第四讲 向量自回归模型
- 格式:ppt
- 大小:774.50 KB
- 文档页数:72
向量自回归模型
向量自回归模型(简称VAR 模型)是一种常用的计量经济模型,由克里斯托弗·西姆斯(Christopher Sims )提出。
它是AR 模型的推广。
[定义]VAR 模型描述在同一样本期间内的n 个变量(内生变量)可以作为它们过去值的线性函数。
一个VAR(p)模型可以写成为:
其中:c 是n × 1常数向量,A i 是n × n 矩阵。
e t 是n × 1误差向量,满足:
1. —误差项的均值为0
2. —误差项的协方差矩阵为Ω(一个n × 'n 正定矩阵)
3.
(对于所有不为0的k 都满足)—误差项不存在自相关
一个有两个变量的VAR(1)模型可以表示为:
或者也可以写为以下的方程组:
[转换VAR(p)为VAR(1)]
VAR(p)模型常常可以被改写为VAR(1)模型。
比如VAR(2)模型:
y t = c + A 1y t − 1 + A 2y t − 2 + e t
可以转换成一个VAR(1)模型:
其中I 是单位矩阵。
[结构与简化形式]
[结构向量自回归]
一个结构向量自回归(Structural VAR )模型可以写成为:
其中:c 0是n × 1常数向量,B i 是n × n 矩阵,εt 是n × 1误差向量。
一个有两个变量的结构VAR(1)可以表示为:
其中:
[简化向量自回归]
把结构向量自回归与B0的逆矩阵相乘:
让:
对于和我们得到p-阶简化向量自回归(Reduced VAR):。
第四章向量自回归模型介绍向量自回归模型(Vector Autoregression,VAR)是一种时间序列分析模型,常用于分析多个相关变量之间的动态关系。
VAR模型可以看作是多个单变量自回归模型的组合,它对多个变量的信息进行了同时处理,能够更全面地捕捉变量之间的相互作用和影响。
VAR模型的基本假设是,当前时间点的所有变量值与过去时间点的所有变量值相关。
假设我们有p个变量,那么VAR(p)模型定义了每个变量在当前时间点的取值都是过去p个时间点的线性组合,同时还考虑了随机误差项。
数学表示为:Yt=A1*Yt-1+A2*Yt-2+...+Ap*Yt-p+εt其中Yt是一个p维列向量,包含当前时间点p个变量的取值;Yt-1至Yt-p是过去p个时间点的p维列向量;A1至Ap是p个p×p维矩阵,表示每个变量与过去时间点的线性关系;εt是一个p维列向量,表示随机误差项。
VAR模型的参数估计可以使用最小二乘法进行,通过最小化模型产生的残差平方和来求解参数。
可以使用矩阵形式进行计算,将所有时间点的变量值和延迟值堆叠成矩阵,并将所有误差项堆叠成矩阵,然后通过对应的矩阵运算求解参数矩阵。
VAR模型的参数估计结果可以用于分析变量之间的动态关系和相互影响。
通过观察参数矩阵中的元素值,可以了解到不同变量之间的关系类型(正相关还是负相关)、强度(系数大小)和延迟效应(系数所对应的时间点)。
同时,还可以利用VAR模型进行变量预测和冲击响应分析。
变量预测是VAR模型的一个常用功能,在给定过去时间点的变量值后,使用估计得到的参数矩阵可以预测未来时间点的变量取值。
这对于经济领域的预测和政策制定非常有用,可以根据变量之间的关系和历史数据进行未来变量值的估计。
冲击响应分析是指在VAR模型中引入一个外部冲击,观察该冲击对其他变量的影响。
冲击响应分析能够量化不同变量之间的直接和间接关系,帮助研究人员了解系统中各个变量对于一个特定冲击因素变化的反应情况。