差动变压器式电感传感器的性能测试.
- 格式:ppt
- 大小:297.50 KB
- 文档页数:16
差动式电感传感器与差动变压器传感器的工作原理差动式电感传感器和差动变压器传感器都是用于测量电流的传感器,它们工作原理类似,但也存在一些不同之处。
差动式电感传感器的工作原理:差动式电感传感器利用电感的特性来测量电流。
它由两个线圈组成:一个主线圈和一个副线圈。
主线圈和被测电流通过,产生一个磁场,然后副线圈以一定的距离与主线圈平行排列。
当通过主线圈的电流变化时,会引起主线圈周围的磁场变化。
这个变化的磁场通过感应作用导致副线圈中的电压发生变化。
这个变化的电压可以用来测量电流的大小。
差动变压器传感器的工作原理:差动变压器传感器也是利用电感的特性来测量电流。
它由两个线圈组成:一个主线圈和一个副线圈。
主线圈和被测电流通过,产生一个磁场,然后副线圈以一定的距离与主线圈平行排列。
当通过主线圈的电流变化时,会引起主线圈周围的磁场变化。
这个变化的磁场通过感应作用导致副线圈中的电压发生变化。
这个变化的电压可以用来测量电流的大小。
差动变压器传感器的一个显著特点是它还可以自动调节输出电压,保持在一个恒定值。
这是因为副线圈中的电流通过闭合回路,从而能够控制输出电流。
由此,差动变压器传感器的输出电流可以保持在一个稳定的水平,这对于一些需要精确测量电流的应用非常重要。
差动式电感传感器和差动变压器传感器的区别:1. 差动变压器传感器可以自动调节输出电流,保持在一个恒定值,而差动式电感传感器则不能实现此功能。
2. 差动变压器传感器主要用于测量大电流,可以测量高达几千安培的电流,而差动式电感传感器则主要用于测量小电流,通常在几十毫安到几十安之间。
3. 差动式电感传感器比差动变压器传感器价格更低,更容易实现。
总之,差动式电感传感器和差动变压器传感器在测量电流方面都有自己的优势和适用范围。
根据具体的应用需求,选择合适的传感器可以提高测量的准确性和可靠性。
实验二差动变压器式电感传感器的静态位移性能一、实验目的1、通过实验,掌握差动变压器式电感传感器的基本工作原理。
二、实验原理差动变压器式电感传感器是利用感应电动势的方法,将物理量(如位移、压力、力等)转换为电信号的电子传感器。
差动变压器式电感传感器的基本组成为:主变压器、感应线圈和吸引式铁芯。
其中主变压器的主要作用是调制、解调信号,感应线圈是感应位移的探头,吸引式铁芯则用于传递感应力或位移作用。
当感应线圈产生了位移时,感应线圈中的磁通量随之变化,从而产生了感应电动势。
通过差动测量,可以得到感应线圈中的感应电动势。
差动变压器式电感传感器在运转中,其电感值随着位移的变化而变化。
最终,差动变压器式电感传感器可以将位移信号转化为电信号,并将转化后的电信号输出。
差动变压器式电感传感器相对于其他传感器的优势在于,其精确度比较高,线性度良好,同时具有较高的抗干扰能力和稳定性,适用于许多高精度位移测量场合。
三、实验器材与仪器2、数字万用表3、直流稳压电源4、温度控制器5、实验样品四、实验步骤1、连接实验装置:将差动变压器式电感传感器、数字万用表、直流稳压电源和温度控制器按照电路线路图连成一整个电路。
待连接完毕后,检查各个实验器材连接是否牢固且正确。
2、打开电源:将直流稳压电源和温度控制器的电源开关打开。
3、调节电源电压:调节直流稳压电源输出电压为3V并固定。
4、测量初始电压:将数字万用表的测量回路连接至差动变压器式电感传感器的输出端口,调节温度控制器以达到室温环境下的温度值。
在测定之前,需要先将应变计(或激光信号测试仪等测试仪器)分别置于初态位置和终态位置,然后测量出其初始电压值和终态电压值,并记录下来。
5、应变测试:通过手动控制实验样品位移并使实验样品进行定量的变化,此时差动测量器的输出电压值也会相应变化。
根据变化的大小,对应获取测量结果,并记录下差动测量器的输出电压值。
6、数据分析:在完成实验测量之后,需要对实验测量数据进行分析,并得到本次实验的相关结论。
差动变压器的性能实验一、实验目的:了解差动变压器的工作原理和特性。
二、基本原理:差动变压器的工作原理电磁互感原理。
差动变压器的结构如图所示,由一个一次绕组1和二个二次绕组2、3及一个衔铁4组成。
差动变压器一、二次绕组间的耦合能随衔铁的移动而变化,即绕组间的互感随被测位移改变而变化。
由于把二个二次绕组反向串接(*同名端相接),以差动电势输出,所以把这种传感器称为差动变压器式电感传感器,通常简称差动变压器。
当差动变压器工作在理想情况下(忽略涡流损耗、磁滞损耗和分布电容等影响),它的等效电路如图所示。
图中U1为一次绕组激励电压;M1、M2分别为一次绕组与两个二次绕组间的互感:L1、R1分别为一次绕组的电感和有效电阻;L21、L22分别为两个二次绕组的电感;R21、R22分别为两个二次绕组的有效电阻。
对于差动变压器,当衔铁处于中间位置时,两个二次绕组互感相同,因而由一次侧激励引起的感应电动势相同。
由于两个二次绕组反向串接,所以差动输出电动势为零。
当衔铁移向二次绕组L21,这时互感M1大,M2小,差动变压器的结构示意图差动变压器的等效电路图因而二次绕组L21内感应电动势大于二次绕组L22内感应电动势,这时差动输出电动势不为零。
在传感器的量程内,衔铁位移越大,差动输出电动势就越大。
同样道理,当衔铁向二次绕组L22一边移动差动输出电动势仍不为零,但由于移动方向改变,所以输出电动势反相。
因此通过差动变压器输出电动势的大小和相位可以知道衔铁位移量的大小和方向。
由图可以看出一次绕组的电流为:二次绕组的感应动势为:由于二次绕组反向串接,所以输出总电动势为:其有效值为:差动变压器的输出特性曲线如图所示.图中E21、E22分别为两个二次绕组的输出感应电动势,E2为差动输出电动势,x表示衔铁偏离中心位置的距离。
其中E2的实线表示理想的输出特性,而虚线部分表示实际的输出特性。
E0为零点残余电动势,这是由于差动变压器制作上的不对称以及铁心位置等因素所造成的。
差动电感式传感器位移特性试验
一、实验目的
了解差动电感式传感器的原理。
比较和差动变压器传感器的不同,
二、实验仪器:
差动传感器、信号源、相敏检波模块、差动变压器实验模块、电压表、示波器、测微头、。
三、实验原理
差动螺管式电感传感器由电感线圈的二个次级线圈反相串接而成,工作在自感基础上,由于衔铁在线圈中位置的变化使二个线圈电感量发生变化,包括两个线圈在内组成的电桥电路的输出电压信号因而发生相应变化。
四、试验内容与步骤
1、将传感器安装在差动变压器模块上,将传感器引线插入试验模块插座中。
2、连接主机与试验模块电源线,按下图连线组成测试系统,两个次级线圈必须接成差动状态。
3、使差动传感器的铁芯偏在一边,使差分放大器有一个较大的输出,调节移相器使输入输出同相或者反相,然后调节电感传感器铁芯到中间位置,直至差分放大器输出波形最小。
4、调节RW1和RW2使电压表显示为零,当衔铁在线圈中左右位移时,L2≠L3,电桥失衡,输出电压信号的大小与衔铁位移量成比例。
5、以衔铁位置居中为起点,分别向左、向右各位移5㎜,记录U、X值并填入下表(每位移0.5㎜记录一个数值):
五、试验报告:
根据实验记录的数据依次作出U-X曲线,求出灵敏度S,指出线性工作范围。
传感器实验报告陈晓东 12061302实验三 差动变压器性能、零残及补偿、标定实验一、 差动变压器性能实验目的:了解差动变压器的原理及工作情况。
实验准备:预习实验仪器和设备:音频振荡器、测微头、双踪示波器、差动式电感。
实验原理:交流电通过偶合的线圈产生感应电势。
实验注意事项:旋钮初始位置是,音频振荡器4KHz ~6 KHz 左右,幅度适中,双踪示波器第一通道灵敏度500mV/cm ,第二通道灵敏度10mV /cm 。
其它还须注意的事项有: (1)差动变压器的激励源必须从音频振荡器的电源输出插口(LV 插口)输出。
(2)差动变压器的两个次级线圈必须接成差动形式,即,两个同名端短接,另两个同名端则构成输出。
(3)差动变压器与激励信号的连线应尽量短一些,以避免引入干扰。
实验内容:(1) 按图5接线,音频振荡器必须从LV 接出,LV 、GND 接差动式电感的Li ,2个L0构成差 动输出。
图 5 差动变压器接线方式(2)调整音频振荡器幅度旋钮,观察第一通道示波器,使音频LV 信号输入到初级线圈的电 压为VPP =2伏。
(3)调整测微头,使衔铁处于中间位置M (此时输出信号最小),记下此时测微头的刻度 值填入下表(4)旋动测微头,从示波器第二通道上读出次级差动输出电压的峰一峰值填入下表:*如果第二通道的信号实在太弱,可先接差放再行观察。
读数过程中应注意初、次级波形的相位关系:当铁芯从上至下过零位时,相位由 同 (同、反)相变为 反 (同、反)相;再由下至上过零位时,相位由反相变为同相;(5)仔细调节测微头使次级的差动输出电压为最小,必要时应将通道二的灵敏度打到最高档,这个最小电压叫做零点残余电压,可以看出它的基波与输入电压的相位差约为 90度。
(6) 根据所得结果,画出(Vop-p一X)曲线,指出线性工作范围,求出灵敏度:76.50mV/mm,更一般地,由于灵敏度还与激励电压有关,因此:19.125mV/mm二、差动变压器零点残余电压的补偿实验目的:了解零点残余电压的补偿及其方法。
差动变压器传感器实验报告差动变压器传感器实验报告引言差动变压器传感器是一种常用的电气设备,用于测量电流和电压的差异。
本实验报告旨在介绍差动变压器传感器的原理、实验过程和结果分析。
一、原理介绍差动变压器传感器是一种基于电磁感应原理的设备。
它由两个互相绕制的线圈组成,分别称为主绕组和次绕组。
主绕组通常与电源连接,次绕组则与负载连接。
当主绕组中通过电流时,产生的磁场会通过铁芯传导到次绕组中,从而在次绕组中感应出电动势。
通过测量次绕组中的电压差异,我们可以间接测量主绕组中的电流。
二、实验过程1. 实验准备在进行实验前,我们需要准备以下材料和设备:- 差动变压器传感器- 直流电源- 电流表- 电压表- 负载电阻2. 连接电路将直流电源连接到差动变压器传感器的主绕组上,同时将负载电阻连接到次绕组上。
接下来,将电流表连接到主绕组上,将电压表连接到次绕组上。
3. 实验操作逐步增加直流电源的电压,并记录主绕组和次绕组的电流和电压值。
在每次调整电压后,等待电路稳定后进行测量。
4. 数据记录与分析将实验中测得的数据记录下来,并进行分析。
比较主绕组和次绕组的电流和电压值,观察它们之间的差异。
三、结果分析根据实验数据,我们可以得出以下结论:1. 当主绕组中通过电流时,次绕组中也会感应出电动势。
这是因为主绕组中的磁场通过铁芯传导到次绕组中,从而产生电磁感应现象。
2. 主绕组中的电流和次绕组中的电流不完全相等,存在一定的差异。
这是由于电流在传输过程中会受到电阻、电感等因素的影响。
3. 通过测量次绕组中的电压差异,我们可以推算出主绕组中的电流差异。
这为我们提供了一种间接测量主绕组电流的方法。
四、实验误差与改进在本次实验中,可能存在以下误差:1. 电路中的电阻、电感等元件可能会引入一定的误差。
为了减小误差,可以选择更精确的电子元件。
2. 实验过程中,可能会有温度变化等因素对测量结果产生影响。
为了减小这些影响,可以在实验过程中控制环境温度。
一、实验目的1、了解差动变压器的基本结构。
2、掌握差动变压器及整流电路的工作原理。
3、掌握差动变压器的调试方法。
二、实验原理1、差动变压器由一个初级线圈和两个次级线圈及一个铁芯组成,当铁芯移动时,由于初级线圈和次级线圈之间的互感发生变化使次级线圈的感应电势产生变化,一个次级线圈的感应电势增加,另一个则减少,将两个次级线圈反向串接,就可以引出差值输出,其输出电势反映出铁芯的位移量。
2、差动变压器实验电路图如图1-1所示。
图1-1传感器的两个次级线圈(N2、N3)电压分别经 UR1、UR2两组桥式整流电路变换为直流电压,然后相减,经过差动放大器放大后,由电压表显示出来R1、R2为两桥臂电阻,RP1为调零电位器,R3、R4、C1组成滤波电路,R5为负载电阻,采用这种差动整流电路可以减少零点残余电压。
三、实验过程与数据处理1.固定好位移台架,将电感式传感器置于位移台架上。
调节测微器使其指示12mm左右,将测微器装入台架上部的开口处,再将测微器的测杆与电感式传感器的可动铁芯旋紧。
然后调节两个滚花螺母,使铁芯离开底面 10mm,注意要使铁芯能在传感器中轻松滑动,再将两个滚花螺母旋紧。
2.差动放大器调零,用导线将差动放大器的正负输入端连接,再将其输出端接到数字电压表的输入端;按下面板上电压量程转换开关的20V档按键(实验台为将电压量程拨到20V 档);接通电源开关,旋动放大器的调零电位器RP2旋钮使电压表指示向零趋近,然后换到2V量程,旋动调零电位器RP2旋钮使电压表指示为零;此后调零电位器 RP2旋钮不再调节,根据实验适当调节增益电位器RP1。
3.按图1-1将信号源的两输出端 A,B接到传感器的初级线圈N1上,传感器次级线圈 N2、N3分别接到转换电路板的 C、D 与 H、I上,并将F与L用导线连接,将差动放大器与数字电压表连接好。
这样构成差动变压器实验电路。
4、接通电源,调节信号源输出幅度电位器RP2到较大位置,平衡电位器RP1处于中间位置,调节测微器使输出电压接近零,然后上移或下移测微器 1mm,调节差动放大器增益使输出电压的值为300mV左右,再回调测微器使输出电压为 0mV。
差动变压器式电感传感器的静态位移性能实验实验报告差动变压器式电感传感器的静态位移性能实验实验报告实验三电感式传感器实验传感器实验三、电感传感器实验——差动变压器性能实验(一)实验内容1.项目一、差动变压器式电感传感器性能实验2.项目二、差动螺管式电感传感器的静态位移性能实验 (二)实验目的1.了解差动变压器式电感传感器的原理和工作情况2.了解差动螺管式电感传感器测量系统的组成和工作情况 (三)实验原理螺旋测微器产生位移,经弹性梁带动衔铁在线圈中移动,交流电源激励,数字电压表显示数字,计算机自动生成示波器显示波形。
(四)实验操做步骤实验项目一、1.将音频振荡器LV输出接至数字频率计和数据采集CH1,由频率计显示频率,计算机自动生成示波器显示波形,调节音频振荡器频率为4kHz,峰峰值为5V。
2.将音频振荡器LV输出接差动变压器一次绕组,输出接CH1。
3.调螺旋测微器使衔铁处于中心位置(输出为零),向下每1mm读一个数。
实验项目二、1.按图接线2.将音频振荡器输出接至CH1,调节峰峰值为2V。
3.V/F表调至20V档。
4.接好电桥平衡网络、放大器、相敏检波器、LPF、V/F表、示波器。
5.将螺旋测微器与梁脱离,使梁处于自由状态;调节W1、W2,使输出最小(灵敏度最大)。
6.将螺旋测微器与梁相吸,调节螺旋测微器使输出最小(CH1示),再向上移2.5mm。
7.调节移相器使输出最大(CH2示);观察检波器波形,若两半波不对称,则微调放大器调零电位器。
8.向下每0.5mm读一个数。
项目一数据表第 1 页共 1 页项目二数据表篇二:传感器与检测技术实验报告准考证号:100214101370 姓名:倪帅彪院校:河南科技大学专业名称:080302机械制造及自动化(独立本科段)《传感器与检测技术》实验报告实验一常用传感器(电感式、电阻式或电容式)静态性能测试一、实验目的:1(进一步认识电阻式、电感式、电容式传感器的工作原理、基本结构、性能与应用。
第一章检测技术的基本概念一、填空题:1、传感器有、、组成2、传感器的灵敏度是指稳态标准条件下,输出与输入的比值。
3、从输出曲线看,曲线越陡,灵敏度。
4、下面公式是计算传感器的。
5、某位移传感器的输入变化量为5mm,输出变化量为800mv,其灵敏度为。
二、选择题:12A3、?PA0.54A3倍5A微差式678A9A三、123、同一台仪表,不同的输入输出段灵敏度不同()4、灵敏度其实就是放大倍数()5、测量值小数点后位数越多,说明数据越准确()6、测量数据中所有的非零数字都是有效数字()7、测量结果中小数点后最末位的零数字为无效数字()四、问答题1、什么是传感器的静态特性,有哪些指标。
答:指传感器的静态输入、输出特性。
有灵敏度、分辨力、线性度、迟滞、稳定性、电磁兼容性、可靠性。
2、产生随机误差的原因是什么,如何减小随机误差对测量结果的影响。
答:是测量中独立的、微小的、偶然的因素引起的结果。
既不能用实验的方法消除,也不能修正。
可以通过增加测量次数,利用概率论的一些理论和统计学的方法进行数据结果处理,服从正态分布。
3、系统误差分几类,怎样减小系统误差。
答:分为恒值误差,例如刻度盘分度差错。
变值误差,环境温度的影响、零点漂移等。
系统误差有规律。
可以通过实验的方法引入修正值的方法计算修正,也可以重新调整测量仪表的有关部件予以剔除。
4、如何判断系统中存在粗大误差。
答:粗大误差是测量人员的粗心大意及电子测量仪器收到突然强大的干扰所引起的,粗大误差明显超过正常条件下的误差。
五、分析与计算题1、有一温度计,它的测量范围为0—2000C,精度为0.5级,求1)该表可能出现的最大绝对误差。
2)当示值分别为200C、1000C的示值相对误差。
2、预测123、围为04电桥5、12.03mV、6012.15mV、31234123、4、电阻应变片配有桥式测量转换电路的作用是。
5、应变测量电桥的三种接法是、、。
输出电压分别为、、。
实验小组:黄文玉(201006020128)昝贵彬(201006080107)林雅萍(201006090130)差动变压器式电感传感器基本原理:电感传感器是把被测量转换成线圈的自感变化来实现检测的,而差动变压器是把被测量变化转移成线圈的互感变化来进行测量。
差动变压器本身是一个变压器,初级线圈输入交流电压,次级线圈感应出交流信号,当初次级间的互感受外界影响而变化时,次级所感应的电压幅值也随之发生变化。
由于两个次级线圈接成差动形式,故称为差动变压器。
差动变压器结构是由一个圆筒形骨架上分三段绕制成三个线圈和插入其中的可动铁芯组成。
中间绕组N1为初级线圈,上下各有一组完全对称于初级的次级线圈N2,在铁芯处于中间位置时,初级线圈的互感相等。
实验3. 差动变压器性能测试实验目的:了解差动变压器的工作原理。
熟悉差动变压器的性能。
实验所用单元:音频振荡器,差动变压器,双波示波器。
实验注意事项:差动变压器的两个次级线圈必须接成差动形式,即同名端相连。
可通过信号相位是否变化进行判别。
实验步骤:(1)按图1接线,将音频振荡器LV输出至差动变压器初级,频率为4KHZ。
(2)打开主电源及副电源调整音频振荡器幅度,用示波器观察,使音频LV信号输出电压峰峰值为2V。
(3)调节测微头使次级的差动输出电压最小,提高示波器灵敏度,读出的最小电压叫做零点残余电压,观察输入与输出相位差约为__90°___。
当铁芯由上至下时,相位由___同____相变为___反____相。
(4)输出从零开始,旋转测微头,从示波器上读出电压Vp-p值填入下表1:(5)根据所得结果,画出X—Vp-p曲线,指出曲线线性工作范围,求出灵敏度。
k=△V/△X图1 差动变压器性能测试和结构示意图如图2:图2 差动变压器输出特性曲线由上图可看出,传感器的线性工作范围是X=-2~+2之间,求传感器的灵敏度:K = △U/△x = 200/4 = 50 mV/mm.。
实验二差动变压器式电感传感器的静态位移性能一、实验目的1、了解差动变压器式电感传感器的基本原理及工作情况。
2、了解差动变压器式电感传感器测量系统的组成和作用。
二、基本原理差动变压器的工作原理类似变压器的作用原理。
差动变压器器的结构如图2-1所示,由一个一次绕组1和二个二次绕组2、3及一个衔铁4组成。
差动变压器一、二次绕组间的耦合能随衔铁的移动而变化,即绕组间的互感随被测位移的变化而变化。
由于把二次绕组反相串接(同名端相接),以差动电势输出,所以称为差动变压器式电感传感器。
图2-1 差动变压器结构示意图图2-2 差动变压器等效电路图当差动变压器工作在理想状态下(忽略涡流损耗、磁滞损耗和分布电容等影响),它的等效电路如图2-2所示。
当衔铁处于中间位置,两个次级线圈互感相同,因而产生的感应电势相同。
由于二次绕组反相串接,所以差动输出电势为零。
当衔铁移向一侧,这时输出电势不为零,位移越大,输出电动势越大。
当衔铁移向另一侧,由于移动方向改变,所以输出电动势反相。
因此,可以通过差动变压器输出电动势的大小和相位可以知道衔铁位移的大小和方向。
差动变压器的输出特性曲线如图2-3所示。
图中E21、E22分别为两个二次绕组的输出感应电动势,E2 为差动输出电动势,x表示衔铁偏离中心位置的距离。
E2的实线表示理想的输出特性,虚线为实际的输出特性。
E0为零点残余电势。
图2-3 差动变压器输出特性三、所需单元和部件差动变压器式电感传感器、音频振荡器、电桥、差动放大器、相敏检波器、移相器、低通滤波器、V/F表、测微器、双线示波器。
四、注意事项1.音频振荡器的信号必须从“LV”输出端输出。
2.差动变压器的两个次级线圈必须接成差动形式。
3.为了便于观察,实验中需要调节示波器的灵敏度。
4.检查所有处理电路单元的开关按钮在释放位(关状态);5.根据图2-4连接好测量电路后,经同伴检查确认,才可打开电源进行调整及测量工作,以免烧毁仪器元件。
差动式电感传感器与差动变压器传感器的工作原理1.差动式电感传感器的工作原理:差动式电感传感器是基于法拉第电感定律工作的。
法拉第电感定律指出,一个导体中的电流变化会产生磁场,而磁场的变化则会引起相邻导体中的电流发生变化。
差动式电感传感器利用这一原理,通过测量两个相邻导体中的电流差异来确定被测电流的大小。
差动式电感传感器由两个平行的线圈组成。
当被测电流通过这两个线圈时,它们产生的磁场会相互耦合。
当电流变化时,这种耦合会引起相邻线圈中的电流发生变化。
通过测量这两个线圈中的电流差异,可以确定被测电流的大小。
2.差动变压器传感器的工作原理:差动变压器传感器是基于变压器原理工作的。
变压器是由一个或多个线圈组成的。
当通过一个线圈的电流发生变化时,它所产生的磁场会耦合到相邻线圈中。
这个耦合现象可以用变压器的转比来描述。
差动变压器传感器利用变压器的这一特性,通过测量两个相邻线圈中的电压差异来确定被测电流的大小。
它由两个平行的线圈组成,当被测电流通过这两个线圈时,它们产生的磁场会相互耦合。
由于磁场的变化会引起电压的变化,因此线圈中的电压也会发生变化。
通过测量这两个线圈中的电压差异,可以确定被测电流的大小。
总结:差动式电感传感器和差动变压器传感器都是通过测量相邻线圈中的电流或电压差异来确定被测电流的大小。
差动式电感传感器基于法拉第电感定律,利用线圈间的磁场耦合来实现测量。
差动变压器传感器则利用变压器的原理,通过线圈中的电压变化来测量。
两种传感器都具有测量精度高、抗干扰能力强等优点,常用于电力系统和工业控制中。
差动变压器式电感传感器及其在交直流激励下的性能差动变压器式电感传感器是一种用于测量电流的传感器,常用于电力系统和工业领域中。
它基于变压器原理,通过将被测电流通过主绕组感应到次级绕组,由此测量出电流。
以下是其在交直流激励下的性能特点:
1.频率响应:差动变压器式电感传感器在交流激励下具有良
好的频率响应特性。
它能够在较宽的频率范围内提供准确
的电流测量结果,通常可满足工频范围内的测量需求。
2.精度:差动变压器式电感传感器的精度一般较高。
它们可
以提供高准确度的电流测量,通常在标称额定电流的一定
范围内能够保持较低的误差。
3.饱和特性:差动变压器式电感传感器在直流或大幅度电流
激励下容易出现磁遥饱和现象。
当电流超过一定阈值时,
传感器的输出信号不再正比于输入电流,误差会增大。
因
此,在使用差动变压器式电感传感器时需要注意电流范围
避免饱和现象对测量结果的影响。
4.线性度:差动变压器式电感传感器的线性度一般较好,能
够提供近似线性的电流-输出特性曲线。
这使得它们在广
泛的电流范围内具有较好的线性关系。
5.共模抑制比:差动变压器式电感传感器具有良好的共模抑
制比,即能够抑制由周围环境或其他因素引起的共模干扰,从而提高测量结果的准确性。
需要注意的是,不同厂家的差动变压器式电感传感器性能可能有所不同,因此在选择和应用时应注意参考厂家提供的技术参数和使用指南。
此外,传感器的正确安装和校准也对性能的稳定性和准确性至关重要。
福建江夏学院《传感器技术》实验报告姓名 班级 学号 实验日期 课程名称 传感器技术 指导教师 成绩实验名称:电感式传感器测试实验一、实验目地:1. 了解差动变压器的基本结构及原理,通过实验验证差动变压器的基本特性。
2. 利用差动螺管式电感传感器进行位移测量。
3. 了解不同的激励频率对差动螺管式电感传感器的影响。
实验一. 差动变压器的基本结构及原理二、实验原理:差动变压器由衔铁、初级线圈、次级线圈和线圈骨架等组成。
初级线圈做为差动变压器激励用,相当于变压器的原边,次级线圈由两个结构尺寸和参数相同的线圈反相串接而成,相当于变压器的副边。
差动变压器是开磁路,工作是建立在互感基础上的。
其原理及输出特性见图(9)三、实验环境差动变压器、音频振荡器、测微头、示波器。
示波器四、实验步骤:1.按图接线,差动变压器初级线圈必须从音频振荡器LV端功率输出,双线示波器第一通道灵敏度500mv/格,第二通道10mv/格。
2.音频振荡器输出频率5KHZ,输出值V P-P2V。
3.用手提压变压器磁芯,观察示波器第二通道波形是否能过零翻转,如不能则改变两个次级线圈的串接端。
4.旋动测微头,带动差动变压器衔铁在线圈中移动,从示波器中读出次级输出电压V P-5. 根据表格所列结果,画出Vop-p-X曲线,指出线性工作范围。
(可附在后面)实验二. 差动螺管式电感传感器位移测量二、实验原理:利用差动变压器的两个次级线圈和衔铁组成。
衔铁和线圈的相对位置变化引起螺管线圈电感值的变化。
次级二个线圈必须呈差动状态连接,当衔铁移动时将使一个线圈电感增加,而另一线圈的电感减小。
三、实验环境差动变压器、音频振荡器、电桥、差动放大器、移相器、相敏检波器、低通滤波器、电压表、示波器、测微头。
四、实验步骤:1.差动变压器二个次级线圈组成差动状态,按图接线,音频振荡器LV端做为恒流源供电,差动放大器增益适度。
差动变压器的两个线圈和电桥上的两个固定电阻R组成电桥的四臂,电桥的作用是将电感变化转换成电桥电压输出。