保守系统 应用拉格朗日方程的步骤
- 格式:ppt
- 大小:495.00 KB
- 文档页数:26
第3章拉格朗日方程以动力学普遍方程为基础,拉格朗日导出了两种形式的动力学方程,分别称为第一类和第二类拉格朗日方程。
将达朗贝尔原理与虚位移原理相结合,建立起动力学普遍方程,避免了理想约束力的出现;再把普遍方程变为广义坐标形式,进一步转变为能量形式,导出了第二类拉格朗日方程,实现了用最少数目的方程描述动力系统;应用数学分析中的乘子法,采用直角坐标形式的普遍方程和约束方程而建立的一组动力学方程,是第一类拉格朗日方程,便于程式化处理约束动力系统问题。
拉格朗日方程是分析力学得以发展之源。
3.1 第二类拉格朗日方程第二类拉格朗日方程是分析力学中最重要的动力学方程,它给出动力学问题一个普遍、简单而又统一的解法。
拉格朗日方程只适用于完整约束的质点系。
3.1.1 几个关系式的推证为方便起见,在推导拉格朗日方程前,先推证几个关系式。
质点系由n个质点、s个完整的理想约束组成,它的自由度数为k=3n–s,广义坐标数与自由度数相等。
该系统中,任一质点M i的矢径r i可表示成广义坐标q1,q2,…,q k和时间t的函数,即r i=r i(q1,q2,…,q k,t)i=1,2,…,n它的速度(3-1)i=1,2,…,n式中称为h个广义坐标的广义速度,分别为广义坐标和时间的函数,与广义速度没有直接的关系。
式(3-1)对求偏导数,则有(3-2)这是推证的第一个关系式,它表明,任一质点的速度对广义速度的偏导数等于其矢径对广义坐标的偏导数。
为推证第二个关系式,将式(3-1)对广义坐标q j求偏导数,或(3-3)这是第二个关系式,它表明,任一质点的速度对广义坐标的偏导数等于其矢径对广义坐标的偏导数,再对时间的一阶导数。
再看看质点的动能对广义坐标的偏导数。
有(A)又式(3-2)、式(3-3)代入上式,并注意式(A)的关系,(3-4)3.1.2 第二类拉格朗日方程动力学普遍方程可以改写为(3-5)左侧的第一项主动力的虚功之和,可以用广义力Q h在广义虚位移q h上所做的功之和表示,即(3-6)值得指出,这里的主动力并非平衡问题中的主动力,因此,这里的广义力Q h不等于零。
第二类拉格朗日方程曾凡林哈尔滨工业大学理论力学教研组本讲主要内容1、第二类拉格朗日方程的推导2、第二类拉格朗日方程的应用3、拉格朗日方程的初积分1、第二类拉格朗日方程的推导设由n 个质点组成的系统受m 个理想完整约束作用,系统具有N=3n-m 个自由度。
设q 1, q 2, …, q N 为系统的一组广义坐标,则每个质点的位置:12(,)(12)i i N q q q t i n =×××=×××r r ,,,,,,上式两端进行等时变分运算得到:11...i i i i N N q q t q q t d d d d ¶¶¶=+++¶¶¶r r r r 1N ikk kq q d =¶=¶år 主动力在任意虚位移上所作的虚功之和为:1δnii =×åiF r 1δNkkk Qq ==×å1、第二类拉格朗日方程的推导将以上两式代入动力学普遍方程:1()0nii iii m d =-×=åF rr &&11(δ0N nik i i k k i k Q m q q ==¶-×=¶åår r &&对于完整约束系统,广义坐标相互独立,因此δq k 是任意的,上式成立的话,恒有:0(1,2,...,)nik i i Q m k N q ¶-×==¶år r &&1、第二类拉格朗日方程的推导k Q 广义惯性力上式不便于直接应用,为此可作如下变换:(1)i i k k q q¶¶=¶¶r r &&证明:12()(12)i i N q q q t i n =×××=×××r r ,,,,,,11d d i i i ii k k q qt q q t¶¶¶==++++¶¶¶r r r r r &&&L L 注意和是广义坐标和时间的函数(不含有广义速度项),并且上式只在第k 项含有i k q ¶¶r t ¶¶ir i iq q ¶¶=¶¶r r &&k q&(2)d d i i kkt q q æö¶¶=ç÷¶¶èør r &证明:这实际是一个交换求导次序的问题12()(12)i i N q q q t i n =×××=×××r r ,,,,,,12()i i N k kq q q t q q ¶¶=¶¶r r L ,,,,对时间t 求微分1d d N ii j j kjkk q t q q q t q =æöæöæö¶¶¶¶¶=+ç÷ç÷ç÷¶¶¶¶¶èøèøèøåi r r r &221Ni j j k jk q q q q t =¶¶=+¶¶¶¶åir r &而1()N i i i j j k k j qq q q t=¶¶¶¶=+¶¶¶¶år r r &&111Ni i i i ii N j j N jq q q q q t q t =¶¶¶¶¶=+++=+¶¶¶¶¶år r r r r r &&&&L 221Ni i j j k j k q q q q t =¶¶=+¶¶¶¶år r&d d i i k kt q q æö¶¶=ç÷¶¶èør r&若函数的一阶和二阶偏导数连续12()i i N q q q t =r r L ,,,,1、第二类拉格朗日方程的推导将和代入动力学普遍方程的广义惯性力项中:i i k k q q ¶¶=¶¶r r &&d d i i kkt q q æö¶¶=ç÷¶¶èør r&1ni i i i k m q =¶×¶år r &&11d d )()d d n ni i i i i i i k k m m t q t q ==¶¶=×-×¶¶åår r r r &&11d d nn i i i i i i k k m m t q q ==éù¶¶=×-×êú¶¶ëûåår rr r &&&&&11d1()d 2nni i i i i i i i k k m m t qq ==éù¶¶=×-×êú¶¶ëûåår r r r &&&&&2211d 11()()d 22nni i i i i i k km v m v t q q ==éù¶¶=-êú¶¶ëûåå&记21()ni i T m v =åd ()d k kT Tt q q ¶¶=-¶¶&1、第二类拉格朗日方程的推导将前述结果代入动力学普遍方程:11()δ0N ni k i i k k i k Q m q q ==¶-×=¶åår r &&得到d 0(12)d k k kTTQ k N t qq æö¶¶--==ç÷¶¶èøL &,,,—第二类拉格朗日方程二阶常微分方程组,方程式的数目等于质点系的自由度数。