第七章_非平稳时间序列模型
- 格式:ppt
- 大小:811.00 KB
- 文档页数:75
非平稳时间序列建模步骤介绍非平稳时间序列是指其统计特性在时间上发生变化的序列。
在实际应用中,我们经常面临非平稳时间序列的建模问题,如股票价格、气温变化等。
本文将探讨非平稳时间序列建模的步骤和方法。
为什么要建立模型非平稳时间序列在其统计特性的变化中存在一定的规律性,因此建立模型可以帮助我们理解和预测序列的行为。
模型可以从数据中提取有用的信息,揭示序列的规律和动态特征。
步骤一:观察时间序列的特性在建立模型之前,我们首先需要观察时间序列的特性,包括趋势、周期性、季节性和随机性等。
这些特性是决定时间序列模型选择的重要因素。
步骤二:平稳化处理由于非平稳时间序列的统计特性随时间变化,不利于建模和分析。
因此,我们需要对时间序列进行平稳化处理。
常用的平稳化方法包括差分法和变换法。
2.1 差分法差分法是通过计算相邻两个观测值的差异来实现序列的平稳化。
一阶差分是指相邻观测值之间的差异,二阶差分是指一阶差分的差异,以此类推。
差分法可以有效地去除序列的趋势和季节性,使序列平稳。
2.2 变换法变换法是通过对时间序列进行数学变换,将非平稳序列转化为平稳序列。
常用的变换方法包括对数变换、平方根变换和 Box-Cox 变换等。
变换法可以改变序列的分布特性,使序列满足平稳性的要求。
步骤三:选择模型平稳化处理后,我们需要选择合适的模型进行建模。
常用的时间序列模型包括自回归移动平均模型(ARMA)、自回归积分移动平均模型(ARIMA)、季节性自回归移动平均模型(SARIMA)和指数平滑模型等。
3.1 自回归移动平均模型(ARMA)ARMA 模型是描述时间序列随机变动的经典模型,其包括自回归和移动平均两个部分。
自回归部分考虑了序列的历史值对当前值的影响,移动平均部分考虑了序列的误差对当前值的影响。
ARMA 模型适用于没有趋势和季节性的平稳序列。
3.2 自回归积分移动平均模型(ARIMA)ARIMA 模型是在 ARMA 模型基础上引入了积分项,用于处理非平稳序列。
非平稳时间序列模型非平稳时间序列模型是用来描述时间序列数据中存在趋势、季节性或其他波动的模型。
这些模型通常用于预测未来的数值或分析数据中的特征。
其中一个常见的非平稳时间序列模型是趋势模型。
趋势模型用来描述数据中存在的长期趋势。
例如,如果一个公司的销售额在过去几年里呈现稳定的增长趋势,那么趋势模型可以帮助预测未来几年的销售额。
另一个常见的非平稳时间序列模型是季节性模型。
季节性模型用来描述数据中存在的周期性变动。
例如,如果一个餐厅的每周客流量在周末较高,在工作日较低,那么季节性模型可以用来预测未来每周的客流量。
此外,还有其他非平稳时间序列模型,如自回归移动平均模型(ARMA)、自回归综合滑动平均模型(ARIMA)等。
这些模型结合了自身过去时刻的观测值和过去时刻的误差,用来预测未来的数值。
非平稳时间序列模型的建立和拟合通常包括多个步骤。
首先,需要对原始数据进行处理,例如去除趋势和季节性。
然后,选择适当的模型来拟合剩余数据。
最后,根据模型来预测未来的数值,并进行评估模型的准确性和可靠性。
总之,非平稳时间序列模型是一种描述和分析时间序列数据中存在趋势、季节性或其他波动的模型。
这些模型可以帮助我们理解数据的特征,并预测未来的趋势和变化。
非平稳时间序列模型是用来描述和分析时间序列数据中存在趋势、季节性或其他波动的模型。
这些模型通常用于预测未来的数值或分析数据中的特征。
非平稳时间序列模型在许多领域中都有广泛的应用,包括经济学、金融学、气象学等。
在经济学中,非平稳时间序列模型被广泛应用于经济预测和决策制定。
例如,GDP增长率是一个典型的非平稳时间序列数据,它受到许多因素的影响,如技术进步、政府政策等。
通过建立一个趋势模型,可以预测未来的经济增长趋势,从而提供政府和企业的决策参考。
在金融学中,非平稳时间序列模型被广泛应用于股票价格预测和风险管理。
股票价格是一个非平稳时间序列,它受到市场供需关系、公司盈利情况等多个因素的影响。
实验二:非平稳时间序列模型检验一、实验课题非平稳时间序列模型检验经济理论认为,消费支出主要由可支配收入决定,即消费与可支配收入之间存在长期均衡关系,现实经济生活中,消费与可支配收入之间是否真的存在长期均衡关系呢?若存在,其长期均衡关系和短期非均衡关系的具体形式如何?这里以1980-2014年为分析期,分析中国实际城镇居民人均消费支出和可支配收入之间的关系。
二、实验目的与要求1.理解单位根检验方法和协整检验步骤2.理解误差修正模型的应用价值3.理解如何运用单位根检验和协整检验分析非平稳时间序列变量的动态关系,期望架起一座从学习到应用的桥梁,更好地理解理论基础的重要性和实际应用价值,培养学生动手操作能力和独立思考能力三、实验主要仪器和设备电脑,笔,笔记本四、实验原理单位根检验原理协整检验原理误差修正模型五、实验方法与步骤方法:借助EVIEWS软件进行检验步骤:1.单位根检验:检验原序列是否为平稳时间序列,否则继续处理数据2.模型的OLS回归3.协整检验:如果变量均是同阶单整,建立回归模型,并检验残差序列的平稳性4.设立误差修正模型5.诊断检验并解释实证结果File→New→Workfile Create→Start date:1980 End date:2014→OkQuick→Empty Group→复制粘贴人均消费支出(y)和人均可支配收入(x)的数据同时选中x和y→Open→as GroupView→Graph Options→OK可以看出人均消费支出x和人均可支配收入y之间拥有相同的趋势检验lnx和lny两个变量都是同阶单整使用ADF单位根检验法进行检验检验顺序:情况Ⅲ→情况Ⅱ→情况ⅠCommand输入new series lny=log(y)new series lnx=log(x)创建lny和lnx点击lnx→View→Unit root Test→Level Trend and interceptd →Prob>0.05,检验情况Ⅱ选择Level Interceptd→Prob>0.05,检验情况Ⅰ选择Level None→Prob>0.05因为三种情况P值都>0.05,所以进行一阶差分,然后进行检验选择1st difference Trend and intercept→有一项的Prob>0.05,检验情况Ⅱ选择1st difference Intercept→所有prob都<0.05,符合情况Ⅱ同样的方法可以得到lny在一阶差分下符合情况Ⅱ,所以lnx和lny是同阶单整的选中lnx和lny→Open→as Equation Estimation→输入lny c lnx→Proc→Make Residual Series→命名为ecm接下来证明lny和lnx组成的时间序列是否平稳选中lnx和lny→Open→as Equation Estimation→输入lny c lnx Method选择COINTREG-CR→确定View→Cointegration Tests 选择Engle-Granger协整分析方法从分析结果可以看出lny和lnx构成的时间序列是平稳的,证明lny和lnx具有协整关系接下来进行误差修正设立误差修正模型同时选中lnx和lny→Open→as Equation Estimation→输入d(lny) c d(lnx) d(lnx(-1)) d(lny(-1)) ecm(-1)误差修正同时选中lnx和lny→Open→as Equation Estimation→输入d(lny) c d(lnx) ecm(-1)从图中可以看出emc(-1)的Coefficient值,这是ecm系统中的修正速度系数,反映了系统内变量对出现均衡偏差情况的调整速度,值为-0.860141,说明系统内的修正反应强烈。
非平稳和季节时间序列模型分析方法时间序列分析是指对时间序列数据进行建模和预测的统计方法。
根据数据的特点,时间序列可以分为平稳序列和非平稳序列。
在实际应用中,很多时间序列数据并不满足平稳性的假设,因此需要对非平稳序列进行处理和分析。
非平稳序列分析的方法之一是差分法。
差分法的基本思想是通过对原始序列进行差分,得到一个新的序列,使其成为平稳序列。
差分法可以通过一阶差分、二阶差分等方法来实现。
一般来说,一阶差分可以用来处理线性趋势,而二阶差分可以用来处理二次趋势。
另一种非平稳序列分析的方法是趋势-季节分解法。
这种方法首先对时间序列进行趋势分解,将原始序列拆分为趋势、季节和残差三个部分。
然后对残差序列进行平稳性检验,判断是否需要进一步进行差分。
最后,可以利用拆分后的趋势和季节序列进行预测。
对于带有季节性的时间序列数据,还可以采用季节时间序列模型进行分析。
常见的季节时间序列模型包括季节自回归移动平均模型(SARIMA)和季节指数平滑模型。
这些模型可以对季节性进行建模,并利用历史数据进行预测。
总结起来,非平稳和季节时间序列的分析方法可以包括差分法、趋势-季节分解法和季节时间序列模型。
这些方法能够有效地处理和分析非平稳和带有季节性的时间序列数据,为实际应用提供了重要的参考。
时间序列分析是一种广泛应用于金融、经济、气象、销售、股票市场等领域的数据分析方法,它的目标是根据过去的数据模式,预测未来的趋势和行为。
在时间序列分析中,平稳性是一个重要的概念,指的是在时间序列的整个时间范围内,序列的统计特性不会随着时间的推移而发生显著的变化。
然而,在实际应用中,很多时间序列数据并不满足平稳性的假设,因此需要对非平稳序列进行处理和分析。
非平稳序列的特点是随着时间的推移,其均值、方差和协方差等统计特性会发生显著的变化。
这使得对其进行建模和预测变得困难。
因此,我们需要采取一些方法来处理非平稳序列,使其满足平稳性的假设。
差分法是一种常用的处理非平稳序列的方法。
非平稳时间序列分析1、首先画出时序图如下:t从时序图中看出有明显的递增趋势,而该序列是一直递增,不随季节波动,所以认为该序列不存在季节特征。
故对原序列做一阶差分,画出一阶差分后的时序图如下:difx140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10从中可以看到一阶差分后序列仍然带有明显的增长趋势,再做二阶差分:dif2x90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110做完二阶差分可以看到,数据的趋势已经消除,接下来对二阶差分后的序列进行194519501945 19551960196519701975198019851990199520001950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000检验:AutocorrelationsLag Covariance Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 Std Error0 577.333 1.00000 | |********************| 01 -209.345 -.36261 | *******| . | 0.0712472 -52.915660 -.09166 | .**| . | 0.0800693 9.139195 0.01583 | . | . | 0.0806004 15.375892 0.02663 . |* . | 0.0806155 -59.441547 -.10296 .**| . | 0.0806606 -23.834489 -.04128 | . *| . | 0.0813247 100.285 0.17370 | . |*** | 0.0814318 -146.329 -.25346 | *****| . | 0.0832909 52.228658 0.09047 | . |**. | 0.08711810 21.008575 0.03639 | . |* . | 0.08759311 134.018 0.23213 | . |***** | 0.08767012 -181.531 -.31443 | ******| . | 0.09073613 23.268470 0.04030 | . |* . | 0.09610814 71.112195 0.12317 | . |** . | 0.09619415 -105.621 -.18295 | ****| . | 0.09699116 37.591996 0.06511 . |* . | 0.09872717 23.031506 0.03989 | . |* . | 0.09894518 45.654745 0.07908 | . |** . | 0.09902719 -101.320 -.17550 | ****| . | 0.09934720 127.607 0.22103 | . |**** | 0.10090821 -61.519663 -.10656 | . **| . | 0.10333722 35.825317 0.06205 | . |* . | 0.10389323 -93.627333 -.16217 | .***| . | 0.10408124 55.451208 0.09605 | . |** . |从其自相关图中可以看出二阶差分后的序列自相关系数很快衰减为零,且都在两倍标准差范围之内,所以认为平稳,白噪声检验结果:Autocorrelation Check for White NoiseTo Chi- Pr >Lag Square DF ChiSq------------------- Autocorrelations -------------------6 30.70 6 <.0001 -0.363 -0.092 0.016 0.027 -0.103 -0.04112 84.54 12 <.0001 0.174 -0.253 0.090 0.036 0.232 -0.31418 97.98 18 <.0001 0.040 0.123 -0.183 0.065 0.040 0.07924 126.99 24 <.0001 -0.175 0.221 -0.107 0.062 -0.162 0.096P 值都小于 0.05 ,认为不是白噪声。
§9、非平稳时间序列、协整回顾平稳时间序列具有下面几个特征: (1)均值回归(mean reversion )。
观测值总是围绕着均值上下振荡。
(2)有限方差。
不随时间变化。
(3)自相关函数随着滞后阶数增加会消失。
下面我们对常见的非平稳序列进行介绍。
一、 随机游走和伪回归1、随机游走一类典型的非平稳过程,模型形式如下:1t t t x x u -=+,其中误差项服从白噪声过程,则称{}t x 为随机游走(Random Walk )过程。
其统计特征如下:()()()()02,1,1t t u t h t t x x t Var x t x x x h σ+E =E ≥=E =≥随机游走过程具有几个特点:(1)序列并不是围绕着某一个均值上下振荡。
(2)方差随着时间发生变化。
(3)自相关函数消失得很慢。
它的自相关图如下:下面我们来看带飘移项(drift )的随机游走过程:()2010,0,,0t t t t u x x u u WN ασα-=++~>它具有下面的统计特征:()()()020t t u t h t tx t Var x t x x h x ασα+E ==E =+2、单整如果一个平稳时间序列{}t x 经过d 次差分后才能变换为一个平稳的、可逆的ARMA 时间序列,那么我们称{}t x 具有d 阶单整性,记为:()t x d ~I 。
平稳序列,是I(0)的。
单整序列一般指单整阶数大于0的序列。
如果时间序列()(),t x a y b ~I ~I ,则[]()max ,t t t z cx dy a b =+~I 。
一般来说,()(),t x a y a ~I ~I ,()t t t z cx dy a =+~I如果z 的单整阶数小于a 时,称这两个序列存在着协整(cointegration )关系。
3.随机游走过程的统计特征()210,0,0,t t t t u x x u x u IN σ-=+=~其中u 为白噪声序列,服从独立的正态分布。