解一元二次方程(基础班)
- 格式:docx
- 大小:45.27 KB
- 文档页数:6
解一元二次方程五种方法解一元二次方程五种方法解一元二次方程是初中数学中的基础知识,也是高中数学中的重要内容,掌握多种解法对于提高数学能力和解题能力有着重要作用。
下面介绍五种解一元二次方程的方法。
方法一:配方法(也称为配方根公式)配方法是一种常见的解一元二次方程的方法,它的步骤如下:1. 根据二次项系数、一次项系数和常数项分离出完全平方项;2. 将方程化为完全平方形式,即形如(x + a) = b;3. 对方程两边取平方根,得到x的两个解:x = -a ± b。
方法二:公式法公式法是解一元二次方程的常用方法之一,它的公式为:x = (-b ±√(b-4ac)) / 2a其中a、b、c分别为一次项系数、二次项系数和常数项。
方法三:图像法图像法是一种直观的解题方法,它的步骤如下:1. 将方程化为标准形式:ax+bx+c=0;2. 将方程左侧变形为y=ax+bx+c的二次函数的图像;3. 通过观察二次函数的图像,得到x的解。
方法四:因式分解法如果一元二次方程的左侧可以因式分解,那么可以使用因式分解法解题。
例如:x+5x+6=0,可以因式分解为(x+2)(x+3)=0。
因此,x的解为x=-2或x=-3。
方法五:完全平方公式完全平方公式是解一元二次方程的一种简便方法,它的步骤如下:1. 根据二次项系数、一次项系数和常数项计算出Δ=b-4ac;2. 如果Δ是完全平方数,那么方程的解为x=(-b±√Δ)/2a。
以上是解一元二次方程的五种方法,希望对大家有所帮助。
掌握多种解题方法可以提高数学思维和解题能力,也可以在考试中提高解题速度和准确性。
初中数学解一元二次方程的步骤解一元二次方程的步骤一元二次方程是初中数学中的重要内容之一,掌握解一元二次方程的方法对于学习数学和解决实际问题非常有帮助。
本文将介绍解一元二次方程的步骤,并对每一步进行详细说明。
步骤一:整理方程首先,我们需要将一元二次方程整理成标准形式,即形如ax^2 + bx + c = 0的形式。
其中,a、b、c分别代表方程中的系数,a为二次项系数,b为一次项系数,c为常数项。
如果方程已经处于标准形式,则可以直接进入下一步。
否则,我们需要通过合并同类项或移项的方法将方程整理成标准形式。
步骤二:判断方程的解的性质接下来,我们需要判断方程的解的性质。
一元二次方程的解分为三种情况:两个不相等的实数解、两个相等的实数解、无实数解。
通过计算判别式Δ = b^2 - 4ac的值来判断方程的解的性质。
判别式Δ小于0时,方程无实数解;Δ等于0时,方程有两个相等的实数解;Δ大于0时,方程有两个不相等的实数解。
步骤三:求解方程根据方程的不同解的性质,我们可以按以下步骤求解方程。
如果方程有两个不相等的实数解,我们可以使用求根公式x = (-b ±√Δ) / 2a来求解方程。
其中,±表示两个不同的符号。
将求得的根代入原方程进行验证,确保解是正确的。
如果方程有两个相等的实数解,我们可以使用综合平方差公式(x + p)^2 = m来求解方程。
其中,p为一次项系数b的一半,m为常数项c与p的平方之差。
通过解二次方程(x + p)^2 = m可以求得方程的解。
如果方程无实数解,我们可以说明方程无解即可。
步骤四:检查解的有效性在完成方程的求解后,我们需要检查解的有效性。
验证求得的解是否能够使原方程成立。
将解代入原方程中计算,如果等式两边相等,则证明解是有效的;如果等式两边不等,则说明解无效,需要重新进行求解。
步骤五:总结综上所述,解一元二次方程的步骤包括整理方程、判断方程的解的性质、求解方程和检查解的有效性。
解一元二次方程的三种基本方法解一元二次方程的三种基本方法一元二次方程是数学中的基础概念之一,它的解法有很多种。
在这里,我们将介绍三种基本的解法。
一、配方法(1)将方程写成“完全平方”的形式。
例如,对于方程x²+6x–16=0,将右边的常数项移到左边,变为x²+6x=16,然后再将6x一分为二,得到x²+3x+3x=16,继续变形,即可让其成为完全平方。
(2)设定新的变量,使其成为一个完全平方。
例如,对于x²+6x–16=0,令y=x+3,代入原方程,得到y²–9+6y–16=0,简化后得到y²+6y–25=0,再将其变形成完全平方,可得(y+3)²=34,解得y= ± √34–3,代入y=x+3得到x=-3±√34。
二、公式法在公式法中,我们将方程ax²+bx+c=0写成:x=[–b±√(b²–4ac)]/2a,即可求得方程的两个根。
例如,对于方程x²+6x–16=0,可将a=1,b=6,c=–16带入公式中,计算得到x=-3±√34。
三、图像法对于一元二次方程y=ax²+b x+c,我们可以将其用一条二次函数的图像表示出来,相交坐标轴的两个点就是其解。
例如,对于方程x²+6x–16=0,我们可以作出相应的二次函数的图像,其中一条相交坐标轴的边界为x=-4和x=–2,因此可以解得方程的两个根为x=-4和x=-2。
总结以上三种方法都可以用来解一元二次方程。
配方法被广泛地应用于题目的解答中,因为它在操作方式上比较简单,尤其是在遇到较为复杂的方程式时有很好的实际应用。
公式法是一种少有的利用抽象公式的方法,尤其是在解有较大常数的一元二次方程时,可以简化计算。
图像法则不太常用,但在一些情况下,例如探究关于两个变量的函数的等高线时,它是非常实用的。
1 / 8第2课时 一元二次方程及其解法一·基本概念理解1 一元二次方程的定义:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。
一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边加一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。
2、一元二次方程的解法(1)、直接开平方法:利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接开平方法适用于解形如b a x =+2)(的一元二次方程。
根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。
(2)、配方法:配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。
配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式(3)、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二次方程)0(02≠=++a c bx ax 的求根公式: 公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的系数为b ,常数项的系数为c2 / 8(4)、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式(5)、韦达定理若1x ,2x 是一元二次方程的一般形式:)0(02≠=++a c bx ax 的两个实数根,则a b x x -=+21,ac x x =21。
一元二次方程解法讲义(全四讲)第一讲 直接开平一、学习目标了解形如()()20x h k k +=≥的一元二次方程的解法——直接开平方法;能够熟练而准确的运用开平方法求一元二次方程的解.二、知识回顾1.什么叫做平方根?平方根有哪些性质?平方根的定义:如果一个数的平方等于a ,那么这个数就叫做a 的平方根.用式子表示:若x 2=a ,则x 叫做a 的平方根.记作x=如:9的平方根是3±;425的平方根是25±.平方根的性质:(1)一个正数有两个平方根,这两个平方根是互为相反数的; (2)0的平方根是0; (3)负数没有平方根.2.x 2=4,则x=±2.想一想:求x 2=4的解的过程,就相当于求什么的过程?三、新知讲解四、典例探究1.用直接开平方法求一元二次方程的解【例1】解方程:(1)2x 2﹣8=0;(2)(2x ﹣3)2=25.分析:(1)先变形得到x 2=4,然后利用直接开平方法求解;(2)首先两边直接开平方可得2x ﹣3=±5,再解一元一次方程即可.解答:解:(1)x 2=4,两边直接开平方,得x1=2,x2=﹣2.(2)两边直接开平方,得2x﹣3=±5,则2x﹣3=5,2x﹣3=﹣5,所以x=4,x=﹣1.点评:本题考查了解一元二次方程﹣直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法求解.总结:运用直接开平方法解一元二次方程,首先要将一元二次方程的左边化为含有未知数的完全平方式,右边化为非负数的形式,然后直接用开平方的方法求解.练1.(2015•东西湖区校级模拟)解方程:(2x+3)2﹣25=0分析:先移项,写成(x+a)2=b的形式,然后利用数的开方解答.解答:解:移项得,(2x+3)2=25,开方得,2x+3=±5,解得x1=1,x2=﹣4.点评:(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)运用整体思想,会把被开方数看成整体.(3)用直接开方法求一元二次方程的解,要仔细观察方程的特点.练2.(2014秋•昆明校级期中)解方程:9(x+1)2=4(x﹣2)2.分析:两边开方,即可得出两个一元一次方程,求出方程的解即可.解答:解:两边开方得:3(x+1)=±2(x﹣2),即3(x+1)=2(x﹣2),3(x+1)=﹣2(x﹣2),解得:x1=﹣7,x2=.点评:本题考查了解一元二次方程和解一元一次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程.2.用直接开平方法判断方程中字母参数的取值范围【例2】(2015春•南长区期末)若关于x的一元二次方程x2﹣k=0有实数根,则()A.k<0 B.k>0 C.k≥0 D.k≤0分析:根据直接开平方法的步骤得出x2=k,再根据非负数的性质得出k≥0即可.解答:解:∵x2﹣k=0,∴x2=k,∵一元二次方程x2﹣k=0有实数根,∴k≥0,故选:C..点评:此题考查了直接开平方法解一元二次方程,用直接开方法求一元二次方程的解的类型有:x2=a (a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”总结:先把方程化为“左平方,右常数”的形式,且把系数化为1,再根据一元二次方程有无解来求方程中字母参数的取值范围.练3.(2015春•利辛县校级月考)已知一元二次方程mx2+n=0(m≠0,n≠0),若方程有解,则必须()A.n=0 B.m,n同号 C.n是m的整数倍 D.m,n异号分析:首先求出x2的值为﹣,再根据x2≥0确定m、n的符号即可.解答:解:mx2+n=0,x2=﹣,∵x2≥0,∴﹣≥0,∴≤0,∵n≠0,∴mn异号,故选:D.点评:此题主要考查了直接开平方法解一元二次方程,关键是表示出x2的值,根据x2的取值范围确定m、n的符号.练4.(2015•岳阳模拟)如果关于x的方程mx2=3有两个实数根,那么m的取值范围是.解:∵关于x的方程mx2=3有两个实数根,∴m>0.故答案为:m>0.五、课后小测一、选择题1.(2015•石城县模拟)方程x2﹣9=0的解是()A.x=3 B.x=9 C.x=±3 D.x=±92.(2015•河北模拟)已知一元二次方程x2﹣4=0,则该方程的解为()A.x1=x2=2 B.x1=x2=﹣2 C.x1=﹣4,x2=4 D.x1=﹣2,x2=23.(2015•杭州模拟)关于x的方程a(x+m)2+n=0(a,m,n均为常数,m≠0)的解是x1=﹣2,x2=3,则方程a(x+m﹣5)2+n=0的解是()A.x1=﹣2,x2=3 B.x1=﹣7,x2=﹣2 C.x1=3,x2=﹣2 D.x1=3,x2=84.(2015•江岸区校级模拟)如果x=﹣3是一元二次方程ax2=c的一个根,那么该方程的另一个根是()A.3 B.﹣3 C.0 D.15.(2014•枣庄)x1、x2是一元二次方程3(x﹣1)2=15的两个解,且x1<x2,下列说法正确的是()A.x1小于﹣1,x2大于3 B.x1小于﹣2,x2大于3C.x1,x2在﹣1和3之间 D.x1,x2都小于36.(2014春•淮阴区校级月考)方程(1﹣x)2=2的根是()A.﹣1,3 B.1,﹣3 C., D.,7.(2012秋•内江期末)已知a2﹣2ab+b2=6,则a﹣b的值是()A. B.或 C.3 D.8.方程x2=0的实数根有()A.1个 B.2个 C.无数个 D.0个9.方程5y2﹣3=y2+3的实数根的个数是()A.0个 B.1个 C.2个 D.3个二、填空题10.(2015•泉州)方程x2=2的解是.11.(2014•怀化模拟)方程8x2﹣72=0解为.三、解答题12.(2014•祁阳县校级模拟)解方程:(x ﹣2)2﹣16=0.13.(2014秋•青海校级月考)解方程:.14.已知一元二次方程x 2﹣4x+1+m=5请你选取一个适当的m 的值,使方程能用直接开平方法求解,并解这个方程.(1)你选的m 的值是 ;(2)解这个方程.第二讲 配方法一、 学习目标1.掌握用配方法解一元二次方程的一般步骤; 2.学会利用配方法解一元二次方程. 二、知识回顾1.形如2()x m n +=(n ≥0)的一元二次方程,利用求平方根的方法,立即可得而解出方程的根,这种解一元二次方程的方法叫“直接开平方法”.2.如果方程能化成x 2=p 或(mx +n )2=p (p ≥0)的形式,那么利用直接开平方法可得xmx+n三、新知讲解 1.配方法的依据配方法解一元二次方程的依据是完全平方公式2222()a ab b a b ±+=±及直接开平方法.2.配方法的步骤(1)化—— 化二次项系数为1如果一元二次方程的二次项系数不是1,那么在方程的两边同时除以二次项系数,把二次项系数化为1. (2)移——移项通过移项使方程左边为 二次项 和 一次项 ,右边为 常数项 . (3)配——配方1.形如2()x m n +=(n ≥0)的一元二次方程,利用求平方根的方法,立即可得而解出方程的根,这种解一元二次方程的方法叫“直接开平方法”.在方程两边都加上 一次项系数一半的平方 ,根据完全平方公式把原方程变为2()x m n +=(n ≥0)的形式.(4)解——用直接开平方法解方程. 四、典例探究1.配方法解一元二次方程 【例1】(2015•科左中旗校级一模)用配方法解下列方程时,配方有错误的是( )A .x 2﹣2x ﹣99=0化为(x ﹣1)2=100B .x 2+8x+9=0化为(x+4)2=25 C .2t 2﹣7t ﹣4=0化为(t﹣)2=D .3x 2﹣4x ﹣2=0化为(x ﹣)2=【解析】配方法的一般步骤: (1)把常数项移到等号的右边; (2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.根据以上步骤进行变形即可.解:A 、∵x 2﹣2x ﹣99=0,∴x 2﹣2x=99,∴x 2﹣2x+1=99+1,∴(x ﹣1)2=100,故A 选项正确.B 、∵x 2+8x+9=0,∴x 2+8x=﹣9,∴x 2+8x+16=﹣9+16,∴(x+4)2=7,故B 选项错误. C 、∵2t 2﹣7t ﹣4=0,∴2t 2﹣7t=4,∴t 2﹣t=2,∴t 2﹣t+=2+,∴(t ﹣)2=,故C 选项正确. D 、∵3x 2﹣4x ﹣2=0,∴3x 2﹣4x=2,∴x 2﹣x=,∴x 2﹣x+=+,∴(x ﹣)2=.故D 选项正确.故选:B .点评:此题考查了配方法解一元二次方程,选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.练1用配方法解方程: x 2﹣2x ﹣24=0;(2)3x 2+8x-3=0;(3)x (x+2)=120.【解析】(1)移项,得x 2﹣2x=24,配方,得:x 2﹣2x+1=24+1,即:(x ﹣1)2=25, 开方,得:x ﹣1=±5, ∴x 1=6,x 2=﹣4.(2)两边除以3,得: 28103x x +-=, 移项,得:2813x x +=, 配方,得:222844()1()333x x ++=+,即:2245(x )()33+=,开方,得:4533x +=± ∴121,33x x ==- (3)整理,得:22120x x +=, 配方,得:2211201x x ++=+,即:2(1)121x +=,开方,得:111x +=±∴1210,12x x ==-点评:本题考查了解一元二次方程﹣﹣配方法.2.用配方法求多项式的最值【例2】(2015春•龙泉驿区校级月考)当x ,y 取何值时,多项式x 2+4x+4y 2﹣4y+1取得最小值,并求出最小值. 【解析】把所给代数式整理为两个完全平方式子与一个常数的和,最小值应为那个常数,从而确定最小值.解:x 2+4x+4y 2﹣4y+1=x 2+4x+4+4y 2﹣4y+1﹣4=(x+2)2+(2y ﹣1)2﹣4,又∵(x+2)2+(2y ﹣1)2的最小值是0,∴x 2+4x+4y 2﹣4y+1的最小值为﹣4. ∴当x=﹣2,y=时有最小值为﹣4.点评:本题考查配方法的应用;根据﹣4y ,4x 把所给代数式整理为两个完全平方式子的和是解决本题的关键.总结:配方法是求代数式的最值问题中最常用的方法.基本思路是:把代数式配方成完全平方式与常数项的和,根据完全平方式的非负性求代数式的最值.练2(2014•甘肃模拟)用配方法证明:二次三项式﹣8x 2+12x ﹣5的值一定小于0.【解析】将﹣8x 2+12x ﹣5配方,先把二次项系数化为1,然后再加上一次项系数一半的平方,然后根据配方后的形式,再根据a 2≥0这一性质即可证得.解:﹣8x 2+12x ﹣5=﹣8(x 2﹣x )﹣5=﹣8[x 2﹣x+()2]﹣5+8×()2=﹣8(x ﹣)2﹣, ∵(x ﹣)2≥0, ∴﹣8(x ﹣)2≤0, ∴﹣8(x ﹣)2﹣<0,即﹣8x 2+12﹣5的值一定小于0. 点评:此题考查了学生的应用能力,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.练3(2014秋•崇州市期末)已知a 、b 、c 为△ABC 三边的长.(1)求证:a2﹣b2+c2﹣2ac<0.(2)当a2+2b2+c2=2b(a+c)时,试判断△ABC的形状.【解析】(1)将不等式的左边因式分解后根据三角形三边关系判断代数式的符号即可;(2)将等式右边的项移至左边,然后配方即可.解:(1)a2﹣b2+c2﹣2ac=(a﹣c)2﹣b2=(a﹣c+b)(a﹣c﹣b)∵a、b、c为△ABC三边的长,∴(a﹣c+b)>0,(a﹣c﹣b)<0,∴a2﹣b2+c2﹣2ac<0.(2)由a2+2b2+c2=2b(a+c)得:a2﹣2ab+b2+b2﹣2bc+c2=0配方得:(a﹣b)2+(b﹣c)2=0∴a=b=c∴△ABC为等边三角形.点评:本题考查了配方法的应用,解题的关键是对原式正确的配方.五、课后小测一、选择题1.(2015•延庆县一模)若把代数式x2﹣2x+3化为(x﹣m)2+k形式,其中m,k为常数,结果为()A.(x+1)2+4 B.(x﹣1)2+2C.(x﹣1)2+4 D.(x+1)2+22.(2015•东西湖区校级模拟)一元二次方程x2﹣8x﹣1=0配方后为()A.(x﹣4)2=17 B.(x+4)2=15C.(x+4)2=17 D.(x﹣4)2=17或(x+4)2=17二、填空题3.(2015春•盐城校级期中)一元二次方程x2﹣6x+a=0,配方后为(x﹣3)2=1,则a= .4.(2014秋•营山县校级月考)当x= 时,代数式3x2﹣6x的值等于12.三、解答题5.(2015•东西湖区校级模拟)用配方法解方程:x2﹣2x﹣4=0.6.(2013秋•安龙县校级期末)试说明:不论x,y取何值,代数式x2+4y2﹣2x+4y+5的值总是正数.你能求出当x,y取何值时,这个代数式的值最小吗?7.(2014秋•蓟县期末)阅读下面的材料并解答后面的问题:小李:能求出x2+4x﹣3的最小值吗?如果能,其最小值是多少?小华:能.求解过程如下:因为x2+4x﹣3=x2+4x+4﹣4﹣3=(x2+4x+4)﹣(4+3)=(x+2)2﹣7而(x+2)2≥0,所以x2+4x﹣3的最小值是﹣7.问题:(1)小华的求解过程正确吗?(2)你能否求出x2﹣3x+4的最小值?如果能,写出你的求解过程.8.(2014秋•安陆市期末)阅读下面的解答过程,求y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4﹣(y+2)2+4∵(y+2)2≥0∴(y+2)2+4≥4∴y2+4y+8的最小值为4仿照上面的解答过程,求m2+m+4的最小值和4﹣2x﹣x2的最大值.9.(2014春•乳山市期末)已知代数式x2﹣2mx﹣m2+5m﹣5的最小值是﹣23,求m的值.10.(2014秋•江阴市期中)配方法可以用来解一元二次方程,还可以用它来解决很多问题.例如:因为3a2≥0,所以3a2+1≥1,即:3a2+1有最小值1,此时a=0;同样,因为﹣3(a+1)2≤0,所以﹣3(a+1)2+6≤6,即﹣3(a+1)2+6有最大值6,此时 a=﹣1.①当x= 时,代数式﹣2(x﹣1)2+3有最(填写大或小)值为.②当x= 时,代数式﹣x2+4x+3有最(填写大或小)值为.③矩形花园的一面靠墙,另外三面的栅栏所围成的总长度是16m,当花园与墙相邻的边长为多少时,花园的面积最大?最大面积是多少?第三讲公式法一、学习目标了解掌握一元二次方程根的判别式,不解方程能判定一元二次方程根的情况;理解一元二次方程求根公式的推导过程;掌握公式结构,知道使用公式前先将方程化为一般形式,通过判别式判断根的情况;学会利用求根公式解简单数字系数的一元二次方程.二、知识回顾1.什么是配方法?配方法解一元二次方程的一般步骤是什么?配方法:通过配方,先把方程的左边配成一个含有未知数的完全平方式,右边是一个非负数,然后运用直接开平方法求解,这种解一元二次方程的方法叫做配方法.配方法解一元二次方程的一般步骤:(1)移常数项到方程右边; (2)化二次项系数为1;(3)方程两边同时加上一次项系数一半的平方; (4)化方程左边为完全平方式;(5)若方程右边为非负数,则利用直接开平方法解得方程的根.2.怎样用配方法解形如一般形式ax 2+bx +c =0(a ≠0)的一元二次方程? 解:移项,得2,ax bx c +=-二次项系数化为1,得2,b c x x a a +=-配方,得222()(),22b b c bx x a a a a++=-+ 即:222424b b ac x a a -⎛⎫+= ⎪⎝⎭, 因为0,a ≠所以当240b ac ->时,2b x a-=;当240;2b b ac a -==-12时,x =x240b ac -=当时,原方程无解.三、新知讲解一元二次方程根的判别式24b ac -叫做一元二次方程ax 2+bx +c =0(a ≠0)根的判别式,通常用希腊字母∆表示它,即24b ac ∆=-.一元二次方程根的情况与判别式的关系(1)240b ac ∆=->⇔方程有两个不相等的实数根; (2)240b ac ∆=-=⇔方程有两个相等的实数根; (3)240b ac ∆=-<⇔方程没有实数根. 公式法解一元二次方程一般地,对于一般形式的一元二次方程ax 2+bx +c =0(a ≠0),当240b ac -≥时,它的两个根分别是1x =,2x =,这里,()2402b x b ac a-±=-≥叫做一元二次方程的求根公式,利用它解一元二次方程的方法叫做公式法.公式法解一元二次方程的一般步骤把方程化成一般形式:ax 2+bx +c =0(a ≠0);确定a ,b ,c 的值;求出24b ac -的值,并判断方程根的情况:当240b ac ->时,方程有两个不相等的实数根; 当240b ac -=时,方程有两个相等的实数根; 当240b ac -<时,方程没有实数根.当240b ac -≥时,将a ,b ,c 和24b ac -的值代入公式2b x a-=(注意符号).四、典例探究1.根据根的判别式判断一元二次方程根的情况【例1】(2015•重庆)已知一元二次方程2x 2﹣5x+3=0,则该方程根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 两个根都是自然数 D .无实数根分析:判断方程的根的情况,只要看根的判别式△=b 2﹣4ac 的值的符号就可以了. 解答:解:∵a=2,b=﹣5,c=3,∴△=b 2﹣4ac=(﹣5)2﹣4×2×3=1>0, ∴方程有两个不相等的实数根. 故选:A .点评:此题主要考查了一元二次方程根的判别式,要熟练掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.总结:求根的判别式时,应该先将方程化为一般形式,正确找出a ,b ,c 的值.根的判别式与一元二次方程根的情况的关系如下:当240b ac ->时,方程有两个不相等的实数根;当240b ac -=时,方程有两个相等的实数根;当240b ac -<时,方程没有实数根.练1.(2015•铜仁市)已知关于x 的一元二次方程3x 2+4x ﹣5=0,下列说法不正确的是( ) A .方程有两个相等的实数根 B .方程有两个不相等的实数根 C .没有实数根 D .无法确定 分析:先求出△的值,再判断出其符号即可.解答:解:∵△=42﹣4×3×(﹣5)=76>0, ∴方程有两个不相等的实数根. 故选B .点评:本题考查的是根的判别式,熟知一元二次方程ax 2+bx+c=0(a≠0)的根与△的关系是解答此题的关键.练2.(2015•泰州)已知:关于x 的方程x 2+2mx+m 2﹣1=0 (1)不解方程,判别方程根的情况; (2)若方程有一个根为3,求m 的值. 分析:(1)找出方程a ,b 及c 的值,计算出根的判别式的值,根据其值的正负即可作出判断; (2)将x=3代入已知方程中,列出关于系数m 的新方程,通过解新方程即可求得m 的值.解答:解:(1)∵a=1,b=2m ,c=m 2﹣1,∵△=b 2﹣4ac=(2m )2﹣4×1×(m 2﹣1)=4>0,∴方程x2+2mx+m2﹣1=0有两个不相等的实数根;(2)∵x2+2mx+m2﹣1=0有一个根是3,∴32+2m×3+m2﹣1=0,解得,m=﹣4或m=﹣2.点评:此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.也考查了一元二次方程的解的定义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.即用这个数代替未知数所得式子仍然成立.2.根据一元二次方程根的情况求参数的值或取值范围【例2】(2015•温州)若关于x的一元二次方程4x2﹣4x+c=0有两个相等实数根,则c的值是()A.﹣1 B.1 C.﹣4 D.4分析:根据方程根的情况与判别式的关系知△=42﹣4×4c=0,然后解一次方程即可.解答:解:∵一元二次方程4x2﹣4x+c=0有两个相等实数根,∴△=42﹣4×4c=0,∴c=1,故选B.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.总结:已知方程根的情况求字母的值或取值范围时:先计算根的判别式;再根据方程根的情况列出关于根的判别式的等式或不等式求解;若二次项系数出现了字母,应注意“二次项系数不为0”.练3.(2015•凉山州)关于x的一元二次方程(m-2)x2+2x+1=0有实数根,则m的取值范围是()A.m≤3 B.m<3 C.m<3且m≠2 D.m≤3且m≠2分析:根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac的意义得到m-2≠0且△≥0,即22-4×(m-2)×1≥0,然后解不等式组即可得到m的取值范围.解答:解:∵关于x的一元二次方程(m-2)x2+2x+1=0有实数根,∴m-2≠0且△≥0,即22-4×(m-2)×1≥0,解得m≤3,∴m的取值范围是 m≤3且m≠2.故选:D.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.3.用公式法解一元二次方程【例3】用公式法解下列方程:(1)x2+2x﹣2=0;(2)y2﹣3y+1=0;(3)x2+3=2x.分析:(1)求出b2﹣4ac的值,代入公式x=求出即可;(2)求出b2﹣4ac的值,代入公式y=求出即可;(3)求出b2﹣4ac的值是负数,即可得出原方程无解.解答:解:(1)这里a=1,b=2,c=﹣2,∵b2﹣4ac=22﹣4×1×(﹣2)=12>0,∴x==﹣1,∴x1=﹣1+,x2=﹣1﹣;(2)这里a=1,b=﹣3,c=1.∵b2﹣4ac=(﹣3)2﹣4×1×1=5>0,y=,∴y1=,y2=;(3)移项,得x2﹣2x+3=0,这里a=1,b=﹣2,c=3.∵b2﹣4ac=(﹣2)2﹣4×1×3=﹣4<0.∴原方程没有实数根.点评:本题主要考查学生运用公式法正确解方程的能力,前提是先判断判别式的符号,再根据情况代入求根公式求解.总结:公式法的实质是配方法,只不过省去了配方的过程,而直接利用了配方的结论;运用公式法求解一元二次方程要注意两个前提:(1)先将一元二次方程化为一般形式,即确定a,b,c的值;(2)必须保证b2-4ac≥0.练4.(2014•锦江区模拟)解方程:x(x﹣2)=3x+1.分析:整理后求出b2﹣4ac的值,再代入公式求出即可.解答:解:x(x﹣2)=3x+1,整理得:x2﹣5x﹣1=0,b2﹣4ac=(﹣5)2﹣4×1×(﹣1)=29,x=,x1=,x2=.点评:本题考查了解一元二次方程的应用,能正确运用公式法解一元二次方程是解此题的关键,难度适中.练5.当x是何值时,3x2+4x﹣8的值和2x2﹣1的值相等?分析:根据3x2+4x﹣8的值和2x2﹣1的值相等,即可列出方程,然后利用公式法即可求解.解答:解:根据题意得:3x2+4x﹣8=2x2﹣1,即x2+4x﹣7=0,a=1,b=4,c=﹣7,△=b2﹣4ac=16+28=44>0,则x==﹣2.点评:本题考查了公式法解一元二次方程,注意公式运用的条件:判别式△≥0.五、课后小测一、选择题1.(2015•云南)下列一元二次方程中,没有实数根的是()A.4x2﹣5x+2=0 B.x2﹣6x+9=0 C.5x2﹣4x﹣1=0 D.3x2﹣4x+1=02.(2015•贵港)若关于x的一元二次方程(a﹣1)x2﹣2x+2=0有实数根,则整数a的最大值为()A.﹣1 B.0 C.1 D.23.(2015•烟台)等腰直角三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,则n的值为()A.9 B.10 C.9或10 D.8或104.(2015•株洲)有两个一元二次方程M:ax2+bx+c=0;N:cx2+bx+a=0,其中a•c≠0,a≠c.下列四个结论中,错误的是()A.如果方程M有两个相等的实数根,那么方程N也有两个相等的实数根B.如果方程M的两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=15.(2013•日照)已知一元二次方程x2﹣x﹣3=0的较小根为x1,则下面对x1的估计正确的是()A.﹣2<x1<﹣1 B.﹣3<x1<﹣2 C.2<x1<3 D.﹣1<x1<0二、填空题6.(2011秋•册亨县校级月考)用公式法解方程2x2﹣7x+1=0,其中b2﹣4ac= ,x1= ,x2= .三、解答题7.(2014秋•通山县期中)用公式法解方程:2x2﹣4x=5.8.(2014秋•金溪县校级月考)解方程:2x2﹣2x﹣5=0.9.(2013春•石景山区期末)用公式法解方程:x(x)=4.10.(2015•梅州)已知关于x的方程x2+2x+a﹣2=0.(1)若该方程有两个不相等的实数根,求实数a的取值范围;(2)当该方程的一个根为1时,求a的值及方程的另一根.11.(2015•咸宁)已知关于x的一元二次方程mx2﹣(m+2)x+2=0.(1)证明:不论m为何值时,方程总有实数根;(2)m为何整数时,方程有两个不相等的正整数根.12.(2015•昆山市一模)已知关于x的一元二次方程x2+(m+3)x+m+1=0.(1)求证:无论m取何值,原方程总有两个不相等的实数根;(2)若x1、x2是原方程的两根,且|x1﹣x2|=2,求m的值.13.(2015•南充一模)已知关于x的一元二次方程kx2﹣2(k﹣1)x+k﹣2=0(k≠0)(1)小明考查后说,它总有两个不相等的实数根.(2)小华补充说,其中一个根与k无关.请你说说其中的道理.第四讲因式分解法一、学习目标1.会用因式分解法解一元二次方程;2.会用换元法解一元二次方程;3.灵活选用简便的方法解一元二次方程.二、知识回顾1.分解因式的常用方法有哪些?(1)提取公因式法:am+bm+cm= m(a+b+c)(2)公式法:22()()-2(-)++=+222a ab b a b+=,a b a b a ba ab b a b-=+-,2222()(3)十字相乘法:2()()()+++=++x a b x ab x a x b三、新知讲解1.因式分解法把一个多项式分解成几个整式乘积的形式叫做分解因式.当一元二次方程的一边是0,而另一边易于分解成两个一次因式的乘积时,我们可以使两个一次式分别等于0,从而实现降次. 这种解一元二次方程的方法称为因式分解法.2.因式分解法解一元二次方程的步骤:①把方程的右边化为0;②用提公因式法、公式法(这里指因式分解中的公式法)或十字相乘法把方程左边化成两个一次因式乘积的形式;③令每一个因式分别等于0,得到两个一元一次方程;④解这两个一元一次方程,它们的解就是原方程的解.3.因式分解法的条件、理论依据因式分解法解一元二次方程的条件是:方程右边等于0,而左边易于分解;理论依据是:如果两个因式的积等于零,那么至少有一个因式等于零.四、典例探究1.用因式分解法解一元二次方程【例1】用因式分解法解方程:(1)2(2x -1)2=(1-2x );(2)4(y +2)2=(y -3)2. 【解析】(1)移项,提取公因式;(2)移项并利用平方差公式分解因式求解.解:(1)2(2x -1)2=(1-2x )移项,得2(2x -1)2-(1-2x )=0,即:2(2x -1)2+(2x -1)=0,因式分解,得(2x-1)[2(2x-1)+1]=0, 整理,得(2x-1)(4x-1)=0, 解得x 1=12,x 2=14;(2)4(y +2)2=(y -3)2移项,得4(y +2)2-(y -3)2=0因式分解,得[2(y+2)+(y-3)][2(y+2)-(y-3)]=0 整理,得(3y+1)(y+7)=0 解得y 1=-13,y 2=-7.总结:用因式分解法解一元二次方程,是利用了“当ab=0时,必有a=0或者b=0”的结论. 因式分解法解一元二次方程的步骤: (1)把方程的右边化为0;(2)用提公因式法、公式法(这里指因式分解中的公式法)或十字相乘法把方程左边化成两个一次因式乘积的形式;(3)令每一个因式分别等于0,得到两个一元一次方程; (4)解这两个一元一次方程,它们的解就是原方程的解.练1(2014秋•赵县期末)用因式分解法解方程:x 2﹣6x+9=(5﹣2x )2解:x 2﹣6x+9=(5﹣2x )2,(x ﹣3)2﹣(5﹣2x )2=0, 因式分解得:(x ﹣3+5﹣2x )(x ﹣3﹣5+2x )=0, 整理得:(2﹣x )(3x ﹣8)=0, 解得:x 1=2,x 2=.点评:此题主要考查了因式分解法解一元二次方程,正确分解因式是解题关键.2.用换元法解一元二次方程【例2】(2014•山西校级模拟)解方程(x ﹣1)2﹣5(x ﹣1)+4=0时,我们可以将x ﹣1看成一个整体,设x ﹣1=y ,则原方程可化为y 2﹣5y+4=0,解得y 1=1,y 2=4.当y=1时,即x ﹣1=1,解得x=2;当y=4时,即x ﹣1=4,解得x=5,所以原方程的解为x 1=2,x 2=5.利用这种方法求方程(2x+5)2﹣4(2x+5)+3=0的解.【解析】先设2x+5=y ,则方程即可变形为y 2﹣4y+3=0,解方程即可求得y (即2x+5)的值,进一步可求出x 的值.解:设x ﹣1=y ,则原方程可化为y 2﹣4y+3=0, 所以(y ﹣1)(y ﹣3)=0 解得y 1=1,y 2=3.当y=1时,即2x+5=1, 解得x=﹣2;当y=3时,即2x+5=3, 解得x=﹣1,所以原方程的解为:x1=﹣2,x2=﹣1.点评:本题运用换元法解一元二次方程.总结:换元法在解特殊一元二次方程的时候用的较多,运用了整体思想.在一元二次方程中,某个代数式几次出现,用一个字母来代替它可以简化问题时,我们可以考虑用换元法来解.解高次方程时,通过换元的方法达到降次的目的.练2(2015•呼和浩特)若实数a、b满足(4a+4b)(4a+4b﹣2)﹣8=0,则a+b=_______.【解析】设a+b=x,则原方程转化为关于x的一元二次方程,通过解该一元二次方程来求x(即a+b)的值.解:设a+b=x,则由原方程,得4x(4x﹣2)﹣8=0,整理,得(2x+1)(x﹣1)=0,解得x1=﹣,x2=1.则a+b 的值是﹣或1.故答案是:﹣或1.点评:本题主要考查了换元法,即把某个式子看作一个整体,用一个字母去代替它,实行等量替换.练3解方程:(x2-3)2-5(3-x2)+4=0.【解析】设x2-3=y,则原方程转化为关于y的一元二次方程,通过解该一元二次方程来求y(即x2-3)的值.解:设x2-3=y,则原方程可化为y2-5(-y)+4=0,即:y2+5y+4=0,因式分解得:(y+1)(y+4)=0,解得y1=-1,y2=-4.当y1=-1时,x2-3=-1,即x2=2,解得x=当y2=-4时,x2-3=-4,即x2-3=-1,方程无实数根.综上,x=3.灵活选用方法解一元二次方程【例3】(2014秋•漳县校级期中)选择适当方法解下列方程:(1)x2﹣5x+1=0;(2)3(x﹣2)2=x(x﹣2);(3)2x2﹣2x﹣5=0;(4)(y+2)2=(3y﹣1)2.【解析】(1)利用配方法得到(x ﹣)2=,然后根据直接开平方法求解;(2)先变形得到3(x﹣2)2﹣x(x﹣2)=0,然后利用因式分解法解方程;(3)先计算判别式的值,然后利用求根公式法求解;(4)先变形得到(y+2)2﹣(3y﹣1)2=0,然后利用因式分解法解方程.解:(1)x2﹣5x=﹣1,x2﹣5x+()2=﹣1+()2,(x﹣)2=,x﹣=±,所以x1=,x2=;(2)3(x﹣2)2﹣x(x﹣2)=0,(x﹣2)(3x﹣6﹣x)=0,所以x1=2,x2=3;(3)△=(﹣2)2﹣4×2×(﹣5)=48x===,所以x1=,x2=;(4)(y+2)2﹣(3y﹣1)2=0,(y+2+3y﹣1)(y+2﹣3y+1)=0,y+2+3y﹣1=0或y+2﹣3y+1=0,所以y1=﹣,y2=.点评:本题考查了一元二次方程的四种常见解法.总结:解一元二次方程常用的方法有直接开平方法、配方法、公式法和因式分解法,根据一元二次方程的特征,灵活选用解方程的方法,可以起到事半功倍的作用.(1)一般地,当一元二次方程一次项系数为0时,即形如ax2+c=0形式的一元二次方程,应选用直接开平方法.(2)若常数项为0,即形如ax2+bx=0的形式,应选用因式分解法.(3)若一次项系数和常数项都不为0,即形如ax2+bx+c=0的形式,看左边的整式是否能够因式分解,如果能,则宜选用因式分解法;不然选用公式法;不过当二次项系数是1,且一次项系数是偶数时,用配方法也较简单.(4)公式法虽然是万能的,对任何一元二次方程都适用,但不一定是最简单的. 因此在解方程时,我们首先考虑能否应用直接开平方法、因式分解法等简单方法,若不行,则再考虑公式法(适当也可考虑配方法).练4(2015春•无锡校级期中)选择合适的方法解下列方程.(1)x2﹣5x﹣6=0;(2)3x2﹣4x﹣1=0;(3)x(x﹣1)=3﹣3x;【解析】(1)根据因式分解法,可得方程的解;(2)根据公式法,可得方程的解;(3)根据因式分解法,可得方程的解;(4)根据公式法,可得方程的解.解:(1)因式分解,得 (x ﹣1)(x ﹣6)=0,解得x 1=6,x 2=﹣1; (2)a=3,b=﹣4,c=﹣1,x 1=,x 2=;(3)方程化简得x 2+2x ﹣3=0, 因式分解,得(x+3)(x ﹣1)=0, 解得x 1=1,x 2=﹣3;(4)a=1,b=﹣2,c=1,x 1=1+,x 2=﹣1+.点评:本题考查了解一元二次方程,根据方程的特点选择适当的方法是解题关键.五、课后小测 一、选择题1.方程(x-16)(x+8)=0的根是( )A. x 1=-16,x 2=8B. x 1=16,x 2=-8C. x 1=16,x 2=8D. x 1=-16,x 2=-8 2. 方程5x(x+3)=3(x+3)的解为( ) A.123,35x x == B.35x = C.123,35x x =-=- D.123,35x x ==-3.(2015•滕州市校级模拟)方程x 2﹣2x=3可以化简为( )A .(x ﹣3)(x+1)=0B .(x+3)(x ﹣1)=0C .(x ﹣1)2=2D .(x ﹣1)2+4=0 二、填空题4.(2015•丽水)解一元二次方程x 2+2x ﹣3=0时,可转化为解两个一元一次方程,请写出其中的一个一元一次方程 . 5.(2014•杭州模拟)方程x (x+1)=2(x+1)的解是 .6.(2013秋•苏州期末)已知(x 2+y 2+1)(x 2+y 2+2)=6,则x 2+y 2的值为 . 三、解答题 7.(2014秋•静宁县期末)解下列方程:(1)x 2﹣2x+1=0(2)x 2﹣2x ﹣2=0(3)(x ﹣3)2+2(x ﹣3)=0. 8.(2014秋•沧浪区校级期末)解下列方程:(1)x 2﹣4x ﹣3=0(2)(x ﹣2)2=3(x ﹣2) (3)2(﹣x )2﹣(x ﹣)﹣1=0.9.(2014秋•宛城区校级期中)为了解方程(x 2﹣1)2﹣5(x 2﹣1)+4=0,我们可以将x 2﹣1看作一个整体,然后设x 2﹣1=y ,则(x 2﹣1)2=y 2,那么原方程可化为y 2﹣5y+4=0,解得y 1=1,y 2=4.当y=1时,x 2﹣1=1,x 2=2,x=±.。
1.2.2 一元二次方程的解法-配方法考点一.配方法解一元二次方程: (1)配方法解一元二次方程: 将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法. (2)配方法解一元二次方程的理论依据是公式:. (3)用配方法解一元二次方程的一般步骤: ①把原方程化为的形式; ②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1; ③方程两边同时加上一次项系数一半的平方; ④再把方程左边配成一个完全平方式,右边化为一个常数; ⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解.要点:(1)配方法解一元二次方程的口诀:一除二移三配四开方;(2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方.(3)配方法的理论依据是完全平方公式.考点二、配方法的应用1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值.4.用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用.题型1:配方法解一元二次方程1.用配方法解一元二次方程2620x x -+=,此方程可化为( )A .2(3)7x -=B .2(3)11x -=C .2(3)7x +=D .2(3)11x +=【答案】A 【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后可得答案.2222()a ab b a b ±+=±【解析】解:2620x x -+=Q ,262x x \-=-,则26929x x -+=-+,即()237x -=,故选:A .【点睛】本题主要考查解一元二次方程的能力,解题的关键是熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法.2.用配方法解一元二次方程23610x x +-=时,将它化为()2x a b +=的形式,则a b +的值为( )A .103B .73C .2D .433.用配方法解下列方程时,配方有错误的是( )A .22990x x --=化为2(1)100x -=B .2890x x ++=化为2(4)25x +=C .22740t t --=化为2781416t æö-=ç÷èøD .23420x x --=化为221039x æö-=ç÷èø【答案】B【分析】根据配方的步骤计算即可解题.【解析】()2222890,89,816916,47x x x x x x x ++=+=-++=-++=故B 错误.且ACD 选项均正确,故选:B【点睛】考查了用配方法解一元二次方程,配方步骤:第一步平方项系数化1;第二步移项,把常数项移到右边;第三步配方,左右两边加上一次项系数一半的平方;第四步左边写成完全平方式;第五步,直接开方即可.4.关于y 的方程249996y y -=,用___________法解,得1y =__,2y =__.【答案】 配方 102 98-【分析】利用配方法解一元二次方程即可得.【解析】249996y y -=,24499964y y -+=+,2(2)10000y -=,2100y -=±,1002y =±+,12102,98y y ==-,故答案为:配方,102,98-.【点睛】本题考查了利用配方法解一元二次方程即可得,熟练掌握配方法是解题关键.5.用配方法解方程ax 2+bx +c =0(a ≠0),四个学生在变形时得到四种不同结果,其中配方正确的是( )A .2224()24b ac b x a a -+=B .2224()22b b ac x a a -+=C .2224()24b b ac x a a -+=D .2222()22b b ac x a a ++=6.用配方法解方程22103x x -+=,正确的是( )A .212251()1,,333x x x -===-B .224(),39x x -==C .238(29x -=-,原方程无实数解D .2()1839x -=-,原方程无实数解7.用配方法解下列方程:(1)2352x x -=;(2)289x x +=;(3)212150x x +-=;(4)21404x x --=;(5)2212100x x ++=;(6)()22040x px q p q ++=-³.8.ABC D 的三边分别为a 、b 、c ,若8+=b c ,21252bc a a =-+,按边分类,则ABC D 是______三角形【答案】等腰【分析】将8+=b c ,代入21252bc a a =-+中得到关系式,利用完全平方公式变形后,根据非负数的性质求出a 与c 的值,进而求出b 的值,即可确定出三角形形状.【解析】解:∵8+=b c ∴8b c =- ,∴()288bc c c c c =-=-+,∴2212528bc a a c c =-+=-+,即2212361680a a c c -+++-=,整理得:()()22640a c -+-=,∵()260a -³,()240c -³,∴60a -=,即6a =;40c -=,即4c =,∴844b =-=,则△ABC 为等腰三角形.故答案是:等腰.【点睛】此题考查了配方法的应用,非负数的性质,以及等腰三角形的判定,熟练掌握完全平方公式是解本题的关键.9.如果一个三角形的三边均满足方程210250x x -+=,则此三角形的面积是______10.已知三角形的三条边为,,a b c ,且满足221016890a a b b -+-+=,则这个三角形的最大边c 的取值范围是( )A .c >8B .5<c <8C .8<c <13D .5<c <13【答案】C【分析】先利用配方法对含a 的式子和含有b 的式子配方,再根据偶次方的非负性可得出a 和b 的值,然后根据三角形的三边关系可得答案.【解析】解:∵a 2-10a +b 2-16b +89=0,∴(a 2-10a +25)+(b 2-16b +64)=0,∴(a -5)2+(b -8)2=0,∵(a -5)2≥0,(b -8)2≥0,∴a -5=0,b -8=0,∴a =5,b =8.∵三角形的三条边为a ,b ,c ,∴b -a <c <b +a ,∴3<c <13.又∵这个三角形的最大边为c ,∴8<c <13.故选:C .【点睛】本题考查了配方法在三角形的三边关系中的应用,熟练掌握配方法、偶次方的非负性及三角形的三边关系是解题的关键.题型3:配方法的应用2-比较整式大小与求值问题11.若M =22x -12x +15,N =2x -8x +11,则M 与N 的大小关系为( )A .M ≥NB .M >NC .M ≤ND .M <N 【答案】A【解析】∵M=22x -12x +15,N=2x -8x +11,∴M-N=222222(21215)(811)2121581144(2)x x x x x x x x x x x -+--+=-+-+-=-+=- .∵2(2)0x -³,∴M-N ³0,∴M ³N.故选A.点睛:比较两个含有同一字母的代数式的大小关系时,当无法直接比较两者的大小关系时,可以通过求出两者的“差”,再看“差”的值是“正数”、“负数”或“0”来比较两者的大小.12.已知下面三个关于x 的一元二次方程2ax bx c 0++=,2bx cx a 0++=,2cx ax b 0++=恰好有一个相同的实数根a ,则a b c ++的值为( )A .0B .1C .3D .不确定【答案】A【分析】把x =a 代入3个方程得出a •a 2+ba +c =0,ba 2+ca +a =0,ca 2+a •a +b =0,3个方程相加即可得出(a +b +c )(a 2+a +1)=0,即可求出答案.【解析】把x =a 代入ax 2+bx +c =0,bx 2+cx +a =0,cx 2+ax +b =0得:a •a 2+ba +c =0,ba 2+ca +a =0,ca 2+a •a +b =0,相加得:(a +b +c )a 2+(b +c +a )a +(a +b +c )=0,13.已知实数m ,n ,c 满足2104m m c -+=,22112124n m m c =-++,则n 的取值范围是( )A .74n ³-B .74n >-C .2n ³-D .2n >-14.若x 为任意实数时,二次三项式26x x c -+的值都不小于0,则常数c 满足的条件是( )A .0c ³B .9c ³C .0c >D .9c >【答案】B【分析】把二次三项式进行配方即可解决.【解析】配方得:226(3)9x x c x c -+=--+∵2(3)0x -³,且对x 为任意实数,260x x c -+³∴90c -+³∴9c ³故选:B【点睛】本题考查了配方法的应用,对于二次项系数为1的二次三项式,加上一次项系数一半的平方,再减去这个数即可配成完全平方式.15.无论x 、y 取任何实数,多项式x 2+y 2-2x -4y+16的值总是_______数.【答案】正【解析】x 2+y 2-2x -4y +16=(x 2-2x +1)+(y 2-4y +4)-1-4+16=(x -1)2+(y -2)2+11,由于(x -1)2≥0,(y -2)2≥0,故(x -1)2+(y -2)2+11≥11,所以x 2+y 2-2x -4y +16的值总是正数.故答案为正.点睛:要证明一个式子的值总是正数,可以用配方法将式子写成多个非负数之和与一个正数的和的形式即可证明.16.不论x ,y 为什么数,代数式4x 2+3y 2+8x ﹣12y +7的值( )A .总大于7B .总不小于9C .总不小于﹣9D .为任意有理数【答案】C【分析】先将原式配方,然后根据偶次方的非负性质,判断出代数式的值总不小于−9即可.【解析】解:4x 2+3y 2+8x ﹣12y +7=4x 2+8x +4+3y 2−12y +3=4(x 2+2x +1)+3(y 2−4y +1)=4(x +1)2+3(y 2−4y +4−4+1)=4(x +1)2+3(y −2)2−9,∵(x +1)2≥0,(y −2)2≥0,∴4x 2+3y 2+8x ﹣12y +7≥−9.即不论x 、y 为什么实数,代数式4x 2+3y 2+8x ﹣12y +7的值总不小于−9.故选:C .【点睛】此题主要考查了配方法的应用,以及偶次方的非负性质的应用,要熟练掌握.解决本题的关键是掌握配方法.17.若12123y z x +--==,则x 2+y 2+z 2可取得的最小值为( )A .3B .5914C .92D .618.关于代数式12a a ++,有以下几种说法,①当3a =-时,则12a a ++的值为-4.②若12a a ++值为2,则a =③若2a >-,则12a a ++存在最小值且最小值为0.在上述说法中正确的是( )A .①B .①②C .①③D .①②③19.我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a ,b ,c ,记2a b c p ++=,则其面积S =.这个公式也被称为海伦—秦九韶公式.若3p =,2c =,则此三角形面积的最大值是_________.20.已知y=x,y均为实数),则y的最大值是______.21.已知152a b c +--=-,则a b c ++=____________22.已知212y x x c =+-,无论x 取任何实数,这个式子都有意义,则c 的取值范围_______.【答案】c <−1【分析】将原式分母配方后,根据完全平方式的值为非负数,只需−c−1大于0,求出不等式的解集即可得到c 的范围.【解析】原式分母为:x 2+2x−c =x 2+2x +1−c−1=(x +1)2−c−1,∵(x +1)2≥0,无论x 取任何实数,这个式子都有意义,∴−c−1>0,解得:c <−1.故填:c <−1【点睛】此题考查了配方法的应用,以及分式有意义的条件,灵活运用配方法是解本题的关键.23.(1)设220,3a b a b ab >>+=,求a b a b+-的值.(2)已知代数式257x x -+,先用配方法说明:不论x 取何值,这个代数式的值总是正数;再求出当x 取何值时,这个代数式的值最小,最小值是多少?24.选取二次三项式2(0)ax bx c a ++¹中的两项,配成完全平方式的过程叫作配方.例如①选取二次项和一次项配方:2242(2)2x x x -+=--;②选取二次项和常数项配方:2242(4)x x x x -+=+-或2242((4x x x x -+=+-+;③选取一次项和常数项配方:22242x x x -+=-.根据上述材料解决下面问题:(1)写出284x x -+的两种不同形式的配方.(2)已知22330x y xy y ++-+=,求y x 的值.(3)已知a 、b 、c 为三条线段,且满足()222214(23)a b c a b c ++=++,试判断a 、b 、c 能否围成三角形,并说明理由.25.若实数x ,y ,z 满足x <y <z 时,则称x ,y ,z 为正序排列.已知x =﹣m 2+2m ﹣1,y =﹣m 2+2m ,若当m 12>时,x ,y ,z 必为正序排列,则z 可以是( )A .m 14+B .﹣2m +4C .m 2D .1A.甲B.乙C.丙D.丁故选:D .【点睛】本题考查了解一元二次方程,掌握配方法是解题的关键.7.代数式243x x -+的最小值为( ).A .1-B .0C .3D .5【答案】A【分析】利用配方法对代数式做适当变形,通过计算即可得到答案.【解析】代数式()2224344121x x x x x -+=-+-=--∵()220x -³,∴()2211x --³-即代数式2|431x x -+³-,故选:A .【点睛】本题考查了完全平方公式和不等式的知识;解题的关键是熟练掌握完全平方公式和不等式的性质,从而完成求解.8.已知625N m =-,22M m m =-(m 为任意实数),则M 、N 的大小关系为( )A .M N<B .M N >C .M N =D .不能确定【答案】B 【分析】求出M N -的结果,再判断即可.【解析】根据题意,可知()22226258169490M N m m m m m m -=--+=-++=-+>,所以M N >.故选:B .【点睛】本题主要考查了整式的加减运算,配方法的应用,掌握配方法是解题的关键.9.若22242021p a b a b =++++,则p 的最小值是( )A .2021B .2015C .2016D .没有最小值【答案】C【分析】将等式右边分组,配成两个完全平方式,即可根据平方的非负性进行解答.【解析】解:22242021p a b a b =++++2221442016a ab b =++++++()()2221442016a ab b =++++++()()22120162a b ++=++,∵()210a +³,()220b +³,∴p 的最小值为2016,故选:C .【点睛】本题主要考查了配方法的应用,解题的关键是将原式分组配方.10.新定义:关于x 的一元二次方程21()0a x m k -+=与22()0a x m k -+=称为“同族二次方程”.如22021(3)40x -+=与23(3)40x -+=是“同族二次方程”.现有关于x 的一元二次方程22(1)10x -+=与()()22480a x b x ++-+=是“同族二次方程”,那么代数式22021ax bx ++能取的最小值是( )A .2013B .2014C .2015D .2016【答案】D【分析】根据同族二次方程的定义,可得出a 和b 的值,从而解得代数式的最小值.【解析】解:22(1)10x -+=Q 与2(2)(4)80a x b x ++-+=为同族二次方程.22(2)(4)8(2)(1)1a x b x a x \++-+=+-+,22(2)(4)8(2)2(2)3a x b x a x a x a \++-+=+-+++,∴42(2)83b a a -=-+ìí=+î,解得:510a b =ìí=-î.∴()22220215102021512016ax bx x x x ++=-+=-+\当1x =时,22021ax bx ++取最小值为2016.故选:D .【点睛】此题主要考查了配方法的应用,解二元一次方程组的方法,理解同族二次方程的定义是解答本题的关键.二、填空题11.将一元二次方程2410x x -+=变形为()2x h k +=的形式为______三、解答题。
解一元二次方程一、直接开方法由应用直接开平方法解形如x 2=p (p≥0),那么(mx+n )2=p (p≥0),那么【类型一】用直接开平方法解一元二次方程例1. 运用开平方法解下列方程: (1)4x 2=9;(2)(x +3)2-2=0.解:(1)由4x 2=9,得x 2=94,两边直接开平方,得x =±32,∴原方程的解是x 1=32,x 2=-32. (2)移项,得(x +3)2=2.两边直接开平方,得x +3=± 2.∴x +3=2或x +3=- 2.∴原方程的解是x 1=2-3,x 2=-2-3.【类型二】直接开平方法的应用例2. 若一元二次方程ax 2=b (ab >0)的两个根分别是m +1与2m -4,则ba =________.解析:∴ax 2=b ,∴x =±ba,∴方程的两个根互为相反数,∴m +1+2m -4=0,解得m =1,∴一元二次方程ax 2=b (ab >0)的两个根分别是2与-2,∴b a =2,∴ba=4,故答案为4.【类型三】直接开平方法与方程的解的综合应用例3. 若一元二次方程(a +2)x 2-ax +a 2-4=0的一个根为0,则a =________. 解析:∴一元二次方程(a +2)x 2-ax +a 2-4=0的一个根为0,∴a +2≠0且a 2-4=0,∴a =2.故答案为2.【类型四】直接开平方法的实际应用例4. 有一个边长为11cm 的正方形和一个长为13cm ,宽为8cm 的矩形,要作一个面积为这两个图形的面积之和的正方形,边长应为多少厘米?解:设新正方形的边长为x cm ,根据题意得x 2=112+13×8,即x 2=225,解得x =±15.因为边长为正,所以x =-15不合题意,舍去,所以只取x =15.答:新正方形的边长应为15cm. 应用拓展例5.某公司一月份营业额为1万元,第一季度总营业额为3.31万元,求该公司二、三月份营业额平均增长率是多少? 分析:设该公司二、三月份营业额平均增长率为x , 那么二月份的营业额就应该是(1+x ),三月份的营业额是在二月份的基础上再增长的,应是(1+x )2. 解:设该公司二、三月份营业额平均增长率为x . 那么1+(1+x )+(1+x )2=3.31 把(1+x )当成一个数,配方得:(1+x+12)2=2.56,即(x+32)2=2.56 x+32=±1.6,即x+32=1.6,x+32=-1.6方程的根为x 1=10%,x 2=-3.1因为增长率为正数,所以该公司二、三月份营业额平均增长率为10%.二、配方法配方法解方程的一般步骤.(1)化二次项系数为1,即方程两边同时除以二次项系数. (2)移项,使方程左边为二次项和一次项,右边为常数项.(3)要在方程两边各加上一次项系数一半的平方.(注:一次项系数是带符号的)(4)方程变形为(x+m)2=n 的形式.(5)如果右边是非负实数,就用直接开平方法解这个一元二次方程;如果右边是一个负数,则方程在实数范围内无解【类型一】配方例1.用配方法解一元二次方程x 2-4x =5时,此方程可变形为( )A .(x +2)2=1B .(x -2)2=1C .(x +2)2=9D .(x -2)2=9解析:由于方程左边关于x 的代数式的二次项系数为1,故在方程两边都加上一次项系数一半的平方,然后将方程左边写成完全平方式的形式,右边化简即可.因为x 2-4x =5,所以x 2-4x +4=5+4,所以(x -2)2=9.故选D.方法总结:用配方法将一元二次方程变形的一般步骤:(1)把常数项移到等号的右边,使方程的左边只留下二次项和一次项;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【类型二】利用配方法解一元二次方程例2.用配方法解方程:x 2-4x +1=0.解析:二次项系数是1时,只要先把常数项移到右边,然后左、右两边同时加上一次项系数一半的平方,把方程配成(x +m )2=n (n ≥0)的形式再用直接开平方法求解.解:移项,得x 2-4x =-1.配方,得x 2-4x +(-2)2=-1+(-2)2.即(x -2)2=3.解这个方程,得x -2=± 3.∴x 1=2+3,x 2=2- 3.方法总结:用配方法解一元二次方程,实质上就是对一元二次方程变形,转化成开平方所需的形式.【类型三】用配方解决求值问题例3.已知:x 2+4x +y 2-6y +13=0,求x -2yx 2+y 2的值. 解:原方程可化为(x +2)2+(y -3)2=0,∴(x +2)2=0且(y -3)2=0,∴x =-2且y =3,∴原式=-2-613=-813.【类型四】用配方解决证明问题例4.(1)用配方法证明2x -4x +7的值恒大于零;(2)由第(1)题的启发,请你再写出三个恒大于零的二次三项式.证明:(1)2x 2-4x +7=2(x 2-2x )+7=2(x 2-2x +1-1)+7=2(x -1)2-2+7=2(x -1)2+5.∵2(x -1)2≥0,∴2(x -1)2+5≥5,即2x 2-4x +7≥5,故2x 2-4x +7的值恒大于零.(2)x 2-2x +3;2x 2-2x +5;3x 2+6x +8等. 【类型五】配方法与不等式知识的综合应用例5.证明关于x 的方程(m -8m +17)x +2mx +1=0不论m 为何值时,都是一元二次方程.解析:要证明“不论m 为何值时,方程都是一元二次方程”,只需证明二次项系数m 2-8m +17的值不等于0.证明:∵二次项系数m 2-8m +17=m 2-8m +16+1=(m -4)2+1,又∵(m -4)2≥0,∴(m -4)2+1>0,即m 2-8m +17>0.∴不论m 为何值时,原方程都是一元二次方程.三、公式法b 2-4ac>0↔一元二次方程ax 2+bx+c=0(a ≠0)有两个不相等的实根;b 2-4ac=0 ↔一元二次方程ax 2+bx+c=0(a ≠0)有两个相等的实根;b 2-4ac<0↔一元二次方程ax 2+bx+c=0(a ≠0)没有实数根及其它的运用.【类型一】判断一元二次方程根的情况例1.不解方程,判断下列方程的根的情况.(1)2x 2+3x -4=0;(2)x 2-x +14=0;(3)x 2-x +1=0.解析:根据根的判别式我们可以知道当b 2-4ac ≥0时,方程才有实数根,而b 2-4ac <0时,方程没有实数根.由此我们不解方程就能判断一元二次方程根的情况.解:(1)2x 2+3x -4=0,a =2,b =3,c =-4,∴b 2-4ac =32-4×2×(-4)=41>0.∴方程有两个不相等的实数根.(2)x 2-x +14=0,a =1,b =-1,c =14.∴b 2-4ac =(-1)2-4×1×14=0.∴方程有两个相等的实数根. (3)x 2-x +1=0,a =1,b =-1,c =1.∴b 2-4ac =(-1)2-4×1×1=-3<0.∴方程没有实数根.【类型二】由一元二次方程根的情况确定字母系数的取值例2.已知关于x 的一元二次方程(a -1)x -2x +1=0有两个不相等的实数根,则a 的取值范围是( )A .a >2B .a <2C .a <2且a ≠1D .a <-2解析:由于一元二次方程有两个不相等的实数根,判别式大于0,得到一个不等式,再由二次项系数不为0知a -1不为0.即4-4(a -1)>0且a -1≠0,解得a <2且a ≠1.选C.方法总结:若方程有实数根,则b 2-4ac ≥0.由于本题强调说明方程是一元二次方程,所以,二次项系数不为0.因此本题还是一道易错题.【类型三】说明含有字母系数的一元二次方程根的情况例3.已知:关于x 的方程2x +kx -1=0,求证:方程有两个不相等的实数根.证明:Δ=k 2-4×2×(-1)=k 2+8,无论k 取何值,k 2≥0,所以k 2+8>0,即Δ>0,∴方程2x 2+kx -1=0有两个不相等的实数根.方法总结:要说明一个含字母系数的一元二次方程的根的情况,只需求出该方程根的判别式,分析其正、负情况,即可得出结论.【类型四】一元二次方程的根的情况的实际应用例4.小林准备进行如下操作实验:把一根长为40cm 的铁丝剪成两段,并把每一段各围成一个正方形.小峰对小林说:“这两个正方形的面积之和不可能等于48cm 2”,他的说法对吗?请说明理由.解:假设能围成.设其中一个正方形的边长为x ,则另一个正方形的边长是(10-x ),由题可得,x 2+(10-x )2=48.化简得x 2-10x +26=0.因为b 2-4ac =(-10)2-4×1×26=-4<0,所以此方程没有实数根.所以小峰的说法是对的.【类型五】用公式法解一元二次方程 例5.用公式法解下列方程:(1)2x 2+x -6=0;(2)x 2+4x =2;(3)5x 2-4x +12=0;(4)4x 2+4x +10=1-8x .解析:方程(1)(3)是一元二次方程的一般形式,可以直接确定a ,b ,c 的值,并计算b 2-4ac 的值,然后代入求根公式,即可求出方程的根;方程(2)(4)则需要先化成一般形式,再求解.解:(1)这里a =2,b =1,c =-6,b 2-4ac =12-4×2×(-6)=1+48=49.∴x =-b ±b 2-4ac 2a =-1±492×2=-1±74,即原方程的解是x 1=-2,x 2=32.(2)将方程化为一般形式,得x 2+4x -2=0.∵b 2-4ac =24,∴x =-4±242=-2± 6.∴原方程的解是x 1=-2+6,x 2=-2- 6.(3)∵b 2-4ac =-224<0,∴原方程没有实数根.(4)整理,得4x 2+12x +9=0.∵b 2-4ac =0,∴x 1=x 2=-32.方法总结:用公式法解一元二次方程时,一定要先将方程化为一般形式,再确定a ,b ,c 的值.【类型六】一元二次方程解法的综合运用例6.三角形的两边分别为2和6,第三边是方程x 2-10x +21=0的解,则第三边的长为( )A .7B .3C .7或3D .无法确定解析:解一元二次方程x 2-10x +21=0,得x 1=3,x 2=7.根据三角形三边的关系,第三边还应满足4<x <8.所以第三边的长x =7.故选A. 应用拓展例7.若关于x 的一元二次方程(a -2)x 2-2ax+a+1=0没有实数解,求ax+3>0的解集(用含a 的式子表示).分析:要求ax+3>0的解集,就是求ax>-3的解集,那么就转化为要判定a 的值是正、负或0.因为一元二次方程(a -2)x 2-2ax+a+1=0没有实数根,即(-2a )2-4(a -2)(a+1)<0就可求出a 的取值范围.解:∵关于x 的一元二次方程(a -2)x 2-2ax+a+1=0没有实数根. ∴(-2a )2-4(a -2)(a+1)=4a 2-4a 2+4a+8<0 a<-2∵ax+3>0即ax>-3∴x<-3 a∴所求不等式的解集为x<-3 a四、当堂练习1.将二次三项式x2-4x+1配方后得().A.(x-2)2+3 B.(x-2)2-3 C.(x+2)2+3 D.(x+2)2-32.(m2-n2)(m2-n2-2)-8=0,则m2-n2的值是().A.4 B.-2 C.4或-2 D.-4或23.已知x2-8x+15=0,左边化成含有x的完全平方形式,其中正确的是().A.x2-8x+(-4)2=31 B.x2-8x+(-4)2=1 C.x2+8x+42=1 D.x2-4x+4=-11 4.如果mx2+2(3-2m)x+3m-2=0(m≠0)的左边是一个关于x的完全平方式,则m等于(). A.1 B.-1 C.1或9 D.-1或95.一元二次方程x2-ax+1=0的两实数根相等,则a的值为().A.a=0 B.a=2或a=-2C.a=2 D.a=2或a=06.已知k≠1,一元二次方程(k-1)x2+kx+1=0有根,则k的取值范围是().A.k≠2 B.k>2 C.k<2且k≠1 D.k为一切实数7.下列方程中,一定有实数解的是()A.x2+1=0 B.(2x+1)2=0 C.(2x+1)2+3=0 D.(12x-a)2=a8.方程x2+4x-5=0的解是________.9.当x=______时,代数式x2-8x+12的值是-4.10.若关于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根为0,则m的值是_____.11.代数式2221x xx---的值为0,则x的值为________.12.已知(x+y)(x+y+2)-8=0,求x+y的值,若设x+y=z,则原方程可变为_______,•所以求出z的值即为x+y的值,所以x+y的值为___13.已知三角形两边长分别为2和4,第三边是方程x2-4x+3=0的解,求这个三角形的周长.14.如果x2-4x+y2,求(xy)z的值.15.某集团公司为适应市场竞争,赶超世界先进水平,每年将销售总额的8%作为新产品开发研究资金,该集团2000年投入新产品开发研究资金为4000万元,2002年销售总额为7.2亿元,求该集团2000年到2002年的年销售总额的平均增长率.16.新华商场销售某种冰箱,每台进货价为2500•元,•市场调研表明:•当销售价为2900元时,平均每天能售出8台;而当销售价每降50元时,平均每天就能多售出4台,商场要想使这种冰箱的销售利润平均每天达5000元,每台冰箱的定价应为多少元?17.某电厂规定:该厂家属区的每户居民一个月用电量不超过A 千瓦时,•那么这户居民这个月只交10元电费,如果超过A 千瓦时,那么这个月除了交10•元用电费外超过部分还要按每千瓦时100A元收费. (1)若某户2月份用电90千瓦时,超过规定A 千瓦时,则超过部分电费为多少元?(•用A 表示)(2根据上表数据,求电厂规定的A 值为多少?。