语音信号的倒谱分析
- 格式:ppt
- 大小:1.15 MB
- 文档页数:61
复倒谱的基本原理倒谱(Cepstrum)是一种将频谱信息转换为时间领域的信号分析方法。
它是由美国工程师和数学家Homayoon Beigi于1963年提出的,用于声学和信号处理等领域。
倒谱分析在语音识别、音乐处理、语音合成、语音压缩等许多应用中得到了广泛应用。
倒谱的基本原理是基于信号的频谱和其对数谱之间的转换关系。
其核心思想是通过将频谱信号进行对数运算,然后再进行傅里叶反变换,将其从频率域转换为时间域。
这样,倒谱展示了信号的谐波分量和它们在时间轴上的重复周期。
倒谱的计算步骤如下:1.对原始信号进行傅里叶变换,得到频谱。
傅里叶变换可以将信号从时域转换到频域,得到信号的复数频谱表示。
2.对频谱进行对数运算,得到对数谱。
对数谱可以将原始频谱中的幅度信息转换为对数尺度,增强信号中较小能量的频谱成分。
3.对对数谱进行傅里叶反变换,得到倒谱。
傅里叶反变换将对数谱从频率域转换为时间域,得到倒谱信号。
倒谱的应用:1.语音识别:倒谱分析在语音识别中被广泛应用。
声音信号经过倒谱分析转换为时间域,然后使用模式识别算法对信号进行特征提取和匹配,从而实现语音识别。
2.音乐处理:倒谱分析在音乐处理中可以用于音乐的音高检测、音乐合成和音频特征提取等。
通过对音频信号的倒谱分析,可以提取出音乐中的谐波分量和它们的周期。
3.语音合成:倒谱分析可以提取语音信号中的谐波分量和它们的周期,用于语音合成。
谐波分量可以通过合成滤波器进行生成,从而实现语音信号的合成。
4.语音压缩:倒谱分析可以提取语音信号的谐波分量和周期信息,然后对其进行压缩。
通过压缩倒谱信息,可以实现高效的语音信号传输和存储。
总结:倒谱分析是一种将频谱信息转换为时间领域的信号分析方法。
倒谱的基本原理是通过对频谱进行对数运算和傅里叶反变换,将其从频率域转换为时间域。
倒谱分析在语音识别、音乐处理、语音合成和语音压缩等领域得到了广泛应用。
通过倒谱分析,可以提取信号中的谐波成分和它们的周期信息,从而实现信号的特征提取、合成和压缩。
mel频谱倒谱系数随着科技的进步,声音处理已经成为了我们日常生活中不可或缺的一部分。
在声音处理领域中,Mel频谱倒谱系数(MFCC)扮演着至关重要的角色。
本文将深入解析Mel频谱倒谱系数,探讨其在声音处理领域中的应用和重要性。
一、Mel频谱倒谱系数的概念Mel频谱倒谱系数,简称MFCC,是一种用于语音识别和声音分类的特征。
它通过将语音信号转换为倒谱系数(cepstral coefficients),能够有效地描述语音信号的特性。
在语音处理中,倒谱系数是一种将频域信号转换为时域信号的方法,而MFCC则是在倒谱系数的基础上,进一步考虑了人耳对声音的感知特性。
二、Mel频谱倒谱系数的提取过程提取MFCC的过程主要包括预加重、分帧、加窗、快速傅里叶变换(FFT)、梅尔滤波器组、对数压缩、离散余弦变换(DCT)等步骤。
下面将简要介绍每个步骤:1.预加重:通过一个一阶高通滤波器对语音信号进行预处理,以突出语音信号的高频部分。
2.分帧:将语音信号分成若干个短时帧,每帧通常为20-40毫秒。
3.加窗:对每个帧应用窗函数,以减少帧边缘的突变。
4.快速傅里叶变换(FFT):将加窗后的帧从时域转换到频域。
5.梅尔滤波器组:将频域信号通过一组梅尔滤波器,模拟人耳对不同频率的感知特性。
6.对数压缩:将梅尔滤波器的输出进行对数压缩,以突出语音信号中的关键信息。
7.离散余弦变换(DCT):对压缩后的梅尔频谱进行离散余弦变换,得到倒谱系数。
三、Mel频谱倒谱系数在声音处理中的应用MFCC在声音处理领域中有着广泛的应用,主要包括以下几个方面:1.语音识别:MFCC能够有效地描述语音信号的特性,因此在语音识别中发挥着重要的作用。
通过提取语音信号的MFCC特征,可以实现对语音的自动识别和分类。
2.声音分类:MFCC可以用于声音分类任务,例如动物声音分类、乐器声音分类等。
通过提取声音信号的MFCC特征,可以实现对不同声音类型的自动分类和识别。
实验四 语音信号的mel 频率倒谱参数1 实验目的通过Matlab 编程掌握语音信号的mel 频率倒谱参数的求解方法。
2 实验原理人耳听到声音的高低与声音的频率成对数关系,即:Mel(f)=2595lg(1+f/700),实际频率f 的单位是Hz.根据Zwicker 的工作,临界频率带宽随着频率的变化而变化,并与Mel 频率的增长一致。
类似与临界带的划分,可以将语音频率划分成一系列三角形的滤波器序列,如下图所示.取每个三角形的滤波器频率带宽内所有信号幅度加权和作为某个带通滤波器的输出,然后对所有滤波器输出做对数运算,再进一步做离散余弦变换得到MFCC 。
具体步骤如下:(1)三角滤波器的输出则为此频率带宽内所有信号幅度谱加权和。
()()()()()()()|()||()|()()()()c l h l n n k o l k c l k o l h l k Y l X k X k c l o l h l c l ==--=+--∑∑l = 1,2,....,40(2)对所有滤波器输出作对数运算ln(())Y l l = 1,2,....,40(3)作离散余弦变换(DCT )得到Mel 频率倒谱参数(MFCC)。
2411ln(())cos[()]224i l C Y l i l π==-∑i = 1,2,...,P ,P 为MFCC 参数的阶数,取P =16。
3 实验过程4 实验结果[x,fs,bits]=wavread('c:\WINDOWS\Media\chimes.wav');x=x(:,1);x=x';len=length(x);N=256;M=128;Fn=fix((len-N)/M+1);y=[];for i=1:Fndown=1+(i-1)*M;up=down+N-1;temp=x(down:up);temp=temp.*hamming(N)';y=[y;temp];endL=40;R=16;k=0:N/2;f=fs/N*k;%ÕâÀï²»ÒªÔÙ³ýÒÔ2mel=2595*log(1+f/700);%melm=max(mel)melm=2595*log(1+fs/1400);r=0:L+1;tri=melm/(L+1)*r;s=[];for j=1:Fntemp1=y(j,:);p=abs(fft(temp1));for l=1:Ltri1=[tri(l),tri(l+1),tri(l+2)];low=find((mel>=tri1(1))&(mel<=tri1(2)));high=find((mel>=tri1(2))&(mel<=tri1(3)));w=[(mel(low)-tri1(1))/(tri1(2)-tri1(1)),(tri1(3)-mel(high))/(tri1(3)-tri1(2))];%ÕâÀﶪÁËÀ¨ºÅ£¬²¢ÇÒ±äÁ¿Ãû×Ö¸ã´í%tri3=tri(3)%tri2=tri(2)% w2=(tri(3)-mel(high))/(tri(3)-tri(2))m(l)=sum(w.*p([low,high]),2);endl=1:L;for q=1:Rc(q)=sqrt(2/N)*sum(log(m).*cos((l-0.5)*q*pi/L),2);ends=[s;c];endplot(s')%³ÌÐò±àдʱעÒâ±äÁ¿µÄÃû³Æ¸ãÇå³þ£¬²»ÒªÈ¡Ïà½üµÄÃû×Ö¡£À¨ºÅ²»ÒªÂ©µô¡£。
图
图
图
(2).倒频谱的应用
分离信息通道对信号的影响
图2.26对数功率谱关系图。
在机械状态监测和故障诊断中,所测得的信号,往往是由故障源经系统路径的传输而得到的响应,也就是说它不是原故障点的信号,如欲得到该源信号,必须删除传递通道的影响。
如在噪声测量时,所测得之信号,不仅有源信号而且又有不同方向反射回来的回声信号的混入,要提取源信号,也必须删除回声的干扰信号。
若系统的输入为x(t),输出为y(t),脉冲响应函数是h(t),两者的时域关系为: y(t)=x(t)*h(t)
频域为: Y(f)=X(f)*H(f)或Sy(f)=Sx(f)*|H(f)|2
对上式两边取对数,则有:
(2.11)
式(2.72)关系如图(2.26)所示,源信号为具有明显周期特征的信号,经过系统特性logGk(f)的影响修正,合成而得输出信号logGy(f)。
对于(2.72)式进一步作傅里叶变换,即可得幅值倒频谱:
(2.12)
即:
(2.13)
以上推导可知,信号在时域可以利用x(t)与h(t)的卷积求输出;在频域则变成X(f)与H(f)的乘积关系;而在倒频域则变成Cx(q)和Ch(q)相加的关系,使系统
特特性Ch(q)与信号特性Cx(q)明显区别开来,这对清除传递通道的影响很有用处,而用功率谱处理就很难实现。
图(2.26b)即为相应的倒频谱图。
从图上清楚地表明有两个组成部分:一部分是高倒频率q2,反映源信号特征;另一部分是低倒频率q1,反映系统的特性。
两部分在倒频谱图上占有不同的倒频率范围,根据需要可以将信号与系统的影响分开,可以删除以保留源信号。
语音部分的分析方法有哪些
语音部分的分析方法有很多,下面列举了一些常用的方法:
1. 基频分析:通过分析声音信号中的周期性波动,确定声音的基频,用于提取声音的音高信息。
2. 短时能量分析:通过计算声音信号在短时段内的能量大小,实现对声音的强度分析。
3. 短时幅度谱分析:通过对声音信号进行FFT变换,将时域信号转换为频域信号,分析声音在不同频率上的幅度特性。
4. 倒谱分析:通过对声音信号的频谱进行对数变换,得到倒谱序列,用于分析声音的共振特征和声音的音色。
5. LPC(线性预测编码)分析:通过寻找一个线性预测模型,用于对声音信号进行预测和分析,常用于语音合成和语音识别。
6. MFCC(梅尔频率倒谱系数)分析:将声音信号的频谱特性转换为梅尔频率刻度,然后进行倒谱分析,用于语音识别和说话人识别。
7. 声谱图分析:通过将声音信号的频域信息绘制成二维图像,用于可视化声音
特性和分析声音的频率成分。
这些方法可以用于声音特性分析、语音合成、语音识别、说话人识别等领域。
不同的分析方法可以用于提取不同的声音特征,根据具体问题选择适合的方法进行分析。
cmvn 倒谱系数均值归一化
在语音处理中,倒谱系数(cepstral coefficients)是用于表示语音信号的一种常用方法。
倒谱系数是通过将语音信号进行傅里叶变换并取其逆变换得到的,它能够反映语音信号的频谱包络信息。
倒谱系数均值归一化(CMVN,Cepstral Mean Variance Normalization)是一种常用的预处理技术,用于消除不同说话人或不同语音之间的差异,使语音识别更加准确。
CMVN 的主要思想是对倒谱系数进行均值归一化,即将每个倒谱系数减去其均值,并除以标准差。
这样可以消除不同语音之间的规模和偏移差异,使不同语音在倒谱空间中具有可比性。
以下是CMVN 的计算步骤:
1.计算所有语音样本的倒谱系数均值(mean)和标准差(std)。
2.对每个语音样本的倒谱系数进行归一化,即减去均值并除以标准差。
3.将归一化后的倒谱系数作为新的特征向量用于后续的语音识别或分类任务。
通过CMVN 预处理,可以减小不同说话人或不同语音之间的差异,提高语音识别的准确率。