水电模拟渗流实验
- 格式:pptx
- 大小:358.99 KB
- 文档页数:12
水工渗流教学实验指导书武汉大学水利水电学院二零零六年四月第一部分 导电液模型实验电拟渗流实验的基本原理由欧姆定律可知,电场中电流密度向量i 在空间坐标轴上的三个投影为:x U i x ∂∂-=ρ1,y U i y ∂∂-=ρ1,zUi z ∂∂-=ρ1。
① 式中:ρ1为电场中导电介质的导电系数,ρ为电阻系数;U 为电位,在电场中是x 、y 、z坐标的函数,由克希霍夫第一定律,电流的连续方程为:0=∂∂+∂∂+∂∂zi y i x i zy x 。
② 如果导电介质的导电系数ρ1为常数,将①式代入②式,便得到电流场中的拉普拉斯方程如下:0222222=∂∂+∂∂+∂∂z Uy U x U 。
③ 从恒定渗流场的运动方程出发,表示恒定渗流速度向量u 的达西定律为:zHku yHku xHku z y x ∂∂-=∂∂-=∂∂-=,,。
④ 式中:H 为水头;k 为渗透系数。
将④式代入恒定不可压缩流体的连续微分方程式:0=∂∂+∂∂+∂∂zu y u x u zy x 。
⑤ 则得到水头函数的拉普拉斯方程式:0222222=∂∂+∂∂+∂∂zHy H x H 。
⑥ 比较③式和⑥式可知,电流场中的电位U 和渗流场中的水头H 一样,都满足拉普拉斯方程。
如果导电材料做成的电模型与渗流区域作到几何相似、边界条件相似、导电系数与渗透系数相似,则由表一可知,通过在电场中量测电位线,即可得到渗流场中的等水头线。
对于几何相似,一般可通过正态模型来实现;关于电导系数与渗透系数相似,对均质各向同性土,可用电导系数为常数的导电体来模拟;关于边界条件相似,由于透水边界为一等水头线,在模型电场中应做成等电位边界,并且对上下游透水边界的水头差,在相应的电位边界中也保持一定的电位差。
对不透水边界,在模型电场中应做成不导电的绝缘边界。
图一(b )即为根据二向平面问题渗流场的几何形状制造成的模型和所测得的等势线。
表一、渗流与电模拟参数对照表图一、二向平面问题渗流等势线。
实验二渗流槽剖面二维渗流实验一、实验目的1.观察有入渗补给的潜水二维稳定流的渗流现象及特征。
2.求降雨入渗强度W值,并和实测值进行比较。
3.求含水层的渗透系数K值。
二、实验装置图2—1为渗流槽示意图,其长度L= 380 cm,宽度B= 50 cm,槽内有均匀的砂,槽顶设有模拟降雨装置,由转子流量计(M)测定总降雨量。
槽的两端装有活动的溢水装置,分别用以稳定河A和河8的水位,升、降可以控制两侧水位的高低,并通过进水阀门K控制供水水源。
槽底和后壁面沿流向按一定间距设有多组测压管孔(每铅直断面6个为一组)。
管孑L用橡皮管和测压管板连接,可以测定渗流场内点的测压水头。
图2-1渗流槽装置示意图K-进水阀;M—转子流量计三、实验步骤(1)领取量筒和秒表。
(2)检查并排除测压管内可能存在的空气。
(3)观察有入渗补给、两河水位相等(HA=HB)条件下,河间地块分水岭的位置及潜水面的形状。
(4)测定向河流的排泄量(用体积法),以求得彬值。
(5)由转子流量计(M)读降雨量QM。
(6)升降溢水装置A或B,使HA>HB(高差不要太大),待稳定后观察分水岭的移动及各测压管水位的变化特点,并记录测压管读数。
(7)重复(4)、(5)两步骤。
四、实验成果1.实验数据记录含水层宽度B=50 cm,长度L=380 cm,面积A=cm2。
2.数据计算(以表2—1、表2—2资料为依据,计算结果见表2—3)。
3.在方格纸上绘制实测潜水面、计算潜水面以及剖面流网。
4.问题讨论(1)同一铅直面上,各测压管水头是否相等?试用流网分析为什么?(2)分析计算所得的w值产生误差的原因?(3)进行步骤(6)时,假如使两侧河流水位高差很大时,渗流可能出现什么现象?(4)实验装置中A,B,…,W,X共24根测压管沿流向布置;l~6的6根沿铅直方向布置,表2-2所记录的测压管读数中,哪一排读数的连线最接近潜水面?(5)试分析计算的分水岭位置a和观测的分水岭位置a数值不一致的原因。
水闸缝隙槽渗流实验报告实验目的:通过水闸缝隙槽渗流实验,研究水闸缝隙槽渗流的规律及其对水闸的影响,为水利工程中水闸的设计和维护提供参考。
实验原理:在水利工程中,水闸起到调节水位、控制流量的作用。
而水闸缝隙槽是用于调节水闸水位的重要部分,它的性能直接影响着水闸的使用效果。
水闸缝隙槽的渗流是指水从缝隙槽中渗透出去或渗透进来的过程。
渗流对水闸缝隙槽的稳定性和使用寿命有很大的影响。
实验材料和设备:1.水槽:用于模拟水闸缝隙槽的渗流。
2.不透水板:用于控制水流的流向和速度。
3.水泵:用于提供供水。
4.测量工具:用于测量水位、流速等参数。
实验步骤:1.将水槽倾斜,形成一个坡度。
2.在水槽的下部安装不透水板,控制水流的流向。
3.调整水泵的供水量,使得水流在缝隙槽中渗流。
4.测量不同位置的水位、流速等参数,并记录下来。
5.改变不同条件(如缝隙槽的宽度、水泵的供水量等),重新进行实验,并记录相关数据。
实验结果:通过多次实验,我们得到了水闸缝隙槽渗流的相关数据,并进行了数据分析。
实验结果表明,水闸缝隙槽的渗流与缝隙槽的宽度、倾斜角度、水泵的供水量等因素密切相关。
当缝隙槽的宽度适中,并且倾斜角度合理时,渗流速度相对较慢,对水闸的稳定性和使用寿命较好。
而当缝隙槽的宽度过大或者倾斜角度过小时,渗流速度增大,可能会导致水闸缝隙槽的损坏。
实验结论:1.水闸缝隙槽的渗流与缝隙槽的宽度、倾斜角度、水泵供水量等因素密切相关。
2.适度的缝隙槽宽度和倾斜角度有利于减缓渗流速度,提高水闸缝隙槽的稳定性和使用寿命。
3.过大的缝隙槽宽度和过小的倾斜角度会导致渗流速度增大,对水闸缝隙槽造成损坏。
4.对水闸缝隙槽进行定期检查和维护是保障水闸正常运行的重要措施。
实验改进:在实验过程中,我们可以进一步改进实验方法和设备,以提高实验的准确性和可靠性。
例如,可以安装更多的传感器和测量仪器,以测量更多的参数;可以采用数字化的数据采集和处理方法,提高数据处理的效率和精确度。
渗流物理实验教学设计引言渗流现象是地质、环境、土木等领域中普遍存在的一种物理现象,对于理解土壤水分运动、地下水流以及环境污染等问题具有重要的意义。
因此,在地质学、环境科学等专业中,渗流物理实验是一项非常基础的实验课程。
同时,由于渗流过程具有相对复杂的物理学特征,因此实验教学仍然存在一定的困难。
本文旨在探讨渗流物理实验教学的设计,包括实验内容、实验设备、实验步骤、实验数据处理以及教学评估等方面,目的是提高学生对渗流物理实验的理解和实验技能。
实验内容和设备本实验课程的主要内容是对于不同土壤、水头压力以及孔隙度条件下的渗流物理现象进行定性和定量的实验探究。
下面是主要的实验设备:•土柱:由于土壤的不同性质以及深度对于渗流现象的影响,因此需要选择不同的土壤进行实验。
土柱可以用来模拟真实的土壤条件;•压力台:用于生成不同的水头压力,不同的渗流速率和渗透系数;•流量计:用于测量不同的渗流流速以及流通状态下的流量;•水箱:用于储存水以及模拟地下水流的环境;•传感器:用于实时监测实验中的数据,如土柱内渗透压力、水头压力、流速等。
实验设备的选择应根据实验目的进行调整,如实验可以增加土壤温度和pH值等参数以进一步细化实验内容。
实验步骤步骤一:制备土柱1.取得所需的不同土壤样品,并将土壤通过筛网筛选,去除不需要的杂质;2.将土壤样品与一定数量的水混合均匀,可以通过手工或机器进行;3.在圆柱形的容器中,按照一定的压实程度将土壤填充到容器内,通常容器直径为10厘米,高度为30厘米;4.利用工具将土壤压实,保证填充后的土壤的密度均匀。
步骤二:测量初始条件1.测量土柱的初始重量、体积图像;2.测量土柱内初始的渗透压力值。
步骤三:进行实验1.放置土柱,在其的底部连接流量计,从上部注入一定量的水,采集流量计的数据;2.通过调整压力台中的水头压力,改变水头差,即水位高差,推动渗流进程,采集实验数据;3.重复步骤二和三,改变注入水的流速和水头压力,并采集数据;4.记录实验中的数据,包括流量、孔隙度、水头压力、渗透压力和土壤含水量;5.可以通过调整水的温度、pH值等因素,进行更加细致的实验。
渗流场油井干扰模拟实验【实验目的】1.通过水电模拟实验研究,掌握水电模拟相似原理;2. 掌握绘制径向流时等压线的方法。
【实验内容】1. 测定两口生产井和一口注水井共同作业时渗流场中各口井等压线的分布。
2. 此装置还可测定水平井水平段渗流场的等压线分布。
【实验原理】1.水电相似原理水电模拟实验装置是根据渗流场和电场的相似原理建立的,其相似原理如实验二。
2.势的叠加原理油气田开发时大量生产井、注入井同时工作,而且各井投产先后不同,已投产的井在工作期间产量、压力等工作制度也经常变化,新投产井会使原来渗流场发生变化,井与井之间工作制度改变也会影响邻近井的产量和压力分布,这种井间相互影响的现象称为井间干扰。
多井同时工作时,地层中任一点的压降应等于各井以各自不变的产量单独工作时在该点造成的压降的代数和。
势的迭加原理就是若均质等厚不可压缩无限大地层上有许多个点源、点汇同时工作,地层中任一点的势(势差)应该等于每个点源、点汇单独工作时在该点所引起的势(势差)的代数和。
根据水电相似理论,用电场模拟渗流场,电解质模拟地层的渗流阻力,在模型水槽中放置两口负电位模拟两口生产井,一个正电位模拟一口注水,他们同时加电时,各井之间就形成了电势干扰。
渗流场中势的叠加原理是解决油气藏几口井同时作业时渗流场中各等势线的分布的基本原理。
由于每口井的工作都会影响到地层内各点压力降低,当有多井工作时,地层中任一点M 的压降,应等于各井单独工作时对M 点引起的压降的总和。
对M 点而言,形成的压降为M e p p -,相应的势差就等于M e Φ-Φ。
当有n 口井同时工作时,地层中任一点的压降应等于各井单独工作时对M 点引起的压降的代数和,即()∑=Φ-Φ=Φ-Φn i Mi ei M e 1 式中:Mi Φ——第i 井单独工作时的M 点的势。
势的迭加原理:若均质等厚不可压缩无限大地层上有许多个点源、点汇同时工作,地层中任一点的势(势差)应该等于每个点源、点汇单独工作时在该点所引起的势(势差)的代数和。
中国石油大学渗流力学实验报告实验日期:2013.11.18 成绩:_________班级:石工11-13学号:11021626姓名: 李华教师: 霸天—同组者:小—实验三水电模拟渗流实验一、水电模拟原理1、水电相似原理利用电场模拟地层流体的渗流规律,机理在于流体通过多孔介质流动的微分方程与电荷通过导体材料流动的微分方程之间的相似性,即水-电相似原理。
多孔介质中流体的流动遵守达西定律:grad (p)(3-1) 式中,v—流速,m/s;q—流量,cm3/s; A —渗流截面积,cm2;K —渗透率,J m2;J—流体粘度,mPa £;P—压力,O.lMPa。
通过导体的电流遵守欧姆定律:、二」grad (U) (3-2)S式中,「为电导率,是电阻率的倒数,西门子/cm ;U —电压,伏;、:-电流密度,安培/cm2;I-电流,安培,S-导体截面积,cm2。
均质地层不可压缩流体通过多孔介质稳定渗流连续性方程:div.£ grad (P)j = 0 (3-3) 均匀导体中电压分布方程:div ' grad(U) = 0 (3-4) 对比方程上述方程可以看出:电场与渗流场可用相同的微分方程进行描述,因此,不可压缩流体的稳定渗流问题可用稳定电场进行模拟。
于是可以用电位分布来描述渗流场的压力分布,用电流来描述流量或流速,电阻描述渗流阻力。
2、水电相似准则物理模拟模型各参数与油层原型相应参数之间存在比例关系,称为相似系数。
各相似系数之间满足一定的约束条件,称为相似准则。
水电模拟各相似系数定义如下:1)几何相似系数模型的几何参数与油层的相应几何参数的比值。
即:(3-5) 任意点的几何相似系数必须相同。
2)压力相似系数模型中两点之间的电位差与地层中两相应点之间的压差的比值。
即:2U \C p m(3-6)Po3)阻力相似系数模型中的电阻与油层中相应位置渗流阻力的比值。
即:(3-7) 4)流动相似系数模型中电解质溶液的电导率与地层流体流度的比值。
实验一不稳定流渗流实验一、实验目的通过不稳定流条件下的渗流实验,加深对达西定律的理解,从而认识到达西定律既适用于稳定流条件也适用于不稳定流条件。
稳定流条件也适用于不稳定流条件。
二、实验装置如图1—1所示,圆管A下段装有待测定的砂样,底端为铜丝网,砂样表层铺放薄层细砾。
实验开始时,圆管上部装满水,水便通过砂样渗流,圆管上部水位则逐渐下降。
圆管下端放在盛水器皿B中,通过砂样渗流到器皿中的水会自动溢出,以固定渗流段下游水位。
排水容器E通过排水管随时排走盛水器皿溢出的水。
三、实验原理利用达西定律和水均衡原理可以证明图1—1所示的装置中,水头H与时间呈半对数关系,即试验过程中测定不同时间的水头值,作t-lgH关系曲线(图1—2)。
利用直线的斜率m求渗透系数k。
四、实验步骤(1)熟悉仪器结构以及秒表操作方法与读数,实验分工,建议一人观察水头变化,一人看秒表,一人记录。
(2)将盛水器皿充满水,并将渗透管的下端放入盛水器皿B的水面之下约1cm。
(3)用量杯对试样充水,使其自由渗透2-3次,以饱和砂土,排除空气。
(4)记下初始水头H0,对透明管充水到渗透管零点上方。
待水位下降至零刻度,开动秒表记时。
(5)水位下降到预先设计的降深值(1,2,3,…,10cm)时,记录对应的时间(表1—1)。
(6)重复实验步骤(4)和(5)1~2次,进行核对。
(7)改变渗透管下端没入盛水器皿的深度(离器皿底部约1cm)进行同样实验,记录读数。
(8)与不同砂样的小组交换仪器重复上述步骤(4)~(7)的实验,做好记录。
五、实验成果,1.提交实验数据记录(表1—1)。
2.数据处理(1)在坐标纸上绘制两种砂样的t—lgH曲线。
(2)计算渗透系数K(表1—2)。
3.问题讨论(1)达西定律的应用条件(2)渗透管的出水端口在器皿不同深度时,渗透速度有何变化?为什么?(对比实验资料说明)(3)本实验中,测定水位H的基准面在何处?实验二渗流槽剖面二维渗流实验一、实验目的1.观察有入渗补给的潜水二维稳定流的渗流现象及特征;2.求降雨入渗强度w值,并和实测值进行比较。
渗流力学上机实验报告实验三实验名称:理想系统不稳定渗流井壁压力计算实验目的:了解渗流力学中最有代表性的三种渗流方式:平面线性渗流、平面径向渗流、空间球形渗流的求解方法、井壁压力及其导数的变化规律。
实验原理:1、渗流力学中常用的无量纲量(SI 单位制)举例:3322() 1.84210;;1.84210()0.15923.6;;i i D D D i w i w D D D t w t w wkh p p p p q Bp p q q B p p kh p p kt C rt C r c r c hr r μμφμφ----⨯==⨯--===2、按此无量纲定义,以径向渗流为例,其无量纲控制方程组为:221D D DD D D D p p p r r r t ∂∂∂+=∂∂∂初始条件:(,0)0D D p r =内边界条件:11D D D D r p r r =⎡⎤∂=-⎢⎥∂⎣⎦外边界条件:(,)0D D p t ∞=3、压力导数渗流力学常用的压力导数定义为:ln dp dpt d t dt =对于不稳定渗流过程,压力导数比压力更敏感,能够比较清晰地反映流体渗流的方式。
实验内容:1、平面线性渗流压力分布2(,))4D D D D D D D D x p x t x m x erfc t ==--井壁压力及其压力导数()wD D p t =ln wD Ddp d t =2、平面径向渗流压力及压力导数为21(,)()24D D D D D r p r t Ei t =-- 2242411()ln 2424D D DDr r t t D D D D D D Ddp r e t er d t t t --=-=3、球形空间渗流(,)1D D D D r p r t erf =-140.5Dt wD D D dp e dt --=附图如下实验四:实验名称:一维单向饱和度场数学模拟实验目的:理解油水两相渗流的物理意义,以及在水驱油过程中相对渗透率变化规律、含水率的变化规律以及饱和度的分布规律。