黄金分割与分形几何学
- 格式:pdf
- 大小:763.53 KB
- 文档页数:9
神秘的自然常数――黄金分割数-精选文档神秘的自然常数――黄金分割数在数学王国里有一个像诗一样美妙的神秘常数,它就是黄金分割数。
它在艺术、建筑、自然界,甚至我们生活的各个方面的应用,让我们大开眼界。
有时候你不得不赞叹数学的伟大和奇妙,区区一个数字,就能解释和揭示世间万物的审美标准。
借用诺贝尔物理学奖获得者费曼教授的话说:“一个魔数来到我们身边,可是没人能理解它。
也许是‘上帝之手’写下了这个数字,而我们却不知他是怎样下的笔。
”一、历史渊源2000多年前,古希腊的数学家欧多克索斯发现:将一条线段AB 分割成长短两条线段AP、PB,若短线段PB与长线段AP的长度之比等于长线段AP与整个线段AB的长度之比,那么线段AP叫做线段PB与线段AB的比例中项,并可计算得出这一比值约等于0.618。
古希腊美学家柏拉图将此分割称为黄金分割,点P叫做线段AB的黄金分割点,这个比值也被称为黄金分割数。
公元前300年前后,著名几何学家欧几里得在撰写《几何原本》时,吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。
至此这个本就无处不在的黄金分割有了正式的理论依据,人们对于的黄金分割的追求开始遍布科学、艺术、社会等各个领域。
二、几何中的黄金分割美几何图形中,五角星是包含黄金分割点较多的一种,此外还有黄金矩形、黄金三角形、黄金椭圆、黄金双曲线等等。
其中黄金矩形是指宽与长之比等于黄金分割数的长方形,从外在形式上说,它最具美感。
生活中常用的纸张让人看起来舒服顺眼,那是因为正规裁法得到的纸张,不管其大小是8开、16开还是32开等,都是近似的黄金矩形。
在日常生活中,最和谐悦目的矩形,如火柴盒、书籍、写字台面、电视屏幕、门窗等,都恪守0.618比值;甚至很多国家的国旗也都设计成黄金矩形。
黄金分割律在平面构图中,还被用来划分画面和安排视觉中心点。
古代绘画大师在设计创作其作品时大都有意识地严格遵循黄金分割律。
黄金分割(黄金比例)黄金分割是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,其比值约为0.618。
这个比例被公认为是最能引起美感的比例,因此被称为黄金分割。
据说在古希腊,有一天毕达哥拉斯走在街上,在经过铁匠铺前他听到铁匠打铁的声音非常好听,于是驻足倾听。
他发现铁匠打铁节奏很有规律,这个声音的比例被毕达哥拉斯用数学的方式表达出来。
[2]外文名golden section提出者毕达哥拉斯提出时间公元前5世纪应用学科数学建筑绘图记载著作《几何原本》数学定义把一条线段分割为两部分,使较大部分与全长的比值等于较小部分与较大的比值,则这个比值即为黄金分割。
其比值是(√5-1):2,近似值为0.618,通常用希腊字母Ф表示这个值。
[1]附:黄金分割数前面的32位为:0.6180339887 4989484820 458683436565特殊的数列设一个数列,它的最前面两个数是1、1,后面的每个数都是它前面的两个数之和。
例如:1,1,2,3,5,8,13,21,34,55,89,144·····这个数列为“斐波那契数列”,这些数被称为“斐波那契数”。
经计算发现相邻两个斐波那契数的比值是随序号的增加而逐渐逼近黄金分割比。
由于斐波那契数都是整数,两个整数相除之商是有理数,而黄金分割是无理数,所以只是不断逼近黄金分割。
[5]黄金三角形所谓黄金三角形是一个等腰三角形,其底与腰的长度比为黄金比值,正是因为其腰与边的比为(√5-1)/2而被称为黄金三角形。
黄金分割三角形是唯一一种可以用5个而不是4个与其本身全等的三角形来生成与其本身相似的三角形的三角形。
由五角形的顶角是36度可得出黄金分割的数值为2sin18度(即2*sin(π/10))。
将一个正五边形的所有对角线连接起来,在五角星中可以找到的所有线段之间的长度关系都是符合黄金分割比的,所产生的五角星里面的所有三角形都是黄金分割三角形。
AB bba-b a 黄金分割法的数学理论0.618033988……一个极为迷人而神秘的数字,它有着一个很动听的名字——黄金分割率。
黄金分割由2500多年前古希腊的数学家、哲学家毕达哥拉斯提出,并由数学家欧几里德第一次用几何的方法给出了计算。
古往今来,这个数字一直被后人奉为科学和美学的金科玉律。
这个数值不但在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面都发挥着不可忽视的作用。
(一) 黄金分割点的计算设一条线段AB的长度为a,C点在靠近B点的黄金分割点上且AC为b,则: AC/AB=BC/AC b^2=a×(a-b)b^2=a^2-aba^2-ab+(1/4)b^2=(5/4)×b^2(a-b/2)^2=(5/4)b^2 a-b/2=(√5/2)×ba-b/2=(√5)b/2a=b/2+(√5)b/2a=b(√5+1)/2 b/a=(√5-1)/2人们常用希腊字母表示黄金比值。
根据定义,如果假设a是单位长度,那么,即有:黄金分割奇妙之处,在于其倒数为自身减1。
例如:1.618的倒数是0.618,恰为1.618-1。
因为:归纳一下,黄金分割存在以下特点:(1)数列中任一数字都是由前两个数字之和构成。
(2)前一数字与后一数字之比例,趋近于一固定常数,即0.618。
(3)后一数字与前一数字之比例,趋近于1.618。
(4)1.618与0.618互为倒数,其乘积则约等于1。
(5)任一数字如与后两数字相比,其值趋近于2.618;如与前两数字相比,其值则趋近于0.382。
(二)黄金分割中的数学思想●『斐波那契数列』说起黄金分割,就不得不提起大名鼎鼎的斐波那契数列。
斐波那契数列指的是这样一个数列:1,1,2,3,5,8,13,21……这个数列从第三项开始,每一项都等于前两项之和。
它的通项公式为:(1/√5)×{[(1+√5)/2]^n - [(1-√5)/2]^n}斐波那契数列与黄金分割有什么关系呢?实际上,相邻两个斐波那契数的比值是随序号的增加而逐渐趋于黄金分割比的。
黄金分割黄金分割的魅力分析黄金分割(Goldsection)一直被古希腊及历代建筑家、艺术家和雕塑家们所推崇,是美学和生命科学一个重要规律,数学中,它与勾股定理并称为几何中的“双宝”。
蒙娜丽莎的美丽、天鹅芭蕾舞的优雅、优选法的运用、向日葵的规律排列,让黄金分割与艺术结缘,与科学联姻。
百度引擎中关于“黄金分割”的就高达一千二百万篇。
那么,什么是黄金分割呢?数学给黄金分割这一美学原理进行了本质的解释,即:一个点把一条线段分成两段,如果较短线段与较长线段的比等就较长线段与整条线段的比,那么这个点把这条线段的黄金分割,该点叫黄金分割点,该比例叫做黄金比;如果设整条线段的长为1,设较长线段为x,可以建立方程模型:转化为一元二次方程可求得由于这是一个等价推导,因此,黄金比是黄金分割的本质属性,成为黄金分割的定量判定标准。
黄金分割17世纪的英国美学家夏里兹曾说:“凡是美的都是合谐的和比例合度的;凡是和谐的和比例合度的就是真的,凡是既美而又真的也就是在结果上愉快和完善的”。
那么,在人们的眼中,什么样的事物才算是美的?人们在探求美的规律的过程中,有这样的发现:著名的维纳斯女神像,以及太阳神阿波罗的塑像,从肚脐到脚底的高度与全身高度之比为0.618。
在达·芬奇、提香等众多著名艺术家的作品中,有许多比例关系,也都是0.618。
希腊古城雅典有一座大理石彻成的神庙,其中有一尊雅典娜女神像,由象牙黄金雕制而成,姿态十分优美。
专家研究后发现:她的腰长(即从肚脐到脚底的距离)与身高的比值,恰好等于0.618。
据专家调查,芭蕾演员虽身材修长,但其腰长与身高之比平均约为0.58,只有在翩翩起舞时、踮起脚尖,方能展现0.618的魅力。
德国一位名叫费希纳的心理学家,曾经专门召开过一个“矩形展览会”,每件展品的边长均在35厘米以下。
他邀请了592位朋友到会参观,要求每位参观者在看完之后投票选出自己心中认为最美的矩形,结果下面四种矩形得票最多:5×8,8×13,13×21,21×34。
数学之美——黄金分割前 言数学可以说是各学科的灵魂,数学中蕴涵着文化价值、美学价值、以及经济价值,而这些价值究竟是如何体现的?随着我国教育水平的逐步提高,我们对数学这门科学的学习更加透彻,我们就以数学中的两大宝藏之一“黄金分割”为例,黄金分割是我们最常见的一种和谐比例关系,即是毕达哥拉斯学派提出的“黄金分割”又称“黄金段”或“黄金率”。
在初中教学中对黄金分割的了解还不是很深,只是对黄金分割的定义做了简单的说明和简单的练习。
随着我们数学能力水平的提升,我们了解到了许多重要的与黄金分割相关联的数学知识,本节主要解决杨辉三角形等数学量与黄金分割的关系,以及与黄金分割有关的一些概念,最后,将进一步阐述黄金分割的实际应用,可见黄金分割用途之广泛,影响之深远。
另外,我真诚的希望通过本节学习,能够让学生更多的了解黄金分割的实质和内涵,对以后的学习有进一步的帮助。
一、黄金分割的起源与发展1.1 黄金分割的定义古希腊雅典学派的第三大数学家欧道克萨斯首先提出黄金分割。
所谓黄金分割,指的是把长为L 的线段分为两部分,使其中一部分对于全部之比,等于另一部分对于该部分之比。
证明方法为:设有一根长为1的线段AB 在靠近B 端的地方取点C ,)(CB AC >使AC AB CB AC ::= 则点C 为AB 的黄金分割点。
设x AC =,则x BC -=1 代入定义式AC AB CB AC ::= 可得x x x :1)1(:=-即 012=-+x x 解该二次方程:2151--=x 2152-=x 其中1x 为负值舍掉。
所以 215-=AC 约为618.0.黄金分割又称黄金律,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值为1∶0.618或1.618∶1,即长段为全段的0.618。
0.618被公认为最具有审美意义的比例数字。
上述比例是最能引起人的美感的比例,因此被称为黄金分割。
黄金分割是一个古老的数学方法。
对它的各种神奇的作用和魔力,数学上至今还没有明确的解释,只是发现它屡屡在实际中发挥我们意想不到的作用。
什么叫黄金分割把线段AB分成两条线段AC和CB(AC>CB),且CB比AC的比值等于AC比AB 的比值时,(比值约等于0.618),那么,线段AB被点C分割成黄金比。
点C叫做线段AB的黄金分割点。
“0.618”叫做黄金分割数。
一、形形色色的黄金分割【建筑】早在公元前五世纪,希腊建筑家就知道0.618的比值是协调,平衡的结构。
文明古国埃及的金字塔,形似方锥,大小各异。
但这些金字塔底面的边长与高之比都接近于0.618。
古时候的一些神庙,在建筑时高和宽也是按黄金数的比来建立,他们认为这样的长方形看来是较美观。
黄金律是建筑艺术必须遵循的规律。
在建筑造型上,人们在高塔的黄金分割点处建楼阁或设计平台,便能使平直单调的塔身变得丰富多彩。
古希腊帕提依神庙由于高和宽的比是0.618,成了举世闻名的完美建筑。
建筑师们发现,按这样的比例来设计殿堂,殿堂更加雄伟、壮丽;去设计别墅,别墅将更加舒适、美丽。
连一扇门窗若设计为黄金矩形都会显得更加协调和令人赏心悦目。
高雅的艺术殿堂里,自然也留下了黄金数的足迹。
【艺术】1483年左右,达芬奇画的一副未完成的油画,包围着圣杰罗姆躯体的黑线,就是一个黄金分割的矩形,当时达芬奇似乎有意利用这一黄金分割的比值。
“检阅”是法国印象派画家舍勒特的一副油画,它的画杠结构比例也正是0.618的比值。
英国在画家斐拉克曼的名著《希腊的神话和传说》一书中,工绘有96幅美人图。
每一幅画上的美人都妩媚无比婀娜多姿。
如果仔细量一下她们的比例也都也雅典娜相似。
画家们发现,按0.618∶1来设计腿长与身高的比例,画出的人体身材最优美,而现今的女性,腰身以下的长度平均只占身高的0.58,因此古希腊维纳斯女塑像及太阳神阿波罗的形象都通过故意延长双腿,使之与身高的比值为0.618,从而创造艺术美。