职责 授权操作人员负责该项测试的相关操作及数据记录。 5.工作程序 5.1使用仪器设备 5.1.1 SX2-2.5-12N型号马弗炉 厂家:上海一恒仪器有限公司 技术参数: 1)最高温度:1200℃ 2)分度号:K 3)炉膛尺寸:W×P×H(mm)120×200×80 4)容积:2L 5)电源:220/50HZ 6)输入功率:2.5KW 7)加热元件:铁烙铝 5.1.2 GR-200型号分析天平 厂家:A&DCompany,limited 技术参数: 1)称重范围:210g 2)读数精度:0.1mg 3)最小单位重量:0.1mg 5.2测试样品 5.2.1 ASTM D2584《增强填充树脂燃烧损失后的含量标准测试方法》标准测试样品

5.2.1.1至少需要三个样品 5.2.1.2样品质量大约为5g,最大尺寸为2.5×2.5cm的厚度 5.2.2 GB/T 9341.1-2008《塑料灰分通用测定方法》标准测试样品 所取得试样量要足够产生5mg至50mg的灰分,如预先未知灰分的近似含量,则要 进行一次预测定。推荐试样量如下: 5.2.3ISO 3451-1:2008 《塑料灰分的测定第一部分通用方法》标准测试样品,所取得试样量要足够产生5mg至500mg的灰分,如预先未知灰分的近似含量,则要进行一次预测定。推荐试样量如下: 5.2.4DIN EN ISO 3451-1:2008《塑料灰分的测定第一部分:一般方法》标准测试样品,所取得试样量要足够产生5mg至200mg的灰分,如预先未知灰分的近似含量,则要进行一次预测定。推荐试样量如下:

快速水分仪标准操作指南

快速水分仪标准操作指南 规范快速水分仪的操作方法,使水分仪发挥更大的作用。 一、快速水分仪结构图示 二、适用范围 本水分仪适用于一切需要快速测量水分的行业,如医药、粮食、烟草、化工、茶叶、食品、纺织、农历等。该仪器可与计算机通讯,,并通过计算机把测试水分数据结果打印出来,也可以通过选配的打印机把测试水分数据结果打印出来。 三、工作原理 采用干燥失重法原理。在干燥过程中,快速水分测定仪持续测量并即时显示样品丢失的水分含量%,干燥程序完成后,最终测定的水分含量值被锁定显示。与国际烘箱加热法相比,混合加热可以在高温下将样品均匀地快速干燥,样品表面不易受损,其检测结果与国标烘箱法具有良好的一致性,具有可替代性,且检测效率远远高于烘箱法。智能化操作,一般样品只需几分钟即可完成测定,是一种新型的快速检测仪器。 四、操作方法 A、开机 开箱后,检查配件是否遗漏。然后把仪器连上220v交流电源,掀开加热装置,在样品仓内依次放入三角支架、托架、样品盘,再打开仪器电源开关,仪器进入自检状态(9,8,7,6……)。注意,仪器第一次使用时,应该预热半小时。 B、准备样品 准备好待测样品,大颗粒状的固体样品应该处理成粉状或小条状。 C、测试步骤 在测试前,应根据厂家提供的测试条件,提前设置好温度、时间等参数。然后取适量的

处理过的样品,均匀的平铺于样品盘中,按“测试”键,仪器开始自动工作。测试完成后,仪器发出响声,提醒操作人已经测试完成,这时按下“显示”键,解除警报。连续按“显示”键,可依次显示“水分值”“现时重量”“初始重量”“测试时间”“判别时间”,可记录数据。 在进行下一次测试之前,需要待仪器冷却到室温后,在进行测试。 D、用注意事项 1.在测定水分过程中,一定要避免震动,加热筒下端缺口不能迎风摆放。 2.测定样品在称量盘中堆积一定要平整,堆积面积尽量布满称盘底面,堆积厚度应尽量薄,利于水分完全蒸发。 3.在测定水分过程中,不能用手去摸加热筒,严禁敲击或直接振动工作台面。 4.由于该仪器称重系统为精密设备,尤其传力部分特别怕重压、冲击,因而在每次取,放称量盘时尽量用托架,若用手进行取,放称量盘应轻取,轻放。 5.测定完成后,马上取下称量盘必须用托架,以免烫手.托架在放入仪器中不应碰到称重支架与称量盘。 6.测定后须待称量盘完全冷却后,再放入下一个试样。 五、相关资质 专利号:2005301013706 《中华人民共和国制造计量器具许可证》MC粤制03000235号; 通过ISO9001:2008质量管理体系认证。

KF-1B型水份测定仪说明书

KF-1B水份测定仪说明书 一、原理: 本仪器为卡尔·费休(Kart Fischer)容量滴定法测定水份含量的仪器,采用“永停法”来确定终点,。 根据半电池反应:I2+2e<=>2Iˉ 溶液中同时存在I2及Iˉ时上述反应分别在两个电极上进行,既在一个电极上I2被还原,而再另一个电极上Iˉ被氧化,因此在两个电极之间有电流通过。如果溶液中只有Iˉ而无I2则电极间无电流通过。 当滴定终点时溶液中有微量卡尔·费休试剂存在,即有Iˉ及I2同时存在,这时溶液导电,仪器显示滴定到达终点。 反应式:I2+SO2+3C5H5N+CH3OH+H2O→2C4H5N.HI+C5H5N.HSO4CH3 根据滴定反应中所消耗的卡尔·费休试剂量来算出样品中水份的含量。 二、仪器性能及适应范围: 1、仪器性能: a、测量范围:30×10ˉ6~100%。 b、以水为标样,测定卡尔·费休试剂的水当量,平行测定相对误差≤5%。 c、电源电压:交流220±10%。 2、适应范围: 本仪器主要用于测定化肥、医药、食品、轻工、化工原料以及其它工业产品中的水份含量。 根据资料及美国材料协会标准ASTM,使用卡尔·费休法可直接测定的化合物包括: 有机化合物-饱和的不饱和的碳氢化合物,缩醛、酸类、酰基卤、醇类、稳定的酰、酰胺、弱的胺、酐、二硫化物、酯类、醚卤化物、碳氢化合物,稳定的酮、过氧化物,原酸酯,亚硫酸盐、硫氰酸盐及硫醚等。 无机化合物-酸、酸性氧化物、氧化铝、酐、过氧化钡、碳化钙、氧化铜、干燥剂、硫酸肼、部分有机和无机酸的盐等。 测定水份含量在0.1%-10%时,选用10毫升滴定管(最小分度为0.05毫升)。 测定水份含量<0.1%时,应适当增大取样量并可选用5毫升或2毫升滴定管(最小分度为0.02毫升)。 测定水份含量>10%时,应适当减小取样量并可选用25毫升滴定管(最小分度为0.05毫升)。

快速灰分测定仪操作规程示范文本

快速灰分测定仪操作规程 示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

快速灰分测定仪操作规程示范文本使用指引:此操作规程资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 快速灰分测定应符合《选煤厂技术检查规定》的要 求,适用于生产过程中产品灰分的快速测定。 1、接通电源,打开运行开关,核查调整结构的运行情 况。 2、调整好传送结构的运行速度。 3、关闭运行开关,打开加热开关,将炉温设定在815 ±10C°恒温。 4、打开运行开关,在预先灼烧和称出重量(准确到 0.002克)的灰皿中,称取粒度为0.2毫米以下的分析煤样 0.5±0.01ɡ(准确0.0002克),均匀平辅在灰皿中,将灰皿依次 排放置于炉膛高端入口处传送链条上.使其随传送链条运行 燃烧后至炉膛低端出口,在炉堂内禁止煤样有火苗燃烧现

象,否则此次试验无效。 5、取下灰皿在空气中冷却5分钟,再放到干燥器中冷却至室温(约20分钟),然后计算灰分。 6、经常检查各部分工作情况,并精心维护。 请在此位置输入品牌名/标语/slogan Please Enter The Brand Name / Slogan / Slogan In This Position, Such As Foonsion

水分测定仪的原理和使用方法

水分测定仪(水分测定仪怎么分类): 能够检测各类有机及无机固体、液体、气体等样品中含水率的的仪器叫做水分测定仪,按测定原理可以分类物理测定法和化学测定法两大类。物理测定法常用的有失重法、蒸馏分层法、气相色谱分析法等,化学测定方法主要有卡尔费休法(Karl Fischer)、甲苯法等,国际标准化组织把卡尔费休(Karl Fischer)方法定为测微量水分国际标准,我们国家也把这个方法定为国家标准测微量水分。 常见的失重法水分仪有卤素水分测定、红外水分测定仪、微波水分测定仪等; 常见的卡尔费休水分测定仪主要有容量法卡尔费休水分测定仪和库仑法(电量法)卡尔费休水分测定仪。 另外还有便携式水份测定仪 红外线水分测定仪: 红外线水分测定仪,采用热解重量原理设计的,是一种新型快速水分检测仪器。水分测定仪在测量样品重量的同时,红外加热单元和水分蒸发通道快速干燥样品,在干燥过程中,水分仪持续测量并即时显示样品丢失的水分含量%,干燥程序完成后,最终测定的水分含量值被锁定显示。与国际烘箱加热法相比,红外加热可以最短时间内达到最大加热功率,在高温下样品快速被干燥,其检测结果与国标烘箱法具有良好的一致性,具有可替代性,且检测效率远远高于烘箱法。一般样品只需几分钟即可完成测定。

仪器操作简单,测试准确,显示部分采用红色数码管,示值清晰可见,分别可显示水分值,样品初值,终值,测定时间,温度初值,最终值等数据,并具有与计算机,打印机连接功能。 水分仪可广泛应用于一切需要快速测定水分的行业,如医药,粮食、饲料、种子,菜籽,脱水蔬菜、烟草,化工,茶叶,食品、肉类以及纺织,农林、造纸、橡胶、塑胶、纺织等行业中的实验室与生产过程中。

总灰分测定的原理方法条件,加速方法

总灰分的测定(1)原理 把一定量的样品经炭化后放入高温炉内灼烧,使有机物质被氧化分解,以二氧化碳、氮的氧化物及水等形式逸出,而无机物质以硫酸盐、磷酸盐、碳酸盐、氯化物等无机盐和金属氧化物的形式残留下来,这些残留物即为灰分,称量残留物的重量即可计算出样品中总灰分的含量 2)仪器 ①高温炉;②坩埚;③坩埚钳; ④干燥器;⑤分析天平。 (3)试剂 ①1:4盐酸溶液; ②0.5%三氯化铁溶液和等量蓝墨水的混合液; ③6mol/L硝酸; ④36%过氧化氢; ⑤辛醇或纯植物油. (4)测定条件的选择①灰化容器 测定灰分通常以坩埚作为灰化容器,个别情况下也可使用蒸发皿。坩埚分素烧瓷坩埚、铂坩埚、石英坩埚等多种。其中最常用的是素烧瓷坩埚。 素瓷坩埚 优点: 耐高温可达1200 ℃,内壁光滑,耐酸,价格低廉。 缺点: ⑴耐碱性差,灰化成碱性食品,坩埚内壁的釉质会部分溶解,反复多次使用后,往往难以得到恒重。 ⑵温度骤变时,易炸裂破碎。 铂坩埚 优点: 耐高温达1773℃,导热良好,耐碱,耐HF,吸湿性小。 缺点: 价格昂贵,约为黄金的9倍,要有专人保管,免丢失。 使用不当会腐蚀或发脆。 液态、加热易膨胀及灰分含量低的样品,选用稍大坩埚;或选用蒸发皿. 但过大会使称量误差增大 ②取样量 以灼烧后得到的灰分量为10-100mg来决定取样量。 ③灰化温度 灰化温度也应有所不同,一般为525 - 600℃,谷类的饲料达600℃以上。 温度太高,将引起K、Na、Cl等元素的挥发损失,磷酸盐、硅酸盐也会熔融,将碳粒包藏起来,使元素无法氧化。 温度太低,则灰化速度慢,时间长,不宜灰化完全,也不利于除去过剩的碱性食物吸收的CO2。所以要在保证灰化完全的前提下,尽可能减少无机成分的挥发损失和缩短灰化时间。加热速度不可太快,防急剧干馏时灼热物的局部产生大量气体,而使微粒飞失、易燃。 ④灰化时间 一般不规定灰化时间,而是观察残留物(灰分)为全白色或浅灰色,内部无残留的

在线灰分仪

在线灰分仪 导读:在线灰分仪用于对煤炭中的灰分含量进行在线或离线检测、计量和参与控制。可以广泛应用于煤矿、洗煤厂、配煤厂、焦化厂、燃煤电厂、钢铁厂和煤码头等。特别适用于煤炭输送过程中对皮带输送机上的全部煤炭进行在线灰分分析,并输出灰分对应的模拟量信号,对选煤工艺、配煤工艺等实现闭环自动控制提供参考数据,保证生产优化运… 在线灰分仪用于对煤炭中的灰分含量进行在线或离线检测、计量和参与控制。可以广泛应用于煤矿、洗煤厂、配煤厂、焦化厂、燃煤电厂、钢铁厂和煤码头等。特别适用于煤炭输送过程中对皮带输送机上的全部煤炭进行在线灰分分析,并输出灰分对应的模拟量信号,对选煤工艺、配煤工艺等实现闭环自动控制提供参考数据,保证生产优化运行,从而达到最佳经济效益。本产品也可用于煤质的快速分析。

测量原理: 采用双能量γ射线吸收的原理。将经过煤炭衰减后的两种射线计数进行数据处理,就可计算出煤炭的灰分值。 性能指标: 主要技术指标符合灰分仪中华人民共和国核行业标准:EJ/T 1078-1998《γ辐射煤灰分测量仪》的要求。 测量精度: 精煤:误差≤±0.5%; 低灰分原煤:误差≤±1.0%; 高灰分原煤:误差≤±2.0%。 主要功能和技术特点: (1)采用了新型的核电子技术和核分析技术。研制成功射线能谱自动稳峰技术(目前该技术已获得国家专利)。可对由于环境条件变化、元器件性能变化等各种因素引起的仪表漂移自动进行补偿。 (2)整个设计思想经过蒙特卡罗方法反复理论计算和实验验证相结合,以达到最佳效果。 (3)对记录下的历史记录,随时可以查看,并以曲线形式显示。 (4)应用程序设定有不同的操作等级和相关密码保护,防止无关人员误操作。用户界面可根据现场要求选择DOS操作界面或WINDOWS操作界面。 (5)利用射线可以穿透物质的原理,实现非接触式测量。探测器和被测煤炭不发生任何接触,长期运行稳定、可靠、不易损坏。

5种常见的水分测定仪器的原理

5种常见水分测定仪器的原理 水分测定可以是工业生产的控制分析,也可是工农业产品的质量检定;可以从成吨计的产品中测定水分也可在实验室中仅用数微升试液进行水分分析;可以是含水量达百分之几至几十的常量水分分析,也可是含水量仅为百万分之一以下的痕量水分分析等等。 水分分析方法—般可分为两大类,即物理分析这和化学分析法。经典水分分析方法已逐渐被各种水分分析方法所代替,目前市场上主要存在的水分测定仪主要有以下5种 1.卡尔费休水分测定仪: 卡尔费休法简称费休法,是1935年卡尔费休(KarlFischer)提出的测定水分的容量分拆方法。费休法是测定物质水分的各类化学方法中,对水最为专一、最为准确的方法。虽属经典方法但经过近年改进,提高了准确度,扩大了测量范围,已被列为许多物质中水分测定的标准方法。 费休法属碘量法,其基本原理是利用碘氧化二氧化硫时,需要—定量的水参加反应: 12十S02十2H2O=2HI十H2SO4 上述反应是可逆的。为了使反应向正方向移动并定量进行,须加入碱性物质。实验证明,吡啶是最适宜的试剂,同时吡啶还具有可与碘和二氧化硫结合以降低二者蒸气压的作用。因此,试剂必须加进甲醇或另一种含活泼OH基的溶剂,使硫酸酐吡啶转变成稳定的甲基硫酸氢吡啶。 2.红外水分仪:

红外线加热机理:当远红外线辐射到一个物体上时,可发生吸收、反射和透过。但是,不是所有的分子都能吸收远红外线的,只有对那些显示出电的极性分子才能起作用。水,有机物质和高分子物质具有强烈的吸收远红外线的性能。当这些物质吸收远红外线辐射能量并使其分子,原子固有的振动和转动的频率与远红外线辐射的频率相一致时,极容易发生分子、原子的共振或转动,导致运动大大加剧,所转换成的热能使内部升高温度,从而使得物质迅速得到软化或干燥。 一般的加热方法是利用热的传导和对流,需要通过媒质传播,速度慢,能耗大,而远红外线加热是用热的辐射,中间无需媒质传播。同时,由于辐射能与发热体温度的4次方成正比,因此,不仅节约能源而且速度快、效率高。此外,远红外线具有一定的穿透能力,由于被加热干燥的物质在一定深度的内部和表层分子同时吸收远红外辐射能,产生自发热效应,使溶剂或水分子蒸发,发热均匀,从而避免了由于热胀程度不同而产生的形变和质变,使物质外观、物理机械性能、牢度和色泽等保持完好。 红外线水分测定仪主要由红外辐射加热器和电子天平确定其精度和稳定性. (红外辐射加热器:钨丝真空管可辐射近红外线,碳化硅属长波长的远红外辐射加热器,石英玻璃和陶瓷红外加热器能辐射中红外线) 红外线水分测定仪水分测定基准的公认标准测定法的「干燥减量法」极其类似的加热干燥、质量测定的红外线水分仪。公认标准测定法的「干燥减量法」也被称之为(105°C?5小时法)、(135°C3小时法)等,通过在干燥机中放入样品进行长时间的加热干燥,来精确的测定干燥前与干燥之后的质量变化,以此计算出水分量。为此,需要测定人员对设备和技术非常精通。由于测定需要较长的时间,因此快速测定大量的样品比较困难。所以,对于高准确度的针对多种多样的样品进行测定而言,除红外线水分计之外不作他想。虽然也有一些其他的电气以及光学的测定方法,但是,都属于限定测定对象的专用仪器。从通用性的角度而言,都远不及红外水分计。

相关主题
文本预览
相关文档 最新文档