电厂低压加热器
- 格式:doc
- 大小:158.50 KB
- 文档页数:6
低压加热器的作用是利用在汽轮机内做过部分功的蒸气,抽至加热器内加热给水,提高水的温度,减少了汽轮机排往凝汽器中的蒸汽量,降低了能源损失,提高了热力系统的循环效率。
结构是较多的采用直立管板式加热器。
加热器的受热面一般是用黄铜管或无缝钢管构成的直管束或U形管束组成的。
被加热的水从上部进水管进入分隔开的水室一侧,再流入U形管束中,U形管在加热器的蒸气空间,吸收加热蒸气的热量,由管壁传递给管内流动的水,被加热的水经过加热器出口水室流出。
低压加热器的作用是利用在汽轮机内做过部分功的蒸气,抽至加热器内加热给水,提高水的温度,减少了汽轮机排往凝汽器中的蒸汽量,降低了能源损失,提高了热力系统的循环效率。
结构是较多的采用直立管板式加热器。
加热器的受热面一般是用黄铜管或无缝钢管构成的直管束或U形管束组成的。
被加热的水从上部进水管进入分隔开的水室一侧,再流入U形管束中,U形管在加热器的蒸气空间,吸收加热蒸气的热量,由管壁传递给管内流动的水,被加热的水经过加热器出口水室流出。
高压加热器简称高加,是接在高压给水泵之后的加热给水的混合式加热器,用来提高给水温度,提高经济效益的。
低压加热器是接在轴封加热器之后的,用来加热上高压除氧器的凝结水的,也是提高凝结水温度,提高经济效益的。
高加和低加的工作方式是基本相似的,加热器里面布满了小细管,管内走锅炉给水和凝结水,管外来的是从汽轮机抽出的各段抽汽,经过换热,分别提高给水和凝结水的温度,抽汽被凝结成水,变成疏水,高压加热器的疏水一般去高压除氧器,低压加热器的疏水一般通过疏水泵打到凝汽器。
这就是简单的工作流程,要想弄明白,还得深入学习。
一般厂高加有两台,低加有三台,三台低加的内部压力依次减小。
希望对你有帮助。
你要先弄清楚除氧器的作用!除氧器的主要作用是除去锅炉给水中的氧气和其它不凝结气体,以保证给水的品质。
若水中溶解氧气,就会使与水接触的金属被腐蚀,同时在热交换器中若有气体聚积,将使传热的热阻增加,降低设备的传热效果。
低压加热器温升低的原因及处理邢宪森田丰(华电国际邹县发电厂)摘要:本文针对华电国际邹县发电厂(简称邹县电厂)335MW#1机组#7低压加热器温升低的原因进行了认真的分析,查找出了抽空气系统存在的问题,并针对性的采取了安装抽空气旁路的临时解决方案和下一步彻底处理方案,为解决加热器类似缺陷的处理提供了参考依据。
关键词:低压加热器;温升低;原因;处理1 情况介绍邹县电厂#1机组在2012年大修时更换了#6、#7低加,大修后#6低加各运行参数正常,但#7低加温升较低。
机组负荷300MW时,#7低加进/出水温度54.6/56.3℃,出水温度温升仅有1.7℃,七抽温度34℃,温升远低于设计值(见表1)。
表1 300MW等级低压加热器规范2 现场检查情况及原因分析现场检查发现关闭#7低加进汽电动门前后低加温升无变化,说明#7低加未进汽;全开七抽管道疏水门,疏水管道温度基本与环境温度相同,说明疏水管道有堵塞现象;更换低加时在低加抽空气支管上加装了新节流孔,但没有取消原来安装的母管节流孔;低加抽空气管道上存在U型弯(详见图1),U型弯底部无疏放水门,且位于U型弯底部的抽空气母管上安装有一节流孔,该节流孔前、后温度分别为42/21℃,温差达21℃(机组低压缸排汽温度37℃),说明该部分母管内有积水,节流孔板后产生了扩容吸热现象。
图1 #7低压加热器抽空气管道简图根据以上现象可以判断#7低加温升低的主要原因是低加内部空气积聚造成低加进汽不畅,换热效果差。
而造成进汽不畅的原因主要是低加抽空气管道安装存在缺陷,低加抽空气管道存在U型弯,并且U型弯底部没有放水门,机组检修期间进行真空系统注水检漏时注入的水无法排放,形成水封,由于节流孔的存在,该部分积水难以被抽吸干净;即使能够抽吸干净,新旧两道节流孔同时存在也会导致抽空气管道中蒸汽容易在两道节流孔间凝结,造成抽气不通畅,低加内不凝结气体积聚,蒸汽无法进入低加凝结。
另外,七段抽汽管道疏水管道堵塞,造成七抽管道内安装位臵较低的管道积水也是影响#7低加进汽的重要原因。
5号低压加热器温升低原因分析及优化作者:野飞来源:《环球市场信息导报》2014年第10期通过对宝鸡热电厂2x330MW机组低压加热器运行参数、排气系统的设计安装进行分析,通过运行调整及改造得出结论:低压加热器的运行排气管应单独引接至凝汽器,不能采用两台低压加热器共用一根运行排气管或逐级自流方式进行排气。
火电厂最大的损失就是冷源损失,在汽轮机设备中采用回热抽汽系统的目的就是减少冷源损失,提高给水温度,是降低机组热耗和煤耗的主要措施。
高、低压加热器是大中型汽轮发电机组中重要的辅助设备之一,其运行情况的好坏直接影响机组的经济性和安全性。
一、系统简介大唐宝鸡热电厂2×330MW机组汽轮机为北重汽轮机,额定功率为330MW,额定采暖抽汽量为550t/h。
汽轮机共有七段非调整抽汽,分别供1号高压加热器、2号高加蒸汽冷却器及2号高压加热器、除氧器、4号、5号、6号、7号低压加热器,其中4段抽汽在采暖期还供两台热网加热器。
二、低压加热器存在的问题我厂自2009年8月投产以来一直存在1号机组5号低压加热器低负荷期间水侧温升低的情况,负荷低于230MW时5号低压加热器温升不到2℃,5号低加设计温升回热抽汽系统运行不正常直接影响到机组运行的经济性。
我厂5号低压加热器设计温升为17℃左右,下端差设计为5.6℃。
根据2013年9月份1号机组前半个月运行参数统计分析,1号机组平均负荷185MW,5号低压加热器进/出水温度分别为73.12/74.99℃,五段抽汽温度76.79℃,疏水温度74.42℃,因五段抽汽压力在75%负荷以下为负压,测点为正压测点所以只显示0MPa无法判断真实压力。
5号低压加热器运行实际温升平均为1.87℃,下端差为1.3℃。
查阅我厂设计热平衡图及性能曲线,利用插入法查得机组185MW对应5段抽汽温度应为136.76℃,,五段抽汽压力0.0745MPa(负压),温升应为17.03℃,从设计参数与实际运行参数对比可以看出加热器下端差在正常范围内,5号低压加热器温升低于设计值15.16℃,五段抽汽温度低于设计值59.97℃。
过热蒸汽冷却段
过热蒸汽冷却段是利用从汽轮机抽出的过热蒸汽的一部分显热来提高凝结水温度的;它位于凝结水出口流程侧,并有包壳板密闭。
采用过热蒸汽冷却段可提高离开加热器的凝结水温度,使它接近或略超过抽汽压力下的饱和温度。
从进口接管进入的过热蒸汽在一组隔板的导向下,以适当的线速度和质量速度均匀地流过管子,并使蒸汽保留有足够的过热度,以保证蒸汽离开该段时呈干燥状态。
这样,当蒸汽离开该段进入凝结段时,可防止湿蒸汽冲蚀和损坏传热管。
该结构仅125MW机组低压加热器采用,大型机组的低压加热器不采用过热蒸汽冷却段。
1·3·2 凝结段
凝结段是利用蒸汽冷凝时的潜热加热凝结水的,一组隔板使蒸汽沿着加热器长度方向均匀地分布。
进入该段的蒸汽在隔板的导向下,流向加热器的尾部。
位于壳体两端的排气接管,可排除非凝结气体。
因为非凝结气体的积聚会减少有效面积,降低传热效率并造成腐蚀。
1·3·3 疏水冷却段
疏水冷却段是把离开凝结段的疏水的热量传给进入加热器的凝结水,而使疏水降至饱和温度以下。
疏水温度的降低,使疏水流向下一级压力较低的加热器时,在管道内发生汽化的趋势得到减弱。
保持一定的疏水水位,使该段密闭。
疏水进入该段,由一组隔板引导流动,从疏水出口管疏出。
卧式低压加热器一般设置疏水冷却段,立式低压
加热器一般不设置疏水冷却段。
火电厂高低压加热器工作原理火电厂高低压加热器是火电厂中重要的热能转换设备,其主要作用是将高温高压的烟气中的热能传递给水,使水加热并转化为蒸汽,从而驱动汽轮机发电。
本文将从高低压加热器的工作原理、结构和性能等方面进行介绍。
一、高低压加热器的工作原理高低压加热器是通过烟气和水之间的热交换来实现能量转换的。
在火电厂中,燃烧产生的高温高压烟气从锅炉燃烧室进入高压加热器,与从给水泵送来的低温低压水进行热交换。
烟气在高压加热器中冷却下来,同时将部分热能传递给水,使水升温。
经过高压加热器后,烟气温度降低,水温升高,形成高温高压的饱和蒸汽。
饱和蒸汽从高压加热器流出后,进入汽轮机进行膨胀工作,驱动汽轮机发电。
而低温低压的水则被加热后送入锅炉再次循环,形成闭合的循环系统。
二、高低压加热器的结构高低压加热器通常由多个加热器组成,按照烟气流向可以分为高压加热器和低压加热器。
高压加热器通常设置在锅炉的后部,烟气从燃烧室通过锅炉过渡段进入高压加热器,然后经过多个加热器单元进行热交换。
每个加热器单元由一束平行的管子组成,烟气在管外流动,水在管内流动,通过管壁进行热传递。
高压加热器的结构紧凑,烟气侧和水侧流量都较大,热负荷大,工作压力高。
低压加热器通常设置在高压加热器的后部,水从给水泵送入低压加热器,烟气从高压加热器流入低压加热器进行再次热交换。
低压加热器的结构相对简单,烟气侧和水侧流量都较小,热负荷相对较低,工作压力也较低。
三、高低压加热器的性能高低压加热器的性能直接影响着火电厂的发电效率和经济性。
其性能主要包括传热效果、压力损失和结露问题。
传热效果是衡量加热器性能的重要指标之一。
传热效果好意味着烟气与水之间的热交换效率高,烟气的温度降低较多,水的温度升高较多。
为了提高传热效果,加热器通常采用高效的传热材料和结构设计,保证烟气和水的充分接触。
压力损失是指烟气在加热器内流动过程中由于管道摩擦和流动阻力而产生的压力降低。
压力损失越小,烟气流过加热器时的阻力越小,有利于提高烟气流速和热交换效率。
发电技术POWER GENERATION TECHNOLOGY660MW 机组7A 低压加热器出水温度降低原因分析及处理刘书元,朱江涛(国电湖南宝庆煤电有限公司,湖南邵阳422200)摘要:国电湖南宝庆煤电有限公司660MW 汽轮发电机组运行7A 低压加热器出水温度降低,同时该加热器疏水水温降低,严重影响设备的经济运行。
通过运行分析、试验、原因查找和处理,最终圆满解决了该问题。
关键词:低压加热器;疏水水位;温度;水位计中图分类号:TM621.4文献标志码:B文章编号:1006-348X (2021)04-0050-030引言国电湖南宝庆煤电有限公司(以下简称“宝庆电厂”)两台哈尔滨汽轮机厂生产的CLN660-24.2/566/566型超临界、一次中间再热、三缸四排汽、单轴、双背压、凝汽式汽轮机。
单台机组配置5、6、7、8共四组低压加热器,其中7A/8A 、7B/8B 四台低压加热器分别布置在低压缸A 和低压缸B 与凝结器联结部位,通过机组的七、八段抽汽来加热凝结水提高其温度,减少汽轮机排往凝汽器中的蒸汽量,降低能量损失,提高热力系统的循环效率[1]。
1存在的问题宝庆电厂2号机组2016年11月26日机组负荷408MW 工况运行,发现7A 低压加热器凝结水出水温度较7B 低加出水温度低14.23℃,7A/7B 低加水位显示正常,但7A 低加疏水温度较7B 低加疏水温度低2.84℃,严重影响机组的经济性(见图1)。
图17A 低压加热器参数异常运行DCS 画面2机组运行中7A 低压加热器出水温度低的原因分析2.17A 低压加热器出水温度表显示故障通过调阅历史曲线分析,2016年11月25日22:00以前,机组运行中7A/7B 低加出水温度基本一致。
11月25日23:06左右,7B 低加出口水温随着负荷波动同步变化趋势基本正常,但7A 低加出口温度随着机组负荷增加上升变化不明显,初步怀疑其出水温度表计故障。
汽轮机高、低压加热器调试措施1概述华电新疆发电有限公司昌吉热电厂2×330MW热电联产工程1号汽轮机为上海电气集团股份有限公司制造的型号为CZK330-16.7/0.4/538/538型亚临界、一次中间再热、高中压合缸、单轴双缸双排汽、直接空冷汽轮机。
机组配用的高压加热器(以下简称高加)系上海电气集团股份有限公司生产的JG-1025、JG-1110、JG-885型高压加热器。
所配用的低压加热器(以下简称低加)系上海动力设备有限公司生产的低压加热器。
该机组由新疆电力设计院设计,山东电建二分公司负责安装,新疆电力科学研究院负责机组的整套调试工作。
根据有关规程、规范,结合本系统的实际情况,特编制本措施。
2调试目的全面检查高、低加系统设计、制造及安装的质量,保证高、低加系统安全可靠地投运。
3依据标准3.1《火力发电建设工程启动试运及验收规程》[DL/T5437-2009]。
3.2《火电工程启动调试工作规定》[电力部建设协调司建质(1996)40号]。
3.3《火电工程调整试运质量检验及评定标准》[电力部建设协调司建质(1996)111号]。
3.4《电力建设施工及验收技术规范》(汽轮机机组篇)[DL5011-92]。
3.5《国家电网公司电力安全工作规程(火电厂动力部分)》[国家电网安监(2008)23号]。
3.6《防止电力生产重大事故的二十五项重点要求(2000年版)》。
3.7《中国华电集团公司工程建设管理手册》中国华电工[2003]第260号。
3.8高、低压加热器说明书及设计图纸。
4调试使用设备经校验合格、准确可靠的现场DCS测点和就地表计。
5组织与分工5.1建设单位的职责全面协助试运指挥部做好试运全过程的组织管理,参加试运各阶段的工作的检查协调、交接验收和竣工验收的日常工作。
负责编制和发布各项试运管理制度和规定。
协调解决合同执行中的问题和外部关系等。
参加分部试运后的验收签证工作。
负责管理制造厂家的调试项目等。
火电厂高低压加热器工作原理
加热器本体是一个密封的容器,内部有一个复杂的结构,包括水箱、
水管、换热板等。
工作时,需要将锅炉进水通过水管引入到水箱中,然后
通过交替流经换热板上的加热元件来实现加热。
加热器元件是加热器的核心部分,主要由燃烧器、热交换器、风机等
组成。
当燃料燃烧时,燃烧器会产生热能,并将热能传递给热交换器。
热
交换器中的加热元件通过与燃烧产生的烟气进行热交换,将热能传递给锅
炉进水。
控制系统是用来控制加热器的温度和压力的,主要包括温度控制、压
力控制和安全保护三个方面。
其中,温度控制是通过监测加热器的进出水
温度来调节加热器的工作状态,以实现进水加热至设计温度;压力控制是
通过监测加热器内的压力来调节加热器的进出水压力,以保证加热器的安
全稳定运行;安全保护是指在加热器出现异常情况时,自动切断燃料供应、停止加热器的工作,以防止事故发生。
在火电厂运行过程中,高低压加热器扮演着非常重要的角色。
它可以
提高锅炉的热效率,减少燃料的消耗,降低烟气排放。
此外,加热器还可
以减少锅炉的结焦和腐蚀,延长锅炉的使用寿命。
因此,合理使用高低压
加热器对于火电厂的运行和能源利用具有重要意义。
电厂高低压加热器疏水存在的问题及改造方案作者:郝光真来源:《科技创新导报》2011年第01期摘要:本文针对高压、低压加热器水位调节普遍存在的问题,进行了针对性的改造,在某电厂#1—#6机组高压、低压加热器的应用及效果,以210MW高压加热器介绍为例。
关键词:高压低压加热器疏水改造中图分类号:TM62 文献标识码:A 文章编号:1674-098X(2011)01(a)-0120-02某电厂二期为四台K—215—130—1型汽轮机组。
在额定蒸汽参数下,全部投入回热系统,切除附加抽汽,流通部分清洁,冷却水温不大于20℃时,汽机最大容量可达220MW。
高压加热器及疏水系统简介:210MW汽轮机组配备有三台高压加热器(5#、6#、7#高压加热器)。
高压加热器是允许利用蒸汽热能加热给水以提高机组热效率的设备每台210MW机组配置的三台高压加热器均为立式筒体式结构采用串联方式布置。
高压加热器分别连接在一、二、三段抽汽上,水侧工作压力比锅炉汽包压力还要高工作温度在190~249℃范围内,汽侧温度常在300℃以上,可见其工作条件是很差的,往往引起加热器焊接受热面泄漏。
为了防止管系统泄漏或加热器疏水装置因不能有效排放疏水,使汽侧水位不受限制地升高而倒流入气轮机,高压加热器均装有保护装置一但汽侧水位达到极限时,通过电器回路在控制盘上显示危险信号,并同时从水侧和汽侧将高压加热器解列。
高压加热器疏水采用从7#高压加热器至除氧器逐级自流的方式,还设置有在机组启动,事故等非正常运行情况下的5#高压加热器至凝汽器疏水系统6#、7#高压加热器至除氧器疏水系统的切换系统。
在正常运行中,除氧器的汽源由四段抽气供给,其内部压力。
温度随负荷呈滑压运行,额定负荷时除氧器水温可达166℃(如表1)。
1 问题的提出汽轮机组的高压加热器是充分利用蒸汽热能加热给水提高机组热效率的设备,高压加热器一般都是随机滑启或机组达到额定功率的70%时投入,据资料表明高加不随机组投入运行,整台机组发电出力将降低10%,同时因给水温度的降低使供电煤耗要提高3%,这样不但导致机组发电的经济行大大降低,而且因锅炉入口给水温度不能达到设计值,从而使锅炉的运行工况远远偏离设计工况,引起超温爆管,泄漏现象时有发生,不能保证锅炉的正常运行,所以高压加热器的投入率对机组的安全,经济运行有直接的关系。
火力发电厂高\低压加热器泄露原因分析及解决办法高、低壓加热器是发电厂的一种主要辅助设备。
其一旦故障,将影响发电厂的经济性和安全性。
其中,U型管加热器内部管系泄漏主要分为管子本身泄漏和端口泄漏。
本文分析了加热器泄漏原因,且针对不同泄漏原因分别找出了相应解决办法,对减少泄漏事故具有一定借鉴意义。
标签:加热器泄漏原因解决办法1 加热器泄漏原因分析U型管加热器内部管系泄漏主要分为管子本身泄漏和端口泄漏(管子与管板胀接、焊接处泄漏):1.1 管子本身泄漏原因1.1.1 冲刷侵蚀一种原因是当蒸汽的流动速度较高且汽流中含有大直径的水滴时,管子外壁受汽、水两相流冲刷,变薄,发生穿孔或受给水压力而鼓破。
加热器内部产生汽水两相流的主要原因:一是过热蒸汽冷却段内部及其出口的蒸汽达不到设计要求的过热度引起的;二是加热器的疏水水位保持过低或无水位或疏水温度远高于设计值或疏水流动阻力较大或抽汽压力突然降低等因素使疏水闪蒸,疏水进入下一级加热器时就带有蒸汽,冲刷加热器管造成损坏;三是当高加内某根管子发生损坏泄漏时,高压给水从泄漏处以极大的速度冲出会将邻近的管子或隔板冲刷破坏。
另一种原因是受到蒸汽或疏水的直接冲击。
因防冲板材料和固定方式不合理,在运行中破碎或脱落,失去防冲刷保护作用;防冲板面积不够大,水滴随高速气流运动,撞击防冲板以外的管束;壳体与管束间的距离太小,使入口处的汽流速度很高。
1.1.2 管子振动给水温度过低或机组超负荷等情况下,通过加热器管子间蒸汽流量和流速超过设计值较多时,具有一定弹性的管束在壳侧流体扰动力的作用下会产生振动,当激振力的频率与管束自然振动频率或其倍数相吻合时,将引起管束共振,使振幅大大的增加,导致管子与管板的连接处受到反复作用力造成管束损坏,管束振动损坏的机理一般有:①由于振动而使管子或管子与管板连接处的应力超过材料的疲劳持久极限,使管子疲劳断裂;②振动的管子在支撑隔板的管孔中与隔板金属发生摩擦,使管壁变薄,最后导致破裂;③当振动幅度较大时,在跨度的中间位置相邻的管子会相互摩擦,使管子磨损或疲劳断裂。
第36卷,总第212期2018年11月,第6期《节能技术》ENERGY CONSERVATION TECHNOLOGYVol.36,Sum.No.212Nov.2018,No.6 某厂1000MW机组低压加热器疏水不畅分析与治理王 辉(广东大唐国际潮州发电有限责任公司,广东 潮州 515723)摘 要:为了解决某厂1000MW机组5至8号低压加热器正常疏水不畅,无法满足机组正常调整需要。
机组正常运行时通过调整低压加热器危急疏水阀来调整低压加热器水位,大量高参数疏水通过危急疏水阀直接排入凝汽器,热量损失较大。
通过调整低压加热器正常疏水阀通流面积以及优化疏水管路、消除管路水封,彻底解决了低压加热器疏水不畅问题,提高了机组经济性,降低了凝汽器热负荷。
改造后,机组正常运行时,危急疏水阀全关,仅通过正常疏水调整即可满足要求,节能效果显著,且改造费用低,方案简单可行,供相关专业人员参考。
关键词:1000MW;机组;低压加热器;疏水;通流面积;水封;处理中图分类号:TM621 文献标识码:A 文章编号:1002-6339(2018)06-0570-04Analysis and Governance for Low Pressure Heater HydrophobicBreakdown of1000MW UnitWANG Hui(Guangdong Datang Internatioal Chaozhou Power Co.,Ltd.,Chaozhou515723,China)Abstract:In order to solve the poor conveyance of1000MW unit5to8low pressure heater normal drainage can not meet the unit normal adjustment needs.When the unit is in normal operation,the water level of the low pressure heater is adjusted by adjusting the emergency trap of the low pressure heater, and a large amount of high parameter draught is discharged directly into the condenser through the emer⁃gency trap,which results in a great loss of heat.By adjusting the flow area of the normal drain valve of the low pressure heater and optimizing the drain line,the water seal of the pipeline is eliminated,the problem of the drainage of the low pressure heater is solved thoroughly,and the economy of the unit is im⁃proved and the heat load of the condenser is reduced.After revamping,when the unit is in normal opera⁃tion,the emergency trap is completely closed,only through the normal drainage adjustment can meet the requirements.The energy saving effect is remarkable,and the cost is low.The scheme is simple and feasi⁃ble,which is for the reference of relevant professionals.Key words:1000MW;unit;low pressure heater;drain;flow area;water seal;treatment收稿日期 2018-01-28 修订稿日期 2018-03-30作者简介院王辉(1983~),男,本科,工程师,主要从事火力发电厂汽机技术管理工作。
电厂低压加热器、凝汽器水位测量方案
电厂高、低压加热器、凝汽器
水位测量方案
(差压变送器比较 Magnetrol导波雷达)
A。
平衡容器配差压变送器测量低压加热器、凝汽器水位方案
在火力发电厂,设计要求液位测量是实际的水位值。
目前大多数设计中,
采用平衡容器配差压变送器测量。
而低压加热器的结构、负压工作环境给传统平衡容器配差压变送器测量方案带来挑战。
双室平衡结构容器示意图
双室平衡容器差压原理(结构见上图):
双室平衡容器套筒内分汽侧凝结水室和水侧水室,两个水室在容器内不相通,汽侧凝结水室与平衡容器汽侧采样管相通,水侧水室与平衡容器水侧采样管相通。
正常情况下,汽侧凝结水室里面的蒸汽遇冷凝结成水聚集在变送器正压表管内,凝结水量主要由被测容器的压力和正压表管温度而定,因为表管包在平衡容器套筒里面所以温度从上到下的分布规律基本一定,一般取平均温度,另外测量要求正压表管内水位满度。
这样,正压表管内水位(恒定)与平衡容器水侧采样管内水位形成的差值来测量液位。
问题1:被测容器的压力变化影响水位测量准确性。
a.低加汽侧工作在负压区时,一旦有漏点吸入空气后导致低加汽侧蒸汽分压力下降,对应的饱和温度下降,凝结在平衡容器汽侧水室和变送器汽侧(正压端)表管内的凝结水少量蒸发,使变送器正压端静压力下降,而变送器水侧(负压端)与低加水侧连通不受影响,这样,变送器测得差压值变小,根据差压变送器的反偏特性,差压值变小测量水位值就变大,侧出是虚假水位。
b.当低加全部或部分解列导致凝结水温度急降,引起除氧器内部压力急降,进而平衡容器差压式水位值显示偏高且波动大,从而影响水位调节阀误动作,这生产实践中常常遇到。
问题2:温度变化影响水位测量准确性
a.差压变送器温度补偿采用取容器内平均温度,室外夏、冬季节的环境温差大概是40C,从而导致容器内温度的变化,因为无法采用温度跟踪测量。
b.另外,环境温度变化影响变送器汽侧(正压端)表管内的凝结水凝结速度,冬天快,夏天慢而出现正压表管内水位不能满度。
温度变化每10C影响测量出现误差2%。
c.容器内温度的变化会使水的比重产生影响,出现测量误差。
问题3:安装要求高
平衡容器差压原理配差压变送器测量,一般要求测量取点位置要好,否则将出现2~5%的测量误差。
问题4:启动特性差
每次启动都需要1小时,汽侧凝结水才能使正压管内水满度。
单室平衡容器配差压变送器测量的方案
1.在凝集器测量液位虽然压力和温度相对稳定,由於真空的工况则要求整个部件的安装不能有任何泄露。
2.在低加系统测量液位,考虑由於真空工况在温度和压力的变化下而引起的虚假水位。
则要求安装不能有任何泄露、有温度补偿、有压力补偿、介质比重稳定才能保证测量精度。
3.用单室平衡容器配差压变送器测量液位与双室平衡容器配差压变送器测量液位比较,单室平衡容器不能实现压力补偿。
4.由于用差压变送器的引压管会生锈,这样要定期清理,增加维护量。
5.差压变送器的引压管很容易产生气泡,需要排污,很麻烦。
6.另外,每次启动都要花很长时间,启动特性差。
B。
导波雷达液位变送器测量低压加热器、凝集器水位方案
Magnetrol导波雷达液位变送器采用了TDR(时域反射) 原理。
这种原理是有发生器产生一个沿导波杆(探头) 向下传送的电磁脉冲波,但遇到比先前传导介质(空气或蒸汽) 介电常数大的液体表面时脉冲被反射,再用超高速计时电路计算出脉冲波从发射到接受的传导时间,传导时间与电磁脉冲波速度乘积的一半即为液体表面到变送器底部的位移,从而实现对液位的精确测量。
以上左三图为Magnetrol 导波雷达工作原理示意图、右图为变送器实物照片
下图为Magnetrol 导波雷达典型安装方式实物照片
Magnetrol导波雷达液位变送器对液位测量性能不受工艺条件的影响,如:7.压力:只要在耐压工作范围内,压力的变化或真空(负压) 不影响测量。
饱和蒸汽工况可耐压16.5Mpa.
8.温度:只要在耐温工作范围内,温度的变化不影响测量。
饱和蒸汽工况可耐温343C。
9.比重:比重的变化不影响测量。
10.介电常数:介电常数的变化不影响测量。
Magnetrol导波雷达液位变送器液位测量的优秀性能:
1.无需现场校验,组态时无需改变液位且非常简单。
2.压力、温度、比重的变化不影响液位的测量。
3.由於采用时域反射原理,测量的将是实际的液位。
4.电磁脉冲波的传导采用同轴金属杆,大大提高了测量精度,测量误差可达0.1%.
5.安装可选用顶部安装和外筒侧装,非常方便。
综上所述,Magnetrol导波雷达液位变送器对负压工作环境下的低加和凝汽器水位测量带来了新的契机,同时给维护、安装、校验带来了极大方便。
目前在,安徽马钢热电厂、安徽马鞍山电厂、安徽芜湖电厂、安徽田家庵电厂、浙江温州电厂、辽宁铁岭电厂、黑龙江省牡丹江二电厂、山东德州电厂、南京苏源热电厂、安徽安庆电厂、云南曲靖电厂中间水箱、江苏镇江高资电厂高加、贵州铝厂汽包水位测量已有成功使用案例。
解决了虚假水位带来的烦恼。
Magnetrol 导波雷达(蒸汽专用)液位变送器。