药剂学:第四章 药物微粒分散系的基础理论
- 格式:ppt
- 大小:759.50 KB
- 文档页数:68
第一章绪论1.药剂学:研究药物制剂的基本理论、处方设计、制备工艺、质量控制及合理使用的综合性应用技术科学2.剂型:为适应治疗或预防的需要而制备的不同给药形式,称为药物剂型,简称剂型(Dosage form)3.制剂:为适应治疗或预防的需要而制备的不同给药形式的具体品种,称为药物制剂,简称药剂学任务:是研究将药物制成适于临床应用的剂型,并能批量生产安全、有效、稳定的制剂,以满足医疗卫生的需要。
药物剂型的重要性:改变药物作用性质,降低或消除药物的毒副作用,调节药物作用速度,靶向作用,影响药效药剂学的分支学科工业药剂学物理药剂学药用高分子材料学生物药剂学药物动力学临床药剂学药典作为药品生产、检验、供应和使用的依据第二章:药物制剂的稳定性药物制剂稳定性的概念药物制剂的稳定性系指药物在体外的稳定性,是指药物制剂在生产、运输、贮藏、周转,直至临床应用前的一系列过程中发生质量变化的速度和程度。
药用溶剂的种类(一)水溶剂是最常用的极性溶剂。
其理化性质稳定,能与身体组织在生理上相适应,吸收快,因此水溶性药物多制备成水溶液(二)非水溶剂在水中难溶,选择适量的非水溶剂,可以增大药物的溶解度。
1.醇类如乙醇、2.二氧戊环类 3.醚类甘油。
4.酰胺类二甲基乙酰胺、能与水混合,易溶于乙醇中。
5.酯类油酸乙酯。
6.植物油类如豆油、玉米油、芝麻油、作为油性制剂与乳剂的油相。
7.亚砜类如二甲基亚砜,能与水、乙醇混溶。
介电常数(dielectric constant)溶剂的介电常数表示在溶液中将相反电荷分开的能力,它反映溶剂分子的极性大小。
溶解度参数溶解度参数表示同种分子间的内聚能,也是表示分子极性大小的一种量度。
溶解度参数越大,极性越大。
溶解度(solubility)是指在一定温度下药物溶解在溶剂中达饱和时的浓度,是反映药物溶解性的重要指标。
溶解度常用一定温度下100g溶剂中(或100g溶液,或100ml溶液)溶解溶质的最大克数来表示,亦可用质量摩尔浓度mol/kg或物质的量浓度mol/L来表示。
第四章药物微粒分散体系一、概念与名词解释1.分散体系2.扩散双电层模型3.DLVO理论4.临界聚沉状态二、判断题(正确的填A,错误的填B)1.药物微粒分散系是热力学稳定体系,动力学不稳定体系。
( )2.药物微粒分散系是动力学稳定体系,热力学不稳定体系。
( )3.药物微粒分散系是热力学不稳定体系,动力学不稳定体系。
( )4.微粒的大小与体内分布无关。
( )5.布朗运动可以提高微粒分散体系的物理稳定性,而重力产生的沉降降低微粒分散体系的稳定性。
( )6.分子热运动产生的布朗运动和重力产生的沉降,两者降低微粒分散体系的稳定性。
( ) 7.微粒表面具有扩散双电层。
双电层的厚度越大,则相互排斥的作用力就越大,微粒就越稳定。
( )8.微粒表面具有扩散双电层。
双电层的厚度越小,则相互排斥的作用力就越大,微粒就越稳定。
( )9.微粒体系中加入某种电解质使微粒表面的ζ升高,静电排斥力阻碍了微粒之间的碰撞聚集,这个过程称为反絮凝。
( )10.微粒体系中加入某种电解质使微粒表面的ζ升高,静电排斥力阻碍了微粒之间的碰撞聚集,这个过程称为絮凝。
( )11.微粒体系中加入某种电解质,中和微粒表面的电荷,降低双电层的厚度,使微粒间的斥力下降。
( )12.微粒体系中加入某种电解质,中和微粒表面的电荷,降低双电层的厚度,使微粒表面的ζ上升。
( )13.微粒体系中加入某种电解质,中和微粒表面的电荷,降低双电层的厚度,使微粒表面的ζ降低,会出现反絮凝现象。
( )14.微粒体系中加入某种电解质,中和微粒表面的电荷,降低双电层的厚度,使微粒间的斥力下降,出现絮凝状态。
加入的电解质叫絮凝剂。
( )15.絮凝剂是使微粒表面的ζ降低到引力稍大于排斥力,引起微粒分散体系中的微粒形成絮凝状态的电解质。
( )16.絮凝剂是使微粒表面的ζ升高,使排斥力大于吸引力,引起微粒分散体系中的微粒形成絮凝状态的电解质。
( )17.反絮凝剂是使微粒表面的ζ升高,使到排斥力大于吸引力,引起微粒分散体系中的微粒形成絮凝状态的电解质。
《药剂学》学位考试大纲(适用于成人高等教育本科生级起)一、课程名称:药剂学教材:药剂学(第版),崔福德主编.人民卫生出版社, 年二、考试内容与要求第一章绪论.掌握药剂学、剂型、制剂的概念.熟悉药物剂型的重要性、剂型的分类;掌握药物传递系统()的含义及辅料在药物制剂中的应用;.了解药典、药品标准、处方与非处方药、、、的概念.了解药剂学的任务和分支学科,了解国内外药剂学的发展第二章药物溶液的形成理论. 掌握常用药用溶剂的种类及性质. 掌握药物溶解度的定义、测定方法;影响药物溶解度的因素及增加溶解度的方法;掌握溶出速度的定义及影响药物溶出速度的因素. 熟悉介电常数、溶解度参数的定义与应用. 了解药物溶液的性质与测定方法第三章表面活性剂. 掌握表面活性剂的概念、结构特征;掌握表面活性剂的分类级具体品种. 掌握表面活性的基本性质(胶束、、值及计算、增溶、昙点,点). 熟悉表面活性剂的生物学性质,表面活性剂的应用(增溶剂、乳化剂、润湿剂、气泡剂和消泡剂、去污剂、消毒剂和杀菌剂等). 了解表面活性剂的吸附性第四章药物微粒分散系的基础理论. 掌握分散体系的概念、分类、基本特性及其在药剂学中的应用. 掌握微粒分散体系的物理稳定性(热力学性质、动力学性质、光学性质、电学性质);絮凝与反絮凝. 熟悉微粒大小的测定方法;微粒大小与体内分布的关系;微粒分散体系的热力学、动力学、光学性质. 了解微粒分散体系的物理稳定性相关理论第五章药物制剂的稳定性. 掌握药物稳定性的概念;研究药物制剂稳定性的意义,研究范围;有效期的概念和计算. 掌握影响药物制剂降解的因素(处方因素和外界因素)及稳定化的方法. 掌握原料药稳定性实验的内容(影响因素试验、加速试验、长期试验);药物制剂稳定性实验内容(加速试验、长期试验);掌握经典恒温法预测药物有效期. 熟悉药物的物理稳定性特点和制剂物理变化的表现形式. 了解药物化学降解途径第六章粉体学基础(自主学习). 熟悉粉体定义及基本性质(粒子径、粒度分布、粒子的比表面积、粉体密度及空隙率、粉体的流动性,粉体的吸湿性与润湿性). 熟悉真密度、颗粒密度、松密度等粉体密度的概念. 掌握粉体流动性的影响因素及改善方法,水溶性药物和水不溶性药物的吸湿性特点及定义. 了解粉体粒子及粉体基本性质的测定方法;了解粉体黏附性与压缩性质。
第四章 药物微粒分散体系一、概念与名词解释 分散体系 扩散双电层模型 DLVO 理论 临界聚沉状态 1. 2. 3. 4.B) 动力学不稳定体系。
热力学不稳定体系。
二、判断题(正确的填A ,错误的填 药物微粒分散系是热力学稳定体系, 药物微粒分散系是动力学稳定体系, 药物微粒分散系是热力学不稳定体系,动力学不稳定体系。
1. 2. 3. 4. 5. 微粒的大小与体内分布无关。
( ) 布朗运动可以提高微粒分散体系的物理稳定性,而重力产生的沉降降低微粒分散体系的稳定性。
( ) 6.分子热运动产生的布朗运动和重力产生的沉降, 7.微粒表面具有扩散双电层。
双电层的厚度越大, 稳定。
( ) 8.微粒表面具有扩散双电层。
双电层的厚度越小, 稳定。
( ) 两者降低微粒分散体系的稳定性。
( )则相互排斥的作用力就越大,微粒就越 则相互排斥的作用力就越大,微粒就越9. 微粒体系中加入某种电解质使微粒表面的 t 升高,静电排斥力阻碍了微粒之间的碰撞聚集, 这个过程称为反絮凝。
( ) 10.微粒体系中加入某种电解质使微粒表面的 t 升高,静电排斥力阻碍了微粒之间的碰撞聚集,这个过程称为絮凝。
( 11. 微粒体系中加入某种电解质,力下降。
( ) 12. 微粒体系中加入某种电解质, Z 上升。
() 13. 微粒体系中加入某种电解质, Z 降低,会出现反絮凝现象。
(14. 微粒体系中加入某种电解质, ) 中和微粒表面的电荷,降低双电层的厚度,使微粒间的斥 中和微粒表面的电荷, 降低双电层的厚度,使微粒表面的 中和微粒表面的电荷, )中和微粒表面的电荷, (降低双电层的厚度,使微粒表面的力下降,出现絮凝状态。
加入的电解质叫絮凝剂。
15. 絮凝剂是使微粒表面的 凝状态的电解质。
( ) 16. 絮凝剂是使微粒表面的 絮凝状态的电解质。
( z 降低到引力稍大于排斥力, 降低双电层的厚度,使微粒间的斥 )引起微粒分散体系中的微粒形成絮z^高,使排斥力大于吸引力,引起微粒分散体系中的微粒形成 17. 反絮凝剂是使微粒表面的 形成絮凝状态的电解质。