A-多时间尺度协调的源-荷互动调度的模型与策略研究
- 格式:pdf
- 大小:436.66 KB
- 文档页数:11
一种“源-网-荷-储”协同优化调度模型
王季;陈瑞
【期刊名称】《电气自动化》
【年(卷),期】2022(44)3
【摘要】为在配电网调度中使每种资源的价值最大化,建立一种基于双层模型的“源-网-荷-储”协同的配电网优化调度策略,通过上下层目标的相互配合达到最终优化效果。
首先,主要考虑分布式风电、分布式光伏在调动配电网中的可控负载和储能配合清洁能源出力的优化调度。
其次,以最低年度综合成本为模型的上层优化目标,以负荷变化量最优为下层优化目标,采用实时优化的协调优化策略。
最后,结合遗传随机权重粒子群算法求解优化模型,通过对IEEE 33节点系统进行仿真分析。
仿真结果表明,基于“源-网-荷-储”协同的配电网双层优化模型是一种更有效且更经济的调度模型。
【总页数】4页(P22-24)
【作者】王季;陈瑞
【作者单位】甘肃省机械科学研究院有限责任公司;兰州理工大学电气工程与信息工程学院;甘肃省工业过程先进控制重点实验室
【正文语种】中文
【中图分类】TM734
【相关文献】
1.一种系统整体最优化的“源—网—荷—储”天然气运营模型
2.兼容需求侧资源的“源-网-荷-储”协调优化调度模型
3."源网荷储"协同的园区微电网优化调度
4.电力物联网下分布式状态感知的源网荷储协同调度
5.源网荷储多元协同调度体系研究与实践
因版权原因,仅展示原文概要,查看原文内容请购买。
源网荷储多元协同调度体系研究与实践发布时间:2023-01-15T09:06:16.502Z 来源:《中国科技信息》2022年9月17期作者:刘长春杨玲伍志龙[导读] 在新的电力体制下,随着可再生能源发电并网规模的不断扩大和电转气的普及以及电转热的推广刘长春杨玲伍志龙国网喀什供电公司新疆喀什 844000摘要:在新的电力体制下,随着可再生能源发电并网规模的不断扩大和电转气的普及以及电转热的推广,电网中可再生能源发电装机占比逐年增加。
文章从我国电网运行实际出发,结合源网荷储协同调度体系,提出了源网荷储协同调度的体系框架,阐述了源网荷储系统协同调度机制。
源网储能、电转热是电力体制改革的重要内容。
关键词:源网荷储;多元;协同调度体系引言随着可再生能源发电并网规模不断扩大和可再生能源的逐步推广,电网运行方式发生了巨大变化:在传统电网中,由于电源装机规模小而导致电力供应的不确定性大,容易出现“弃风弃光”现象;为了解决“弃风、弃光”问题和促进风电、光伏等低碳化清洁能源消纳问题,国家将可再生能源列入了双碳目标任务中。
1 我国源网荷储协同调度的基本现状近年来,我国不断出台支持储能发展的政策措施,储能产业也取得了长足发展。
目前,储能已广泛应用于调峰调频、需求响应、辅助服务市场交易等领域[1]。
从国家层面来看,国家电网公司正在积极推进智能调度系统建设,加强源网荷储一体化应用。
从地方电网层面来看,各省市积极推进“双碳”目标下源网荷储一体化应用的发展思路,积极探索利用储能参与电力系统调峰调频服务等新业态发展模式。
但是在实践中仍存在一些问题。
2基于多元协同的源网荷储协同调度机制分析为了提高新能源发电的消纳,实现清洁能源电力高比例消纳,促进可再生能源产业健康发展,从源网荷储系统运行角度出发,需要在系统中构建一种能适应电网实际场景的协同调度机制,本文提出了基于多元协同的源网荷/储能协同调度机制。
基于多元协同理论的源网荷协同调度,可以充分发挥储能装置在清洁能源发电和储能设备应用上的优势,实现源网之间、源网荷之间以及荷储之间不同层级系统与设备间的资源互补和优化配置[2]。
适应新型电力系统发展的协同调度理论研究摘要:从新的电力发展现状出发,阐述了电力调度必须向协作方向发展的必要性。
本文从理论上探讨了在电力系统的协调过程中如何利用协同作用、协作方式来解决不确定问题,从而达到协同调度的目的。
本文主要探讨了利用主动负载来克服源协同调度、源网络结构形式趋同的问题,并对分布自治和整体规划相结合的源协同调度进行了时变建模、算法和实现。
关键词:新型电力系统;协同调度;理论研究前言作为能源利用与转换的主体之一,电力系统(亦称动力系统)必须向绿色、低碳、环保和节能的资源利用可持续化方向发展,这种趋势也促使电力系统的源(源指主动源、被动源、主动载荷和常规载荷,也即驱动或制动的动力部分)和网(网指输电、配电及其源中电的部分,也即制动或驱动的电力部分)呈现分布、多元、关联、互补的新的复杂形态。
在新形态的电力系统中,如何调度与运行控制面临两个突出的矛盾:一是源电力的有功功率平衡中主动的源与被动的源间的矛盾。
化石能源发电(主动电源)发展处于减缓的态势,风、光、水等可再生能源发电(被动电源)迅猛发展,电动汽车,各类储能,可控、可中断柔性负荷等具有主动行为的技术(简称主动负荷)不断涌现,而且呈现分散、分布的发展趋势,使有限的主动电源和主动负荷应对被动电源和常规负荷的过程中必须面对分散式、分布式、强不确定性接纳能力的考验;二是源有功功率平衡的电压支撑中主动的量与被动的量间的矛盾。
在同步电网为根本的基础上,被动电源不仅以集中方式大规模接入输电网,以分布式、微网等分散形式接入配电网,而且发电呈现异步、直流等紧密依赖于同步电网的方式。
系列的、间接有主动行为(灵活补偿与控制,输配元件状态切换)的柔性控制技术不断涌现,使有限的主动电源和柔性控制技术应对强不确定性下满足源电力的有功功率平衡的支撑中必须面对电网电压支撑、电能传输能力的考验。
1、电力系统调度理论研究的进程演变1.1以协调为主导对电力系统调度的问题,自上世纪20年代到90年代期间,电力系统调度理论研究主要是在主动电源、输电网和常规负荷(配电环节通过聚合负荷等值)间展开理论研究与工程实践,研究与实践的目的是超前地做出电力系统运行调度与控制的预期决策,即给出期望的发电计划,以及围绕该计划应对预测误差的与自动发电控制、自动电压控制以及紧急事故情境下衔接的有功功率备用、无功电压支撑的策略。
第43卷第6期电子器件Vol.43No.6 2020年12月Chinese Journal of ElccLron Devices Dec.2020Model Predictive Control Based Multiple-Time-Scheduling Strategyfor Wind-pv-es Hybrid System*LIU Xiaoyan1,2*(l.Automated institute of Huaian college of Information Technology,Huaian Jiangsu223003,China;2.The Engineering Technology Research and Development Center of Electronic Products EquipmentManufacturing of Jiangsu Province,Huaian Jiangsu223003 ,China)Abstract:A model predictive conLrol based multiple time scheduling strategy is proposed for Lhe wind-pv-energy storage hybrid system.Fistly,a power generation and load demand forecasting model based on gray GM(1,N)-BP neural network is optimized to improve the accuracy of microgrid dispatch operation.Then,a model predictive control based multiple time scheduling strategy is proposed,this strategy giving full consideration to battery power change during charge and discharge operation,takes the day-ahead dispatch plan as the reference,establishes the prediction model based on the multi-step rolling optimization to achieve accurate correction of microgrid operation scheduling,reduce charge and discharge losses of energy storage devices.Finally,the simulation experiment analysis on the proposed control strategy is carried out in order to verify its effectiveness.It is proved that the predictive model better than the traditional single gray prediction strategy,the multiple time scheduling strategy is able to make full use of clean energy,and ensures the systerh running with high economic eficiency and security.Key words:energy storage;microgrid;multiple-time-scheduling;model predictive controlEEACC:8260;8460doi:10・3969/j・issn・1005-9490・2020・06・019风光储微网系统多时间尺度模型预测调度策略刘晓艳1,2*(1.江苏电子信息职业学院自动化学院,江苏淮安223003;2.江苏电子产品装备制造工程技术研究开发中心,江苏淮安223003)摘要:针对风光储微网系统,建立基于模型预测的多时间尺度微网调度策略。
多时间尺度协调的柔性负荷互动响应调度模型与策略一、本文概述随着全球能源结构的转型和智能电网的快速发展,电力系统正面临着前所未有的挑战和机遇。
传统的电力调度模型主要依赖于刚性负荷,但在可再生能源大规模接入和用户需求多样化的背景下,电力系统的稳定性、经济性和可持续性受到了严重挑战。
因此,如何有效管理和调度柔性负荷,实现多时间尺度的协调互动响应,成为了当前电力系统研究的热点和难点。
本文旨在提出一种多时间尺度协调的柔性负荷互动响应调度模型与策略。
通过对柔性负荷的精确建模和预测,结合电力系统的实际运行需求,构建了一个综合考虑经济、环境和社会效益的优化调度模型。
该模型能够实现在不同时间尺度下,柔性负荷与电力系统的协调互动,提高电力系统的稳定性、经济性和可持续性。
本文首先对柔性负荷的定义、分类及其在电力系统中的作用进行了深入分析和阐述。
在此基础上,提出了一种基于多时间尺度的柔性负荷互动响应调度框架,详细描述了各时间尺度下的调度目标和约束条件。
接着,通过构建优化调度模型,实现了对柔性负荷的精细化管理和调度。
通过算例分析和仿真实验,验证了所提模型和策略的有效性和可行性。
本文的研究不仅为电力系统调度提供了新的思路和方法,也为实现电力系统的可持续发展和能源转型提供了有力支持。
未来,我们将继续深入研究柔性负荷的互动响应特性和调度策略,为构建更加智能、高效、环保的电力系统做出更大贡献。
二、多时间尺度协调调度模型在电力系统中,负荷的调度和管理是一个复杂而关键的任务。
传统的调度模型往往只关注单一的时间尺度,难以应对现代电力系统中负荷的多样性和不确定性。
因此,本文提出了一种多时间尺度协调的柔性负荷互动响应调度模型,旨在更好地平衡电力供需,提高电力系统的稳定性和经济性。
该模型将负荷调度过程分为多个时间尺度,包括短期、中期和长期。
每个时间尺度都有不同的调度目标和策略,以适应不同的负荷特性和市场需求。
在短期时间尺度上,模型主要关注实时负荷的预测和调度,以确保电力系统的稳定运行。
0 引言构建以新能源为主体的新型电力系统,推动清洁电力资源大范围优化配置是实现我国“双碳”目标的重要举措[1]。
随着风光等新能源大规模、高比例并网,电力系统受其间歇性、波动性、随机性和通道容量限制等影响加剧[2],这将导致电能质量和潮流阻塞等问题。
可再生能源发电具有季节性不均和短时波动特征,而径流、风电与光伏互补性较强[3],风光水互补运行可以有效利用水电的灵活性补偿风光的波动性和间歇性[4,5]。
由于水风光互补改变了水电的调度运行边界,水库原有调度规则将不再适用,协调目标对象更为复杂[6]。
因此,为真正实现水风光的“长期电量补偿、短期电力补偿”,制定考虑多能互补的水库中长期与短期调度决策是解决新能源出力不稳定的有效途径。
此外,我国提出开展“两个一体化”实施意见[7],强调结合需求侧负荷特性、电源结构和调节能力,充分挖掘新能源消纳能力,确保开发规模与消纳能力匹配,缓解弃电问题。
因此,构建考虑源端多能互补、受端适应电力需求的水库多时间尺度调度决策显得十分重要。
关于水风光一体化系统优化调度方面,国内外专家学者已有许多研究。
在短期互补调度方面,朱燕梅等[8]提出了发电量、出力波动双目标的水光互补短期调度模型,基于改进的出力波动度量方法,提出分阶段波动控制策略,便于光伏规模化接入系统。
张艳华等[9]建立了系统余留负荷均方差最小的梯级水风光电站联合调峰短期调度模型,分析了联合调度的短期调峰能力、梯级短期调度运行产生的影响。
李杨等[10]提出了输电容量限制的梯级水光互补联合发电系统日前鲁棒调峰优化调度方法,考虑梯级水电上、下游水力耦合和机组运行约束,实现了梯级水光互补运行。
上述研究主要针对水风光短期互补策略,虽考虑了短期风光波动性的影响,但缺乏互补系统的中长期运行决策指导,进而难以兼顾系统的长远效益,而水风光互补长期协调需考虑长、短期多尺度耦合调度问题[4]。
在长、短期多尺度耦合调度方面,谭乔凤等[11]研究了大规模风光接入背景下梯级水电站在长期、日前和实时尺度上的调度方式,系统评估了互补调度效益和风险。
智能配电网调度网源荷互动场景及架构研究摘要:智能配电网相比于传统配电网在运行安全性、可靠性、经济性、优质性等方面的要求都大大提高。
随着分布式电源及电动汽车等多样性负荷的接入,传统配电网调度已不能满足智能配电网发展的要求。
本文以包含分布式电源、电动汽车充换电站、微电网等元素的新型配电网为研究对象,分析其长期-中长期-短期等不同时间尺度下的互动场景及源网荷互动条件下智能配电网调度互动框架,为推进智能配电网调度提供参考。
关键词:智能配电网、源网荷互动、互动场景、智能调度引言随着智能电网建设的推进,大量用户侧分布式电源、微电网、电动汽车充换电设施等新元素接入配电系统[1],对配电网的网架结构提出了更高的要求:理想的配电网网架应当在满足工商业楼宇用户、居民小区用户、中小工业用户等多种传统用户用电需求的基础上,能够适应分布式电源等设备的接入和运行需求;通过网源荷之间的灵活互动等策略,实现配电网整体长期高效运行。
但是,受制于多方面原因,接入配电网中的新元素中,光伏电源提供绿色清洁能源,但是其出力与光照相关,具有随机性;基于电价的需求响应项目的执行效果具有较大的不确定性[2-3]。
源网荷互动是多方行为,每个对象都可能根据其他对象的行为并根据自身的目标做出相应的改变,一、网源荷互动场景分析针对当前智能配电网所处的环境,本文梳理了基于供电公司、供售电代理和电力用户的智能配电网调度互动主体间互动关系框架,该调度互动框架涉及多种调度场景,从以年度时间尺度跨度的长期调度到月度时间尺度的中长期调度和一天为时间尺度的日前调度都需要开展网、源、荷三侧可调度资源的互动。
二、中长时间尺度互动场景分析目前,中长期配电网运行方式仅简单考虑夏季负荷的变化,没有考虑工作日与节假日负荷的周期规律性变化,并且常态运行方式(一般负荷和迎峰度夏负荷)作为长期调度来考虑,制定运行方式时未考虑检修计划,运行方式比较固定,未综合考虑检修方式、负荷平衡和保电方式的需求进行运行方式的改变,更没有考虑储能装置、电动汽车充放电设施的影响和作用。