水质 总汞的测定 冷原子吸收分光光度法
- 格式:pdf
- 大小:47.20 KB
- 文档页数:6
中药类制药工业水污染物排放标准前言为贯彻《中华人民共和国环境保护法》、《中华人民共和国水污染防治法》、《中华人民共和国海洋环境保护法》、《国务院关于落实科学发展观加强环境保护的决定》等法律法规和《国务院关于编制全国主体功能区规划的意见》,保护环境,防治污染,促进制药工业生产工艺和污染治理技术的进步,制定本标准。
本标准根据中药类制药工业生产工艺及污染治理技术的特点,规定了中药类制药工业企业水污染物的排放限值、监测和监控要求,适用于中药类制药工业企业水污染防治和管理。
为促进区域经济与环境协调发展,推动经济结构的调整和经济增长方式的转变,引导中药类制药工业生产工艺和污染治理技术的发展方向,本标准规定了水污染物特别排放限值。
中药类制药工业企业排放大气污染物(含恶臭污染物)、环境噪声适用相应的国家污染物排放标准,产生固体废物的鉴别、处理和处置适用国家固体废物污染控制标准。
自本标准实施之日起,中药类制药工业企业的水污染物排放控制按本标准的规定执行,不再执行《污水综合排放标准》(GB8978-1996)中的相关规定。
本标准为首次发布。
本标准由环境保护部科技标准司组织制订。
本标准起草单位:中国环境科学研究院、中国中药协会、河北省环境科学研究院。
本标准环境保护部2008年4月29日批准。
本标准自2008年8月1日起实施。
本标准由环境保护部解释。
中药类制药工业水污染物排放标准1适用范围本标准规定了中药类制药工业水污染物的排放限值、监测和监控要求以及标准的实施与监督等相关规定。
本标准适用于中药类制药工业企业的水污染防治和管理,以及中药类制药工业建设项目的环境影响评价、环境保护设施设计、竣工环境保护验收及其投产后的水污染防治和管理。
本标准适用于以药用植物和药用动物为主要原料,按照国家药典,生产中药饮片和中成药各种剂型产品的制药工业企业。
藏药、蒙药等民族传统医药制药工业企业以及与中药类药物相似的兽药生产企业的水污染防治与管理也适用于本标准。
汞含量检测标准及指标控制气田天然气、水及石油中的汞含量检测方法主要有原子吸收光谱法和原子荧光光谱法等。
以上述检测方法为基础,天然气和水中汞检测已有标准化的检测方法。
天然气中汞含量测定有两个国家标准:GB/T 16781.1-2008《天然气汞含量的测定第1部分:碘化学吸附取样法》规定了碘浸渍硅胶化学吸附取样阀测定天然气中汞含量的方法,取样压力最高达40MPa,适用于测定天然气中含量为0.1μg/m3~5000μg/m3范围内的汞,需要用氢氧化钾溶液和还原溶液对样品进行处理。
GB/T 16781.2-2010《天然气汞含量的测定第2部分:金-铂合金汞齐化取样法》规定了用金-铂合金汞齐化取样法测定管输天然气中汞含量的方法,适用于不含凝析产物的粗天然气取样,测定大气压下天然气中0.01μg/m3~100μg/m3范围内和高压下(最高压力达8MPa)天然气中0.001μg/m3~1μg/m3范围内汞含量的测定,适合实验室操作,检测方法较为繁琐。
水中汞含量测定有两个国家标准:GB 7468-87《水质中总汞的测定冷原子吸收分光光度法》用于地面水、地下水、饮用水、生活污水及工业废水中总汞的测定,最低检出浓度为含汞0.1μg/L,在最佳条件下,当试份体积为200mL 时,最低检出浓度可达0.05μg/L。
GB 7469-87《水质总汞的测定高锰酸钾-过硫酸钾消解法双硫腙分光光度法》适用于生活污水、工业废水和受汞污染的地面水,最低检出浓度为含汞2μg/L,测定上限为40μg/L。
石油中汞含量测定:ASTM UOP 938-2010 为液烃总汞测定和汞化物形态分析的标准方法,将凝析油经过一系列联机处理后进入专用的冷原子吸收系统进行检测,该法适用于测定汞浓度在0.1~10000ng/mL之间的液烃样品。
表1 汞含量控制指标GB 3095-2012《环境空气质量标准》将空气分为两类::一类区为自然保护区、风景名胜区和其他需要特殊保护的区域;二类区为居住区、商业交通居民混合区、文化区、工业区和农村地区。
冷原子吸收光谱法和冷原子荧光光谱法是两种常用的分析方法,用于测定水样中的汞。
汞是一种重金属,具有较高的毒性和易积累性,因此对于水样中的汞浓度进行准确监测和分析至关重要。
本文将从原理、方法步骤、应用、优缺点等方面对这两种方法进行深入探讨。
1. 原理冷原子吸收光谱法是一种利用原子在特定波长光照射下发生原子吸收的分析方法。
当汞原子处于基态时,会吸收特定波长的紫外光,从而使原子跃迁至激发态,然后快速退激发并发光。
而冷原子荧光光谱法是利用原子在激发态下发生自发辐射的分析方法。
通过对样品进行前处理,将水样中的汞转化为气态汞原子,然后在特定温度下冷却,使得原子能量较低,从而利用吸收光谱或荧光光谱进行测定。
2. 方法步骤将水样中的汞通过适当的前处理方法转化为气态汞原子。
将气态汞原子冷却至较低温度,使其处于基态或激发态。
使用特定波长的紫外光照射样品,观察汞原子的吸收光谱或发射光谱。
根据吸收或发射的强度,可以准确测定水样中的汞浓度。
3. 应用这两种方法在环境监测、地质勘探、化工生产等领域具有广泛的应用。
特别是在水质监测中,可以准确、快速地测定水样中的汞浓度,保障水环境的安全。
4. 优缺点冷原子吸收光谱法和冷原子荧光光谱法在测定水样中的汞具有灵敏度高、准确度高、选择性强等优点。
而在操作上,需要严格控制实验条件,对仪器要求较高,且前处理方法较为繁琐。
个人观点:在分析汞等重金属元素时,冷原子吸收光谱法和冷原子荧光光谱法是两种非常有效的分析方法。
它们在监测水质中的汞浓度方面具有明显的优势,能够准确、快速地进行分析。
但是在操作上需要非常小心谨慎,确保实验条件的准确性和稳定性。
总结回顾:通过本文的介绍,我们了解到冷原子吸收光谱法和冷原子荧光光谱法在测定水样中的汞具有重要的应用价值。
它们的原理和方法步骤虽有些复杂,但在分析汞元素时能够提供准确、可靠的数据支持。
应用中需要严格控制实验条件,以确保准确性和可重复性。
对于水质监测和环境保护而言,这两种方法无疑起着重要的作用。
冷原子吸收光谱法测定水中总汞冷原子吸收光谱法(cold atomic absorption spectroscopy, CAAS)是一种先进的分析技术,可以用于测定水中微量金属元素的含量。
在这篇文档中,我们将重点介绍冷原子吸收光谱法在水中总汞测定方面的应用。
一、汞的毒性及环境汞污染的危害汞是一种具有剧毒的重金属元素,它的存在对人类健康和环境造成很大的危害。
高浓度的汞蒸气可以引起显著的神经系统损害,甚至导致死亡。
同时,汞还是一种持久性的污染物,会在大气、水体和土壤中长期积累,并积极参与环境生物循环。
由于人类活动产生的废水、废气和废物中都含有汞,而且水中汞的污染已经成为环境保护领域的一个重要问题。
二、水中总汞的测定方法水中汞的测定方法一般分为分析前处理和分析方法两个部分。
常用的分析前处理方法包括沉淀分离、萃取浓缩和净化处理。
这些方法可以有效地去除水中的干扰物质,同时提高汞的检测灵敏度。
常用的分析方法包括原子荧光光谱法、原子吸收光谱法、电化学分析法、质谱分析法等。
其中,原子吸收光谱法是一种快速、准确、灵敏度高的检测方法,能够同时测定水中的多种金属元素,特别是微量元素。
其原理是利用化学还原剂还原水中的汞离子(Hg2+)为Hg原子,然后通过吸收特定波长的光线,测定汞原子的吸光度,来计算出水中的汞含量。
三、冷原子吸收光谱法的优点冷原子吸收光谱法是一种基于原子吸收光谱的分析方法,它与传统的火焰原子吸收光谱法相比具有以下优点:1. 检测限低:火焰原子吸收光谱法需要将技术参数调整到最佳状态,才能获得高的检测限,而冷原子吸收光谱法的检测限低,可检测更低浓度的汞;2. 可以同时检测多种金属元素:冷原子吸收光谱法可以同时检测多种金属元素,可有效节省时间和测试成本;3. 特异性高:火焰原子吸收光谱法可能会受到原子化程度的影响,而冷原子吸收光谱法可以通过控制温度来确保检测结果的特异性。
四、冷原子吸收光谱法测定水中总汞的流程下面是冷原子吸收光谱法测定水中总汞的流程:1. 取一定量的水样,加入硫酸、氯化铵、氢硫酸等试剂,将汞离子转化成Hg2+;2. 加入还原剂,通过化学反应将Hg2+还原成Hg原子;3. 将还原后的Hg原子转化成冷原子,通过锂灯控制温度,将热原子冷却成冷原子;4. 通过吸收特定波长的光线,测定Hg原子的吸光度;5. 计算水中汞的含量。
城市污水再生利用景观环境用水水质所属分类:性质:强制性有效性:现行状态:制定发文单位:国家质量监督检检疫总局文号:GB/T 18921-2002发布日期:2002-12-20实施日期:2003-05-01城市污水再生利用景观环境用水水质前言为贯彻我国水污染防治和水资源开发方针,提高用水效率,做好城镇节约用水工作,合理利用水资源,实现城镇污水资源化,减轻污水对环境的污染,促进城镇建设和经济建设可持续发展,制定《城市污水再生利用》系列标准。
《城市污水再生利用》系列标准目前拟分为五项:——《城市污水再生利用分类》——《城市污水再生利用城市杂用水水质》——《城市污水再生利用景观环境用水水质》——《城市污水再生利用补充水源水质》——《城市污水再生利用工业用水水质》本标准为第三项。
本标准是在CJ/T95-2000《再生水回用于景观水体的水质标准》的基础上制定的。
本标准与CJ/T 95—2000相比主要变化如下:——提出了再生水的使用准则。
——根据《城市污水再生利用分类》将再生水的应用范围及使用方式进行了重新界定,以景观环境用水取代了原来的景观水体.明确了水景类作为景观环境用水的一部分的概念。
——细分了景观环境用水的类别,将原来的CJ/T95-20O0中的人体非直接接触和人体非全身性接触替换为观赏性景观环境用水和娱乐性景观环境用水两大类别,同时每个类别又根据水质要求的不同而被分为河道类、湖泊类与水景类用水。
——放宽了消毒途径,对于不需要通过管道输送再生水的现场回用情况,不限制采用加氯以外的其他消毒方式。
——考虑了与人群健康密切相关的毒理学指标。
——水质指标共计14项,对原来的CJ/T95-2000中的水质指标进行了部分调整(增加了3项;浊度、溶解氧、氨氮;删减了5项:化学需氧量、溶解性铁、总锰、全盐量、氯化物。
替换了2项:以粪大肠菌群替换了大肠菌群,以总氮替换了凯氏氮)。
——增加了“参考文献”。
本标准自实施之日起,CJ/T 95-2000同时废止。
水质汞的测定方法
嘿,大家知道吗,水质汞的测定可是非常重要的呢!那到底怎么来测定水质中的汞呢?
首先来说说步骤和注意事项。
一般会采用原子吸收分光光度法或冷原子吸收法等。
就拿冷原子吸收法来说吧,先得准备好各种试剂和仪器,然后取适量水样进行预处理,这一步可千万不能马虎,稍有不慎就可能影响结果哦!在测定过程中,要严格控制各种条件,比如温度、酸度等,就像精心呵护一个小宝贝一样。
同时,仪器的校准也至关重要,这可关系到数据的准确性呀!
再说说这过程中的安全性和稳定性。
哎呀呀,这可不能小瞧啊!在操作中一定要做好防护措施,避免接触到汞对身体造成伤害,这可不是开玩笑的!而且整个过程要保证稳定进行,不能有任何的干扰和波动,不然得出的结果能靠谱吗?
那这种测定方法有啥应用场景和优势呢?哇塞,那可多了去了!无论是在环境监测、饮用水检测,还是工业废水处理等领域,都大有用武之地呀!它的优势也很明显,比如灵敏度高、准确性好,能够快速准确地检测出水中微量的汞呢!
我给大家举个实际案例吧。
曾经有个地方的水源被怀疑受到了汞污染,通过这种方法进行检测,很快就确定了汞的含量,然后采取了相应的措施进行治理,成功地保障了当地居民的用水安全。
你说厉害不厉害?
总之,水质汞的测定方法真的是超级重要的呀!它就像是我们保护水资源的一把利剑,能够让我们及时发现问题并解决问题,让我们的水变得更加干净、安全!我们一定要重视起来,好好利用这些方法来守护我们的水资源呀!。
废水中金属化合物的测定水体中的金属元素有些是人体健康必须的常量元素和微量元素,有些是有害于人体健康的,如汞、镉、铬、铅、砷、铜、锌、镍、钡、钒等。
受“三废”污染的地面水和工业污水中有害金属化合物的含量往往明显增加。
有害物质侵入人体的肌体后,将会使某些酶失去活性而使人体出现不同程度的中毒症状。
测定水体中金属元素广泛采用的方法有分光光度法、原子吸收分光光度法、容量法。
1、汞的测定:汞及其化合物属于剧毒物质,无机盐中以氯化汞毒性最大,有机汞以甲基汞、乙基汞毒性最大。
汞是唯一一个常温下呈液态的金属,易挥发进入人体呼吸道,亦可为皮肤吸收,造成汞中毒。
水体中的微量汞可经食物链成百万倍的富集,引发“水俣病”。
天然水中含汞极少,一般不超过0.1μg/L。
我国饮用水标准限值为0.001mg/L。
汞的最低检出浓度为2μg/L,测定上限为40μg/L。
方法适用于工业污水和受汞污染的地面水的监测。
测定方法:冷原子吸收法、双硫腙分光光度法2、镉的测定:镉在浓度很低的情况下都具有很强的毒性,可在人体的肝、肾等组织中蓄积,造成各脏器组织的损坏,尤以对肾脏损害最为明显。
还可以导致骨质疏松和软化。
镉在土壤和岩石中的自然存在,通常情况下与锌及其化合物共存。
绝大多数淡水的含镉量低于1μg/L,海水中镉的平均浓度为0.15μg/L。
镉的主要污染源是电镀、采矿、冶炼、染料、电池和化学工业等排放的污水。
测定方法:(测定镉、铜、铅、锌等元素时)直接火焰原子吸收分光光度法(适用于污水和受污染的水)萃取或离子交换法富集FAAS(适用于清洁水)石墨炉AAS(适用于清洁水,其测定灵敏度高于前两种方法,但基体干扰较火焰原子化法严重)A、直接吸入FAAS测定镉(铜、铅、锌) 清洁水样可不经预处理直接测定;污染的地面水和污水需用硝酸或硝酸-高氯酸消解,并进行过滤、定容。
定量分析方法:标准曲线法、标准加入法B、双硫腙分光光度法原理:方法基于在强碱性介质中,镉离子与双硫腙生成红色螯合物,用三氯甲烷萃取分离后,于518nm处测其吸光度,与标准溶液比较定量。