倒谱分析
- 格式:doc
- 大小:61.50 KB
- 文档页数:3
基于MATLAB的语音倒谱分析语音倒谱分析是一种通过对语音信号进行倒谱变换来提取语音特征的方法。
MATLAB作为一种常用的科学计算软件,具有丰富的信号处理工具箱,可以用于实现语音倒谱分析。
语音倒谱分析的基本原理是将语音信号分解为一系列频率低通滤波器的输出,然后对滤波器输出进行离散傅立叶变换(DFT),得到倒谱系数。
倒谱系数反映了语音信号的频谱特征,可用于语音识别、语音合成、语音增强等应用。
在MATLAB中进行语音倒谱分析的步骤如下:1. 读取语音信号:使用`audioread`函数读取语音文件,得到语音信号的波形数据和采样率。
例如:```matlab[x, fs] = audioread('speech.wav');```2. 预处理语音信号:通常需要对语音信号进行预处理,例如去除噪声、端点检测等。
这可以使用MATLAB的信号处理工具箱实现。
例如,使用`medfilt1`函数对语音信号进行中值滤波去噪:```matlabx = medfilt1(x, 3); % 使用中值滤波去噪```3. 分帧:将语音信号分为若干帧,每帧包含N个采样点。
通常选择帧长为20-40毫秒左右,帧移为10-20毫秒。
可以使用`buffer`函数实现:```matlabframeLength = round(fs * 0.025); % 帧长为25msframeShift = round(fs * 0.01); % 帧移为10msframes = buffer(x, frameLength, frameLength-frameShift,'nodelay');```4. 加窗:对每一帧的数据应用窗函数,以减小频谱泄漏效应。
常用的窗函数有汉明窗(hamming window)和黑曼窗(hanning window)。
可以使用`hamming`或`hanning`函数实现:```matlabwindow = hamming(frameLength); % 汉明窗```5. 计算功率谱:对窗函数加权的每一帧信号进行离散傅立叶变换(DFT),得到每帧的功率谱。
共振峰倒谱法
共振峰是指在声音或信号频谱中出现较高振幅的频率区域。
这些共振峰通常对应于声音源或信号中的共振频率,即在该频率下共振现象特别明显。
倒谱法是一种用于分析信号频谱的方法。
它将频谱转化为倒谱系数,通过对这些倒谱系数进行分析,可以得到信号的特征参数,例如共振峰频率、带宽等。
在使用倒谱法进行分析时,首先需要获取信号的频谱。
一种常见的做法是使用傅里叶变换将信号从时域转化为频域。
然后,将频谱对数化,并应用倒谱变换得到倒谱系数。
倒谱系数可以通过对频谱进行对数变换来得到。
常见的做法是取频谱的对数幅度,并进行倒谱变换。
这样可以将信号的频谱转化为倒谱系数,并对其进行分析。
倒谱法常用于语音信号分析、音乐信号分析等领域。
通过分析倒谱系数,可以提取信号的共振峰特征,并用于声音识别、音乐分析等应用中。
复倒谱的基本原理倒谱(Cepstrum)是一种将频谱信息转换为时间领域的信号分析方法。
它是由美国工程师和数学家Homayoon Beigi于1963年提出的,用于声学和信号处理等领域。
倒谱分析在语音识别、音乐处理、语音合成、语音压缩等许多应用中得到了广泛应用。
倒谱的基本原理是基于信号的频谱和其对数谱之间的转换关系。
其核心思想是通过将频谱信号进行对数运算,然后再进行傅里叶反变换,将其从频率域转换为时间域。
这样,倒谱展示了信号的谐波分量和它们在时间轴上的重复周期。
倒谱的计算步骤如下:1.对原始信号进行傅里叶变换,得到频谱。
傅里叶变换可以将信号从时域转换到频域,得到信号的复数频谱表示。
2.对频谱进行对数运算,得到对数谱。
对数谱可以将原始频谱中的幅度信息转换为对数尺度,增强信号中较小能量的频谱成分。
3.对对数谱进行傅里叶反变换,得到倒谱。
傅里叶反变换将对数谱从频率域转换为时间域,得到倒谱信号。
倒谱的应用:1.语音识别:倒谱分析在语音识别中被广泛应用。
声音信号经过倒谱分析转换为时间域,然后使用模式识别算法对信号进行特征提取和匹配,从而实现语音识别。
2.音乐处理:倒谱分析在音乐处理中可以用于音乐的音高检测、音乐合成和音频特征提取等。
通过对音频信号的倒谱分析,可以提取出音乐中的谐波分量和它们的周期。
3.语音合成:倒谱分析可以提取语音信号中的谐波分量和它们的周期,用于语音合成。
谐波分量可以通过合成滤波器进行生成,从而实现语音信号的合成。
4.语音压缩:倒谱分析可以提取语音信号的谐波分量和周期信息,然后对其进行压缩。
通过压缩倒谱信息,可以实现高效的语音信号传输和存储。
总结:倒谱分析是一种将频谱信息转换为时间领域的信号分析方法。
倒谱的基本原理是通过对频谱进行对数运算和傅里叶反变换,将其从频率域转换为时间域。
倒谱分析在语音识别、音乐处理、语音合成和语音压缩等领域得到了广泛应用。
通过倒谱分析,可以提取信号中的谐波成分和它们的周期信息,从而实现信号的特征提取、合成和压缩。
图
图
图
(2).倒频谱的应用
分离信息通道对信号的影响
图2.26对数功率谱关系图。
在机械状态监测和故障诊断中,所测得的信号,往往是由故障源经系统路径的传输而得到的响应,也就是说它不是原故障点的信号,如欲得到该源信号,必须删除传递通道的影响。
如在噪声测量时,所测得之信号,不仅有源信号而且又有不同方向反射回来的回声信号的混入,要提取源信号,也必须删除回声的干扰信号。
若系统的输入为x(t),输出为y(t),脉冲响应函数是h(t),两者的时域关系为: y(t)=x(t)*h(t)
频域为: Y(f)=X(f)*H(f)或Sy(f)=Sx(f)*|H(f)|2
对上式两边取对数,则有:
(2.11)
式(2.72)关系如图(2.26)所示,源信号为具有明显周期特征的信号,经过系统特性logGk(f)的影响修正,合成而得输出信号logGy(f)。
对于(2.72)式进一步作傅里叶变换,即可得幅值倒频谱:
(2.12)
即:
(2.13)
以上推导可知,信号在时域可以利用x(t)与h(t)的卷积求输出;在频域则变成X(f)与H(f)的乘积关系;而在倒频域则变成Cx(q)和Ch(q)相加的关系,使系统
特特性Ch(q)与信号特性Cx(q)明显区别开来,这对清除传递通道的影响很有用处,而用功率谱处理就很难实现。
图(2.26b)即为相应的倒频谱图。
从图上清楚地表明有两个组成部分:一部分是高倒频率q2,反映源信号特征;另一部分是低倒频率q1,反映系统的特性。
两部分在倒频谱图上占有不同的倒频率范围,根据需要可以将信号与系统的影响分开,可以删除以保留源信号。
倒频谱分析倒频谱分析也称为二次频谱分析,是近代信号处理科学中的一项新技术,是检测复杂谱图中周期分量的有用工具。
它对于分析具有同族谐频或异族谐频、多成分边频等复杂信号,找出功率谱上不易发现的问题非常有效。
实数倒谱又分为功率倒频谱、幅值倒频谱和类似相关函数的倒频谱。
工程上经常使用的是功率倒频谱和幅值倒频谱。
在语言分析中语音音调的测定、机械振动中故障监察和诊断以及排除回波(反射波)等方面均得到广泛的应用。
若一个测量信号)s(t)x(=,则当两个分量y+tt)(ty是由两个分量)(tx与)(t(s叠加而成的,即)的能量分别集中在不同的频率段时,可用频域分析中的线性滤波或功率谱分析;当所要提取的分量以一定的形状作周期性重复而其中一分量是随时间变化的噪声时,可用时域分析中的信号平均法或相关分析。
这些方法都可有效地处理线性叠加信号。
但是有的信号不是由其分量的线性叠加,例如机床的输出信号是)(ty,激发振动的输入信号是切削力)tty+xhy是(t=即输出)(th描述的,则有)(t(t(x,而机床的动力特性是由脉冲响应))()输入)h的卷积,这是用处理线性叠加信号的方法就不够了。
另外、对于一个(tx与脉冲响应力)(t复杂的功率谱图,有的很难直观看出它的一些特点和变化情况。
而倒谱分析则能很好地处理这类问题,使故障诊断更加便利。
倒频谱是频域函数的傅里叶再变换,与相关函数不同只差对数加权。
对功率谱函数取对数的目的,是使再变换以后的信号能量格外集中,同时还可解析卷积(褶积)成分,易于对原信号的识别。
功率倒谱主要定义为时间信号的功率谱取对数再进行傅里叶逆变换。
通过上述分析可知,倒谱分析技术可适用于:(1)机械故障诊断,对于机械故障信号在频谱图上,出现难以识别的多族调制边频时,采用倒频谱分析技术,可以分解和识别故障频率,分析和诊断产生故障的原因和部位。
在齿轮箱的振动分析中,倒谱分析技术有广泛的应用。
(2)语音和回声分析,求解卷积问题。
基于MATLAB的语音倒谱分析语音倒谱分析(Cepstral Analysis)是一种常用于语音信号处理的技术,通过在短时频域上进行倒谱分析,可以提取出语音信号的特征参数,进一步应用于语音识别、语音合成和语音编码等领域。
MATLAB作为一种功能强大的科学计算软件,提供了丰富的工具箱,可以方便地进行语音倒谱分析的实现。
语音倒谱分析的基本原理是将频谱的信息转换到倒谱域,再提取出倒谱系数作为特征参数。
语音信号的频谱特性通常用功率谱密度来表示,而倒谱系数则是通过对频谱进行对数运算和离散余弦变换得到的。
MATLAB提供了类似于“cepstral”和“rceps”等函数,可以直接计算语音信号的倒谱系数,并进行后续的分析和处理。
在使用MATLAB进行语音倒谱分析时,通常可以按照以下步骤进行:1. 读取语音信号:首先需要将语音信号读入MATLAB中,可以使用“audioread”函数来完成这一步骤。
读取后的语音信号通常是一个列向量,表示声音随时间的变化。
2. 分帧处理:语音信号是一个时间域的信号,倒谱分析通常需要对其进行分帧处理。
可以使用“buffer”函数将语音信号划分为多个帧,并逐帧进行处理。
每一帧的长度通常选择20-30ms,可以根据需要进行调整。
3. 加窗处理:语音信号是一个非平稳信号,为了保证每一帧都满足平稳的假设,通常需要对每一帧进行加窗处理。
常用的加窗函数有汉明窗和汉宁窗等,可以使用“hamming”和“hanning”等函数来生成加窗函数。
4. 计算频谱:对于每一帧语音信号,可以通过对其进行快速傅里叶变换(FFT)得到其频谱信息。
可以使用“fft”函数来完成这一步骤,得到每一帧的频谱表示。
5. 计算倒谱系数:对于得到的频谱信息,可以通过对其进行对数运算和离散余弦变换(DCT)得到倒谱系数。
可以使用“log”、“dct”等函数来完成这一步骤,得到每一帧的倒谱系数。
6.特征提取和分析:得到每一帧的倒谱系数后,可以进一步进行特征提取和分析。
倒谱均值方差归一化原理倒谱均值方差归一化是一种信号处理方法,主要应用于音频信号分析中。
它的目的是通过将信号的均值方差归一化来消除信号幅度变化的影响,从而更好地揭示出信号的时域和频域特征。
下面就来逐一解释倒谱均值方差归一化的原理。
1. 倒谱分析倒谱是时域上的信号在频域上的反演。
具体地,对于一个实际序列x(n),其倒谱序列r(k)定义为:r(k)=IDFT(log(|X(f)|^2))其中,X(f)是x(n)的傅里叶变换,IDFT表示对傅里叶反变换,log表示对傅里叶变换的幅度取对数运算。
倒谱分析的基本思想是,通过对一个信号的倒谱序列进行分析,可以得到该信号的周期、谐波和旋律等信息。
2. 均值方差归一化均值方差归一化是一种数据预处理方法,用于将数据进行均值减法和方差归一化处理。
具体地,对于一个实数序列x=[x1,x2,...,xn],其均值方差归一化后的序列为:x'=(x-mean(x))/std(x)其中,mean(x)表示序列x的均值,std(x)表示序列x的标准差。
均值方差归一化的目的是消除数据的幅度变化对模型学习和预测的影响。
3. 倒谱均值方差归一化倒谱均值方差归一化是将倒谱分析和均值方差归一化相结合的一种信号处理方法。
具体地,对于一个音频信号x(t),首先进行倒谱分析,得到其倒谱序列r(k)。
然后,对r(k)进行均值方差归一化处理,得到归一化倒谱序列r'(k)。
最后,对r'(k)进行IDFT运算,得到信号的时域波形。
倒谱均值方差归一化的优点在于,它可以消除信号幅度变化的影响,从而更好地揭示出信号的时域和频域特征。
同时,它也可以减小信号非线性失真和频域泄漏的影响,提高信号的可辨识度和分类准确率。
总的来说,倒谱均值方差归一化是一种有效的信号处理方法,应用广泛于音频信号分析、语音识别、音乐信息检索等领域。
倒谱分析的原理与应用1. 什么是倒谱分析?倒谱分析是一种在信号处理和声学领域常用的分析方法,用于分析时域信号的频谱特征。
利用倒谱分析,可以得到信号的频率成分和振幅信息,进而对信号进行特征提取和模式识别。
2. 倒谱分析的原理倒谱分析的原理基于信号的光谱结构。
信号的频谱可以通过傅里叶变换得到,而倒谱分析则是对频谱进行进一步处理。
2.1 频谱图的构造倒谱分析的第一步是构造信号的频谱图。
频谱图将信号的频率和振幅信息可视化,通常使用对数幅度谱来表示。
2.2 傅里叶变换傅里叶变换将时域信号转换为频域信号,通过傅里叶变换可以得到信号的频谱表示。
2.3 对数幅度谱的计算对数幅度谱是频谱的一种常见表示形式,它使用对数刻度来表示信号的振幅。
对数幅度谱可以通过对频谱取对数来得到。
2.4 倒谱的计算倒谱是对对数幅度谱进行进一步处理得到的。
倒谱通过对对数幅度谱进行伪逆傅里叶变换得到,反映了信号的调频特性。
2.5 倒谱的性质倒谱具有以下性质: - 倒谱是实数序列。
- 倒谱的对称性。
- 倒谱的平滑性。
3. 倒谱分析的应用倒谱分析在音频信号处理、语音识别和模式匹配等领域有广泛的应用。
3.1 音频信号处理倒谱分析在音频信号处理中通常用于特征提取和声音合成。
倒谱可以对音频信号进行降维处理,从而提取出信号的关键特征。
在声音合成中,倒谱分析可以用于生成逼真的声音效果。
3.2 语音识别倒谱分析在语音识别中扮演着重要的角色。
语音信号可以通过倒谱分析和模式匹配算法进行识别和辨别。
倒谱分析可以提取出语音信号的关键特征,为语音识别算法提供支持。
3.3 模式匹配倒谱分析可以应用于模式匹配问题。
在模式匹配中,倒谱分析可以将复杂的信号转化为一系列简单的特征向量,从而实现信号的匹配和识别。
3.4 其他应用领域除了音频信号处理、语音识别和模式匹配,倒谱分析还可以应用于其他领域,如图像处理、生物医学工程和自动控制系统等。
4. 总结倒谱分析是一种常用的信号处理方法,可以用于分析时域信号的频谱特征。
第3章 频谱与滤波3. 倒谱分析倒谱分析是在频谱分析的基础上发展起来的一种分析技术,就是对原信号Fourier 变换的对数值进行逆向Fourier 变换,也称为二次谱或二重谱分析技术,倒谱的英文单词为Cepstrum ,从拼写顺序上是频谱的英文单词Spectrum 的倒序,也能体现出倒谱分析和频谱分析的紧密关系。
对时域中的信号进行倒谱分析与进行频谱分析的实现过程较为相似,通过对复杂的频谱作进一步的倒谱分析,可以查清频谱中的主要频率组成和变化。
倒谱分析已经在机械故障诊断、地震数据分析、语音信号分析、图像处理、边频噪声分离等方面得到了非常广泛的应用。
显而易见,倒谱分析是一种同态映射运算。
笔者在第一章中曾经提到过:如果)()()(f x ef X f X ϕ⋅=是函数)(t x 的Fourier 变换,那么函数)(t x 的自相关函数的计算公式为⎰+∞∞-+⋅=dt t x t x r xx )()()(*ττ,)(τxx r 是一个偶函数,并且对应频谱关系式:)()()]([2f S f X r F x xx ==+τ,)(f S x 为)(t x 的自谱密度函数。
实倒谱或功率倒谱就是通过对)(f S x 的对数值进行逆向Fourier 变换获得的计算结果,如果我们用)(τR x C 表示)(t x 的实倒谱,那么有:])([log 2)]([log )(f X F f S F C x R x --==τ (3-16)复倒谱是直接对)(f X 的对数值进行逆向Fourier 变换得到的计算结果,如果用)(τC x C 表示)(t x 的复倒谱,那么有:)]()([log )]([log )(f j f X F f X F C x C x ϕτ⋅+==-- (3-17)显而易见,上面两个公式(3-16)和(3-17)中的变量τ与自相关函数dt t x t x r xx ⎰+∞∞-+⋅=)()()(*ττ中的变量τ在量纲上是一致的,称其为倒频率(Quefrency)。
实验三 语音信号进行倒谱分析一、 实验目的、要求1. 理解倒谱分析的作用2. 掌握倒谱分析求基音周期的方法3. 了解LPC 倒谱分析方法二、实验原理1.倒谱分析原理同态信号处理也称为同态滤波,实现将卷积关系变换为求和关系的分离处理,即解卷。
如 进行如下3步处理对于语音信号进行解卷,可将语音信号的声门激励信息及声道响应信息分离开来,从而求得声道共振特征和基音周期,用于语音编码、合成和识别。
同态信号处理的基本原理(1)第一个子系统D*[](特征系统)完成将卷积信号转化为加性信号的运算。
)(ˆ1n x 和 )(ˆ2n x信号也均是时域序列,但它们所处的离散时域显然不同于x(n)所处的离散时域,故把它称之为复倒频谱域。
)(ˆn x是x(n)的复倒频谱,简称为复倒谱,有时也称为对数复倒谱。
复倒谱具体计算公式其中倒谱计算公式为:2 线性预测原理线性预测分析的基本思想由于语音样点之间存在相关性,所以可以用过去的样点值来预测现在或未来的样点值。
通过使实际语音抽样和线性预测抽样之间的误差在某个准则下达到最小值来决定唯一的一组预测系数,而这组系数就能反映语音信号的特性,可以作为语音信号特征参数来用于语音编码、语音合成和语音识别等应用中去。
线性预测分析的基本原理每个采样值由前面的p 个采样值线性组合所构成。
记为x '(n),有:)(ˆ)(ˆ)(ˆ)](ˆ)(ˆ[)](ˆ[)3()(ˆ)(ˆ)(ˆ)(ln )(ln )(ln )2()()()()]([)1(212111212121n x n x n x z X z X Z z X Z z X z X z Xz X z X z X z X z X z X n x Z =+=+==+=+=⋅==--12()()()x n x n x n =*1ˆ()[ln (())]x n Z Z x n -=[()]()ˆ()ln ()ˆˆ()[()]jw jw jw jw DFT x n X e Xe X e xn IDFT X e ===要提高预测精度,就是要预测系数{k a }的取值使e(n)最小。
倒频谱分析倒频谱分析也称为二次频谱分析,是近代信号处理科学中的一项新技术,是检测复杂谱图中周期分量的有用工具。
它对于分析具有同族谐频或异族谐频、多成分边频等复杂信号,找出功率谱上不易发现的问题非常有效。
实数倒谱又分为功率倒频谱、幅值倒频谱和类似相关函数的倒频谱。
工程上经常使用的是功率倒频谱和幅值倒频谱。
在语言分析中语音音调的测定、机械振动中故障监察和诊断以及排除回波(反射波)等方面均得到广泛的应用。
若一个测量信号)s(t)x(=,则当两个分量y+tt)(ty是由两个分量)(tx与)(t(s叠加而成的,即)的能量分别集中在不同的频率段时,可用频域分析中的线性滤波或功率谱分析;当所要提取的分量以一定的形状作周期性重复而其中一分量是随时间变化的噪声时,可用时域分析中的信号平均法或相关分析。
这些方法都可有效地处理线性叠加信号。
但是有的信号不是由其分量的线性叠加,例如机床的输出信号是)(ty,激发振动的输入信号是切削力)tty+xhy是(t=即输出)(th描述的,则有)(t(t(x,而机床的动力特性是由脉冲响应))()输入)h的卷积,这是用处理线性叠加信号的方法就不够了。
另外、对于一个(tx与脉冲响应力)(t复杂的功率谱图,有的很难直观看出它的一些特点和变化情况。
而倒谱分析则能很好地处理这类问题,使故障诊断更加便利。
倒频谱是频域函数的傅里叶再变换,与相关函数不同只差对数加权。
对功率谱函数取对数的目的,是使再变换以后的信号能量格外集中,同时还可解析卷积(褶积)成分,易于对原信号的识别。
功率倒谱主要定义为时间信号的功率谱取对数再进行傅里叶逆变换。
通过上述分析可知,倒谱分析技术可适用于:(1)机械故障诊断,对于机械故障信号在频谱图上,出现难以识别的多族调制边频时,采用倒频谱分析技术,可以分解和识别故障频率,分析和诊断产生故障的原因和部位。
在齿轮箱的振动分析中,倒谱分析技术有广泛的应用。
(2)语音和回声分析,求解卷积问题。
实验三 语音信号进行倒谱分析一、 实验目的、要求1.理解倒谱分析的作用 2. 掌握倒谱分析求基音周期的方法3. 了解LPC 倒谱分析方法二、实验原理1.倒谱分析原理同态信号处理也称为同态滤波,实现将卷积关系变换为求和关系的分离处理,即解卷。
如 进行如下3步处理)(ˆ)(ˆ)(ˆ)](ˆ)(ˆ[)](ˆ[)3()(ˆ)(ˆ)(ˆ)(ln )(ln )(ln )2()()()()]([)1(212111212121n x n x n x z X z X Z z X Z z X z X z Xz X z X z X z X z X z X n x Z =+=+==+=+=⋅==--对于语音信号进行解卷,可将语音信号的声门激励信息及声道响应信息分离开来,从而求得声道共振特征和基音周期,用于语音编码、合成和识别.同态信号处理的基本原理(1)第一个子系统D *[](特征系统)完成将卷积信号转化为加性信号的运算。
)(ˆ1n x 和 )(ˆ2n x信号也均是时域序列,但它们所处的离散时域显然不同于x(n )所处的离散时域,故把它称之为复倒频谱域。
)(ˆn x是x(n)的复倒频谱,简称为复倒谱,有时也称为对数复倒谱.复倒谱具体计算公式其中倒谱计算公式为:2 线性预测原理12()()()x n x n x n 1ˆ()[ln (())]x n Z Z x n [()]()ˆ()ln ()ˆˆ()[()]jw jw jw jw DFT x n X e X e X e x n IDFT X e线性预测分析的基本思想由于语音样点之间存在相关性,所以可以用过去的样点值来预测现在或未来的样点值。
通过使实际语音抽样和线性预测抽样之间的误差在某个准则下达到最小值来决定唯一的一组预测系数,而这组系数就能反映语音信号的特性,可以作为语音信号特征参数来用于语音编码、语音合成和语音识别等应用中去。
线性预测分析的基本原理每个采样值由前面的p 个采样值线性组合所构成。
实验三、用MATLAB实现语音信号的倒谱分析学院:信息与通信工程学院专业:通信工程班级:通信112学号:*******姓名: ***指导教师:***1.实验目的观察语音信号的倒谱系数,理解并掌握语音信号倒谱分析的原理和语音信号倒谱系数的特点,为深入学习语音信号处理的各种应用奠定基础。
2.实验内容(1)由麦克风采集语音数据,将采集的数据存成WA V文件(要求采样率为8000Hz),存在本人的文件夹中。
(2)读取WA V文件,分别计算并显示一帧浊音和一帧清音的原始语音信号、加窗信号、倒谱(要求窗函数为汉宁窗、帧长为256,帧移为128),观察并分析浊音和清音倒谱的差异,并利用浊音的倒谱近似的估计出浊音的基音周期。
(3)读取WA V文件,选取一帧浊音并显示其波形,计算并显示不同窗函数情况下这帧浊音的加窗信号、倒谱(要求窗函数分别为矩形窗和汉宁窗、帧长为256,帧移为128),观察并分析不同的窗函数对倒谱分析的影响。
3. (1)由麦克风采集语音数据,将采集的数据存成WA V文件(要求采样率为8000Hz),存在本人的文件夹中。
供参考的程序代码:clear;close all;Fs=8000;y=wavrecord(5*Fs,Fs,'double');wavwrite(y,'e:\\my.wav');soundview(y,Fs);(2读取WA V文件,分别计算并显示一帧浊音和一帧清音的原始语音信号、加窗信号、倒谱(要求窗函数为汉宁窗、帧长为256,帧移为128),观察并分析浊音和清音倒谱的差异,并利用浊音的倒谱近似的估计出浊音的基音周期。
供参考的程序代码clear;close all;x= wavread('e:\\my.wav'); % 从文件my.wav读取语音x = double(x);LEN = 256;INC= 128;f = enframe(x, LEN, INC); % 分帧ff=f(36,:); % 选取一帧浊音信号ff1=ff'.*hamming(length(ff)); % 加汉宁窗% 计算倒谱r=fft(ff1);LogMag=log(abs(r));Ceps=ifft(LogMag);LEN1=LEN/2;Ceps1=zeros(LEN,1);Ceps1(1: LEN1-1)= flipud(Ceps(2:LEN1));Ceps1(LEN1:LEN)= Ceps(1:LEN1+1);subplot(3,1,1); plot(ff); % 绘制截取的一帧语音信号axis([0,LEN,-0.5,0.5]);title('截取的一帧语音信号'); xlabel('样点数'); ylabel('幅度');subplot(3,2,1); plot(ff1); % 绘制一帧加窗后的语音信号axis([0,LEN,-0.5,0.5]);title('加汉宁窗的语音帧'); xlabel('样点数'); ylabel('幅度');subplot(3,2,5);Q=[-LEN1+1:1:LEN1];plot(Q,Ceps1); % 绘制倒谱axis([-LEN1+1,LEN1,-2,0.7]);xlabel('倒频/s '); ylabel('倒频谱幅度'); title ('加汉宁窗的倒谱');x= wavread('e:\\my.wav'); % 从文件my.wav读取语音x = double(x);LEN = 256;INC= 128;f = enframe(x, LEN, INC); % 分帧ff=f(36,:); % 选取一帧浊音信号ff1=ff'.*hamming(length(ff)); % 加汉宁窗% 计算倒谱r=fft(ff1);LogMag=log(abs(r));Ceps=ifft(LogMag);LEN1=LEN/2;Ceps1=zeros(LEN,1);Ceps1(1: LEN1-1)= flipud(Ceps(2:LEN1));Ceps1(LEN1:LEN)= Ceps(1:LEN1+1);subplot(3,2,2); plot(ff); % 绘制截取的一帧语音信号axis([0,LEN,-0.5,0.5]);title('截取的一帧语音信号'); xlabel('样点数'); ylabel('幅度');subplot(3,2,4); plot(ff1); % 绘制一帧加窗后的语音信号axis([0,LEN,-0.5,0.5]);title('加汉宁窗的语音帧'); xlabel('样点数'); ylabel('幅度');subplot(3,2,6);Q=[-LEN1+1:1:LEN1];plot(Q,Ceps1); % 绘制倒谱axis([-LEN1+1,LEN1,-2,0.7]);xlabel('倒频/s '); ylabel('倒频谱幅度'); title ('加汉宁窗的倒谱');(3)读取.WA V文件,选取一帧浊音并显示其波形,计算并显示不同窗函数情况下这帧浊音的加窗信号、倒谱(要求窗函数分别为矩形窗和汉宁窗、帧长为256,帧移为128),观察并分析不同的窗函数对倒谱分析的影响。
图
图
图
(2).倒频谱的应用
分离信息通道对信号的影响
图2.26对数功率谱关系图。
在机械状态监测和故障诊断中,所测得的信号,往往是由故障源经系统路径的传输而得到的响应,也就是说它不是原故障点的信号,如欲得到该源信号,必须删除传递通道的影响。
如在噪声测量时,所测得之信号,不仅有源信号而且又有不同方向反射回来的回声信号的混入,要提取源信号,也必须删除回声的干扰信号。
若系统的输入为x(t),输出为y(t),脉冲响应函数是h(t),两者的时域关系为: y(t)=x(t)*h(t)
频域为: Y(f)=X(f)*H(f)或Sy(f)=Sx(f)*|H(f)|2
对上式两边取对数,则有:
(2.11)
式(2.72)关系如图(2.26)所示,源信号为具有明显周期特征的信号,经过系统特性logGk(f)的影响修正,合成而得输出信号logGy(f)。
对于(2.72)式进一步作傅里叶变换,即可得幅值倒频谱:
(2.12)
即:
(2.13)
以上推导可知,信号在时域可以利用x(t)与h(t)的卷积求输出;在频域则变成X(f)与H(f)的乘积关系;而在倒频域则变成Cx(q)和Ch(q)相加的关系,使系统
特特性Ch(q)与信号特性Cx(q)明显区别开来,这对清除传递通道的影响很有用处,而用功率谱处理就很难实现。
图(2.26b)即为相应的倒频谱图。
从图上清楚地表明有两个组成部分:一部分是高倒频率q2,反映源信号特征;另一部分是低倒频率q1,反映系统的特性。
两部分在倒频谱图上占有不同的倒频率范围,根据需要可以将信号与系统的影响分开,可以删除以保留源信号。