动压滑动轴承润滑状态与磨损分析
- 格式:pdf
- 大小:1.89 MB
- 文档页数:4
滑动轴承的故障诊断分析一、滑动轴承的分类及其特点1、静压轴承静压轴承的间隙只影响润滑油的流量,对承载能力影响不大,因此、静压轴承可以不必调整间隙,静压轴承在任何转速下都能保证液体润滑,所以理论上对轴颈与轴瓦的材料无要求。
实际上为防止偶然事故造成供油中断,磨坏轴承轴承,轴颈仍用45#,轴瓦用青铜等。
2、动压轴承动压滑动轴承必须在一定的转速下才能产生压力油膜。
因此、不适用于低速或转速变化范围较大而下限转速过低的主轴。
轴承中只产生一个压力油膜的单油楔动压轴承,当载荷、转速等条件变化时,单油楔动压轴承的油膜厚度和位置也随着变化,使轴心线浮动,而降低了旋转精度和运动平稳性。
多油楔动压轴承一定的转速下,在轴颈周围能形成几个压力油楔,把轴颈推向中央,因而向心性好。
异常磨损:由于安装时轴线偏斜、负载偏载、轴承背钢与轴承座孔之间有硬质点和污物,轴或轴承座的刚性不良等原因,造成轴承表面严重损伤。
其特征为:轴承承载不均、局部磨损大,表面温度升高,影响了油膜的形成,从而使轴承过早失效。
二、常见的滑动轴承故障●轴承巴氏合金碎裂及其原因1.固体作用:油膜与轴颈碰摩引起的碰撞及摩擦,以及润滑油中所含杂质(磨粒)引起的磨损。
2.液体作用:油膜压力的交变引起的疲劳破坏。
3.气体作用:润滑膜中含有气泡所引起的汽蚀破坏。
●轴承巴氏合金烧蚀轴承巴氏合金烧蚀是指由于某种原因造成轴颈与轴瓦发生摩擦,使轴瓦局部温度偏高,巴氏合金氧化变质,发生严重的转子热弯曲、热变形,甚至抱轴。
当发生轴承与轴颈碰摩时,其油膜就会被破坏。
摩擦使轴瓦巴氏合金局部温度偏高,而导致巴氏合金烧蚀,由此引起的轴瓦和轴颈的热胀差,进一步加重轴瓦和轴颈的摩擦,形成恶性循环。
当轴瓦温度T大于等于230°C时,轴承巴氏合金就已烧蚀。
三、机理分析大多滑动轴承由于运行过程中处于边界润滑状态所以会产生滑动摩擦现象,同时又居有一定的冲击能量和势能,所以存在与产生滑动摩擦和碰摩相同的故障机理。
机械设计基础(Ⅲ)实验报告 班级姓名液体动压滑动轴承油膜压力分布和摩擦特性曲线 学号一、 概述液体动压滑动轴承的工作原理是通过轴颈的旋转将润滑油带入摩擦表面,由于油的粘性(粘度)作用,当达到足够高的旋转速度时油就被挤入轴与轴瓦配合面间的楔形间隙内而形成流体动压效应,在承载区内的油层中产生压力,当压力的大小能平衡外载荷时,轴与轴瓦之间形成了稳定的油膜,这时轴的中心对轴瓦中心处于偏心位置,轴与轴瓦间的摩擦是处于完全液体摩擦润滑状态,其油膜形成过程及油膜压力分布如图6-1所示。
图6-1 建立液体动压润滑的过程及油膜压力分布图滑动轴承的摩擦系数f 是重要的设计参数之一,它的大小与润滑油的粘度η(Pa.s)、轴的转速n(r/min)和轴承压强p(Mpa)有关,令pnηλ=式中,λ——轴承摩擦特性系数。
图6-2 轴承摩擦特性曲线观察滑动轴承形成液体摩擦润滑过程中摩擦系数变化的情况,f-λ关系曲线如图6-2所示,曲线上有摩擦系数最低点,相应于这点的轴承摩擦特性系数λkp称为临界特性数。
在λkp以右,轴承建立液体摩擦润滑,在λkp以左,轴承为非液体摩擦润滑,滑动表面之间有金属接触,因此摩擦系数f 随λ减小而急剧增大,不同的轴颈和轴承材料、加工情况、轴承相对间隙等,λkp也随之不同。
本实验的目的是:了解轴承油膜承载现象及其参数对轴承性能的影响;掌握油膜压力、摩擦系数的测试及数据处理方法。
二、 实验要求1、在轴承载荷F=188kgf 时,测定轴承周向油膜压力和轴向油膜压力,用坐标纸绘制出周向和轴向油膜压力分布曲线,并求出轴承的实际承载量。
在轴承载荷F=128kgf 时,测定轴承周向油膜压力和轴向油膜压力,用计算机进行数据处理,得出周向和轴向油膜压力分布曲线及轴承的承载量。
2、测定轴承压力、轴转速、润滑油粘度与摩擦系数之间的关系,用计算机进行数据处理,得出轴承f-λ曲线。
三、 实验设备及原理本实验使用 HZS-1型液体动压轴承实验台,它由传动装置、加载装置、摩擦系数测量装置、油膜压力测量装置和被试验轴承和轴等所组成。
一、实验目的1. 了解滑动轴承的结构和工作原理。
2. 测量轴承的径向和轴向油膜压力分布曲线。
3. 观察径向滑动轴承液体动压润滑油膜的形成过程和现象。
4. 分析轴承在不同载荷和速度条件下的性能变化。
二、实验原理滑动轴承是利用液体动压原理,通过在轴承和轴颈之间形成油膜,减小摩擦和磨损,保证机器的正常运转。
实验中,通过测量油膜压力分布,可以分析轴承的润滑性能和工作状态。
三、实验仪器与设备1. 滑动轴承实验台2. 轴承加载装置3. 润滑油泵4. 压力传感器5. 数据采集系统6. 计算机及实验软件四、实验步骤1. 将实验台安装好,检查各部件连接是否牢固。
2. 添加润滑油,确保油量充足。
3. 启动润滑油泵,调节转速至预定值。
4. 打开轴承加载装置,逐步增加载荷。
5. 使用压力传感器测量轴承的径向和轴向油膜压力。
6. 记录实验数据,包括转速、载荷、油膜压力等。
7. 改变转速和载荷,重复实验步骤。
五、实验结果与分析1. 径向油膜压力分布曲线实验结果显示,轴承的径向油膜压力分布曲线呈抛物线形状。
在轴承中心区域,油膜压力最大,随着距离轴承中心的增加,油膜压力逐渐减小。
这是因为液体动压原理使得油膜压力在轴承中心区域达到最大值。
2. 轴向油膜压力分布曲线实验结果显示,轴承的轴向油膜压力分布曲线呈线性形状。
在轴承中心区域,轴向油膜压力最大,随着距离轴承中心的增加,轴向油膜压力逐渐减小。
这是由于轴承受到轴向载荷,使得轴向油膜压力在轴承中心区域达到最大值。
3. 载荷对油膜压力的影响实验结果显示,随着载荷的增加,轴承的径向和轴向油膜压力均呈上升趋势。
这是因为载荷的增加使得轴承受到更大的压力,导致油膜压力增大。
4. 转速对油膜压力的影响实验结果显示,随着转速的增加,轴承的径向和轴向油膜压力均呈下降趋势。
这是因为转速的增加使得油膜厚度减小,导致油膜压力降低。
六、实验结论1. 滑动轴承的径向和轴向油膜压力分布曲线呈抛物线和线性形状。
动压滑动轴承实验指导书一、实验学时本实验2学时。
二、实验目的1. 观察油膜的形成与破裂现象、分析影响动压滑动轴承油膜承载能力的主要因素;2. 测量轴承周向及轴向的油膜压力、绘制其油膜压力分布曲线;3. 测定轴承的摩擦力、绘制轴承特性(λ−f )曲线;4. 掌握动压滑动轴承试验机的工作原理及其参数测试方法。
(1) 油膜压力(周向和轴向)的测量; (2) 转速的测量;(3) 摩擦力及摩擦系数的测量;三、实验机的构造及参数测试原理直流电机 2-V 形带 3-箱体 4-压力传感器 5-轴瓦 6-轴7-加载螺杆8-测力杆 9-测力传感器 10-载荷传感器 11-操作面板 图1 1.传动装置直流电机1通过V 带2驱动轴6旋转。
轴6由两个滚动轴承支承在箱体3上,其转速由面板11上的电位器进行无级调速。
本实验机的转速范围3~375转/分,转速由数码管显示。
2.加载方式由加载螺杆7和载荷传感器10组成加载装置,转动螺杆7可改变外加载荷的大小。
载荷传感器的信号经放大和A/D 转换后由数码管显示其载荷数值。
加载范围0~80㎏,不允许超过100㎏。
3. 油膜压力的测量在轴瓦5中间截面120°的承载区内(见图2左图)钻有七个均布的小孔,分别与七只压力传感器4接通,用来测量径向油膜压力。
距正中小孔的B/4轴承有效长度处,另钻一个小孔连接第八只压力传感器,用来测量轴向压力。
图2压力传感器的信号经放大、A/D 转换分别由数码管显示轴承径向油膜压力和周向油膜压力。
4. 摩擦系数的测量在轴瓦外圆的后端装有测力杆8(见图1),测力杆紧靠测力传感器9,轴旋转后,轴承间的摩擦力矩应由力臂作用于测力传感器所产生的摆动力矩相平衡。
即302F 2M L Fc D L Fc L F D F C M ⋅=⋅=⋅=⋅故 摩擦系数(3)式中:F — 轴承外载荷 (N) F=外加载荷 + 轴承自重=750 N 30FL Fc F f ⋅==F M L -力臂长度 (mm ) F M — 轴承的摩擦力 (N) F C — 测力传感器读数四、实验数据处理及绘制有关曲线为消除载荷对机械系统变形引起测量的误差,通常在载荷不变的情况下,分级改变转速,测量各级转速下有关参数,然后进行计算处理和绘制有关曲线。
滑动轴承动压润滑的形成过程滑动轴承是一种广泛应用于各种机械设备中的支撑和定位元件,其主要功能是在相对运动的轴和座之间传递力和扭矩。
为了减小摩擦、磨损和发热,提高设备的运行效率和寿命,滑动轴承需要采用一定的润滑方式。
动压润滑是滑动轴承中最常用的一种润滑方式,其形成过程涉及到许多复杂的物理现象。
本文将对滑动轴承动压润滑的形成过程进行详细的分析。
1. 动压润滑的基本原理动压润滑是指在相对运动的轴和座之间,由于油膜的压力差产生的剪切力,使油膜产生压力梯度,从而在轴和座之间形成稳定的油膜。
当轴和座之间的相对速度足够大时,油膜的压力差足以克服摩擦力,使轴和座之间实现无接触的相对运动。
动压润滑的基本原理可以用牛顿第二定律来解释:当轴和座之间的相对速度足够大时,油膜的压力差产生的剪切力与摩擦力相平衡,从而使轴和座之间实现无接触的相对运动。
2. 动压润滑的形成条件要实现滑动轴承的动压润滑,需要满足以下条件:(1)轴和座之间存在一定的相对速度。
只有当轴和座之间的相对速度足够大时,油膜的压力差才能产生足够的剪切力,使轴和座之间实现无接触的相对运动。
(2)润滑油具有一定的黏度。
润滑油的黏度越大,油膜的承载能力越强,但黏度过大会影响油膜的形成和稳定。
因此,需要选择合适的润滑油,以保证动压润滑的效果。
(3)轴和座之间有一定的间隙。
为了保证油膜的形成和稳定,轴和座之间需要保持一定的间隙。
间隙过小会导致油膜破裂,间隙过大则会使油膜不稳定。
3. 动压润滑的形成过程滑动轴承动压润滑的形成过程可以分为以下几个阶段:(1)启动阶段:当轴和座之间的相对速度逐渐增大时,润滑油被挤压到轴和座之间的间隙中。
由于润滑油具有一定的黏度,油分子在受到挤压后会发生变形,形成一个初始的油膜。
此时,油膜的厚度较小,承载能力较弱。
(2)稳定阶段:随着轴和座之间的相对速度继续增大,油膜的厚度逐渐增加,承载能力逐渐增强。
当油膜的压力差产生的剪切力与摩擦力相平衡时,轴和座之间实现无接触的相对运动,动压润滑形成。