初中数学必背公式大全,初中数学重要公式定律汇总
- 格式:pdf
- 大小:12.06 MB
- 文档页数:30
初中数学定理公式定律大全1.代数定理-同号两数相乘为正,异号两数相乘为负。
-分配率:a×(b+c)=a×b+a×c。
-同底数幂相除,指数相减:(a^m)÷(a^n)=a^(m-n)。
-幂的乘法:(a^m)×(a^n)=a^(m+n)。
2.平方根公式-设a≥0,则√a×√a=a。
-若a≥0,则√(a^2)=a。
3.线性方程- 设a ≠ 0,方程 ax + b = 0 的解是 x = -b/a。
- 形如 ax + b = cx + d 的一次方程,有唯一解 x = (d - b)/(a -c)。
4.角度定理-外角和定理:一个三角形的外角等于它的两个不相邻内角的和。
-三角形内角和定理:一个三角形的内角之和等于180°。
-同位角定理:如果两条直线被一条截线分成两个内交角和两个外交角,则这两个内交角互为同位角,两个外交角互为同位角。
5.平行线和三角形定理-同位角、内错角定理:当两条直线被一条截线分成两个内交角和两个外交角时,同位角相等,内错角相等。
-平行线截割定理:当两条平行线被一条截线截断时,同位角相等,内错角相等。
-三角形内角和定理:一个三角形的内角之和等于180°。
-等腰三角形定理:两边相等的三角形中,两个对应的内角也相等。
6.几何定理-直角三角形定理:一个三角形中,如果一些角是直角,则它是直角三角形。
-直角边定理:在直角三角形中,斜边的平方等于各直角边的平方和。
-勾股定理:在直角三角形中,斜边的平方等于两个直角边的平方和。
-相似三角形定理:如果两个三角形的对应角相等,则这两个三角形相似。
-正方形的对角线垂直定理:正方形的对角线互相垂直且相等。
7.百分数与比例-百分数换分数:将百分数转化为分数,百分数除以100即可得到对应的分数。
-百分数的四则运算:百分数的加减乘除运算,先转化为分数进行计算,最后再转化为百分数。
-比例:设a:b=c:d,称a和b为比例的两个项,c和d为比例的两个对应项。
初中数学所有定理与公式初中数学中的定理与公式有很多,以下是一些重要的定理和公式:一、整数与出列1.整数与负数相乘,结果为负数。
(定理)2.出列法则:同号相乘为正,异号相乘为负。
(公式)二、整式的加减与乘除1.加法交换律:a+b=b+a。
(定理)2.减法可加法运算:a-b=a+(-b)。
(公式)3.乘法交换律:a×b=b×a。
(定理)4.乘法分配律:a×(b+c)=a×b+a×c。
(定理)5.除法公式:a÷b=a×(1/b)。
(公式)6.乘幂公式:a^m×a^n=a^(m+n)。
(公式)三、因式分解与倍数与公约数1.因式分解:将一个多项式写成几个因式相乘的形式。
(规则)2.公约数:能同时整除两个或多个数的数。
(定义)3.最大公约数:一组数的公约数中最大的一个。
(定义)4.最小公倍数:一组数中能被所有数整除的最小整数。
(定义)四、平方根与勾股定理1.平方根的性质:如果a²=b,则√b=,a。
(定理)2.勾股定理:在直角三角形中,a²+b²=c²。
(定理)五、百分数及其应用1.百分比:以百为基数的计数单位。
(定义)2.百分数计算:a%=a/100。
(公式)3.利率计算:利息=本金×利率×时间。
(公式)4.百分数的增减:数据增加或减少的百分比计算。
(公式)六、方程与不等式1. 一元一次方程:ax + b = 0,x = -b/a。
(定理)2. 一元二次方程求解公式:x = (-b ± √(b² - 4ac))/(2a)。
(公式)3.不等式的性质:同意负号,异号取反,非负数平方不小于0。
(定理)七、平行线与相交线1.平行线的性质:同位角相等,内错角相等,外错角相等。
(定理)2.相交线的性质:同位角互补,内错角互补,外错角互补。
(定理)八、三角形与四边形1.三角形内角和为180°。
初中数学必背公式与定理初中数学中的公式与定理是学生必须掌握和记忆的基础知识点。
这些公式和定理在数学学习中扮演着重要的角色,可以帮助学生更好地理解和应用数学知识。
下面是初中数学中的一些必背公式和定理:1.整数的加减乘除公式:-两个整数的和:a+b=b+a(交换律)-两个整数的差:a-b=-(b-a)-两个整数的积:a*b=b*a(交换律)-两个整数的商:a/b=(a/b)*(b/a)=12.分数的加减乘除公式:- 两个分数的和:a/b+c/d=(ad+bc)/bd- 两个分数的差:a/b-c/d=(ad-bc)/bd-两个分数的积:a/b*c/d=(a*c)/(b*d)-两个分数的商:a/b÷c/d=(a*d)/(b*c)3.百分数与小数之间的转换:-百分数转小数:百分数除以100-小数转百分数:小数乘以1004.图形周长和面积公式:-长方形的周长:2*(长+宽)-长方形的面积:长*宽-正方形的周长:4*边长-正方形的面积:边长^2-圆的周长:2*π*半径-圆的面积:π*半径^2-三角形的周长:边1+边2+边3-三角形的面积:底*高/25.同底数幂与整数幂的运算公式:-幂的乘法:a^m*a^n=a^(m+n)-幂的除法:a^m/a^n=a^(m-n)-分布律:(a*b)^n=a^n*b^n6.线性方程与一次方程:-一次方程的通解:Ax+B=0(其中A和B为常数)-一次方程的解法:令Ax+B=0-线性方程组的解法:将多个线性方程联立求解7.相似三角形的性质:-边比例定理:设两个三角形的对应边长度的比值相等,则它们为相似三角形-角度比例定理:设两个三角形的对应角度相等,则它们为相似三角形8.平行线与三角形内角定理:-同位角等于内错角-同旁内角相等-对顶角相等-三角形的内角和为180度9.直角三角形的性质:-毕达哥拉斯定理:直角三角形斜边的平方等于两直角边平方之和-三角函数:正弦、余弦、正切等10.统计学中的概率:-事件概率:P(A)=事件A的发生次数/总次数-互斥事件的概率:P(A或B)=P(A)+P(B)-独立事件的概率:P(A和B)=P(A)*P(B)以上是初中数学中的一些必背公式与定理,通过理解并掌握这些公式与定理,可以帮助学生在数学学习中更加自信地应对各种问题。
初中数学必背公式及定理数学是一门重要的学科,也是一门需要掌握公式和定理的学科。
初中数学中的公式和定理是学习数学的基础,掌握了这些公式和定理,能够更好地解题和理解数学知识。
下面是初中数学必背的公式和定理。
一、代数中的公式1. 二次方程的求根公式:对于一元二次方程ax²+bx+c=0,其根可以通过以下公式求得:x = (-b ± √(b²-4ac))/(2a)2. 平方差公式:(a±b)² = a²±2ab+b²3. 二次完全平方公式:a²+2ab+b²=(a+b)²4. 立方差公式:(a±b)³=a³±3a²b+3ab²±b³5.平方根的乘法公式:√a*√b=√(a*b)二、几何中的公式1.矩形的周长和面积:对于矩形,其周长C=2(l+w),面积S=l*w,其中l表示矩形的长度,w表示矩形的宽度。
2.三角形的周长和面积:对于三角形,其周长C=a+b+c,面积S=1/2*b*h,其中a、b、c表示三角形的三边长,h表示三角形的高。
3.圆的周长和面积:对于圆,其周长C=2πr,面积S=πr²,其中π取近似值3.14,r表示圆的半径。
4.直角三角形的勾股定理:对于直角三角形,设c为斜边,a、b为两直角边,则满足a²+b²=c²。
5.同心圆弦的等分定理:如果两条弦(或弦和直径)在同一个圆的同一边相交,那么它们所夹的弧(或弧和弦所夹的角)相等。
三、概率与统计中的公式1.事件的概率:设S为一个随机试验的样本空间,E为S的子集(即事件),则事件E的概率P(E)定义为E中的样本点数除以S中的样本点数。
2.互斥事件的概率:设A、B为两个事件,如果A和B不可能同时发生,称A和B为互斥事件,概率计算公式为P(A∪B)=P(A)+P(B)。
一、有理数1、相反数与绝对值(1)数a的相反数是-a。
若a、b互为相反数,则a+b=0;反之,若a+b=0,则a、b互为相反数.a(a>0),(2)绝对值计算∣a∣= 0(a=0),-a(a<0),a(a≧0),a(a>0),或∣a∣=或∣a∣=-a(a<0),-a(a≦0)2、两个有理数大小的比较(1)在数轴上,右边的数总比左边的数大.(2)正数大于0,负数小于0,正数大于一切负数.(3)两个负数比较,绝对值大的负数反而小.3、有理数的运算4、有理数运算律5、科学记数法把一个大于10的数记作a ×10n的形式,其中a 大于或等于1且小于10,即1 ≤| a| <10,n 是正整数.二、整式的加减1、合并同类项的法则合并同类项时,将同类项的系数相加,所得的和作为系数,字母与字母的指数不变.2、去括号法则括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项的符号都不改变;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里的各项都改变符号. 3、整式的加减法则整式的加减实质就是去括号、合并同类项,若有括号,就要先去掉括号,然后再合并同类项,直到结果中没有同类项为止.三、一元一次方程1、等式的基本性质(1)如果a=b ,那么a+c=b+c ,a-c=b-c(2)如果a=b ,那么ac=bc ;如果a=b ,那么a c =bc (c ≠0)2、解一元一次方程的步骤四、几何图形初步1、直线、线段公理(1)直线公理:两点确定一条直线. (2)线段公理:两点之间,线段最短. 2、角五、相交线与平行线1.相交线与垂线2.平行线3.命题、定理、证明六、实数1、平方根和立方根2、实数的性质(1)数a的相反数是-a,这里a表示任意一个实数.(2)一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.七、平面直角坐标系各象限内点的坐标特点P(a,b)①点在第一象限,则a>0,b>0; ②点在第二象限,则a<0,b>0;○3点在第三象限,则a<0,b<0; ④点在第四象限,则a>0,b<0 角平分线上点的特点 P(a,b)①在一、三象限的角平分线上,a=b ; ②在二、四象限的角平分线上,a=-b平面直角坐标系中对称点的坐标特点 P(a,b) ①关于x 轴对称,横坐标相同,纵坐标互为相反数,即(a,-b );○2关于y 轴对称,横坐标互为相反数, 纵坐标相同,即(-a ,b ); ○3关于坐标原点对称,横纵坐标都互为相反数,即(-a,-b ) 与坐标轴平行的直线上的点的坐标特点○1与x 轴平行的直线上的所有点的纵坐标相同; ○2与y 轴平行的直线上的所有点的横坐标相同 八、二元一次方程组a 1x+b 1y=c 1, 对于二元一次方程组a 2x+b 2y=c 2.(1) 当a 1a 2 ≠b 1b 2(a 2,b 2≠0)时,方程组有唯一解.(2) 当a 1a 2 =b 1b 2 =c 1c 2 (a 2,b 2,c 2≠0)时,方程组有无数组解.(3) 当a 1a 2 =b 1b 2 ≠c 1c 2(a2,b2,c2≠0)时,方程组无解.九、不等式与不等式组1.不等式性质性质1:不等式的两边同时加(或减)同一个数或同一个含有字母的式子,不等号的方向不变,即如果a>b ,那么a ±m>b ±m.性质2:不等式的两边同时乘(或除)同一个正数,不等号的方向不变,即如果a>b 且m>0,那么am>bm 或a m >bm.性质3:不等式的两边同时乘(或除)同一个负数,不等号的方向改变,即如果a>b 且m<0,那么am<bm 或a m <bm.2.一元一次不等式组的解集不等式组(a<b )数轴表示解集口诀x>a ,x>bx>b同大取大x<a ,x<bx<a同小取小ababa ba b十、三角形1、三角形的分类2、三角形三边关系三角形中任意两边的和大于第三边,三角形中任意两边的差小于第三边.3、三角形内角和定理三角形三个内角的和等于180°.4、直角三角形的性质与判定性质;直角三角形的两个锐角互余.判定:有两个角互余的三角形是直角三角形.5、三角形的外角性质(1)三角形的外角和为360°.(2)三角形的一个外角等于和它不相邻的两个内角的和.(3)三角形的一个外角大于和它不相邻的任何一个内角.6、多边形的内角和与外角和(1)n边形的内角和是(n-2)×180°.(2)n边形的外角和为360°.十一、全等三角形1.全等三角形角形的判定2.角平分线的性质及判定(1)性质:角的平分线上的点到角的两边的距离相等.(2)判定:角的内部到角的两边距离相等的点在角的平分线上.十二、轴对称1.轴对称和线段垂直平分线的性质及判定2.三角形的性质及判定十三、整式的乘法与因式分解1.幂的有关法则2.乘法公式3.因式分解十四、分式1.分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.即 A B =A ·M B ·M ,A B = A ÷M B ÷M (其中M 是不等于0的整式) 2.分式的运算法则(1) 乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.即b a ·d c =bdac .(2) 除法法则:分式除以分式,把除式的分子、分母 颠倒位置后,与被除式相乘.即b a ÷d c =b a ·c d =bcad.(3) 乘方法则:把分子、分母分别乘方.为正整数).(4) 加减法法则:①同分母的分式相加减,分母不变,把分子相加减.即a c ±b c =a ±bc:②异分母分式相加减,先通分,变为同分母分式,再加减.即a b ±d c =ac bc ±bd bc =ac ±bdbc.十五、二次根式十六、勾股定理1.勾股定理如果直角三角形的两条直角边长分别是a ,b,斜边长为c,那么a 2+b 2=c 2.2.勾股定理的逆定理如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么 这个三角形就是直角三角形.十七、平行四边形1.几种特殊四边形常用的判定方法2.中位线三角形的中位线平行于第三边,并且等于第三边的―半.十八、一次函数1.正比例函数的图象和性质2.—次函数的图象和性质Oxy OxyOxyOxy Oxy Oxy十九、数据的分析1. 平均数(1) 平均数: 对于n 个数n 个数的平均数. (2) 加权平均数:若n 则x 1w 1+x 2w 2+…+x n w nw 1+w 2+…+w n叫做这n 个数的加权平均数 2. 数据的波动程度(1) 极差:一组数据的最大值与最小值的差(2) 方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差,通常用s 2来表示,计算公式x 1-⎺x )2+(x 2-⎺x )2+…+(x n -⎺x )2]. (3) 标准差:样本方差的算术平方根表示样本的标准差,它也描述了数据对平均数的离散程度.公式:. 二十、一元二次方程1. 一元二次方程的解法2. —元二次方程根的判别式ax 2+bx+c=0(a ≠0) 的判别式△= b 2-4ac .(1) △>0,一元二次方程ax 2+bx+c=0(a ≠0)有两个不相等的实数根.(2) △=0,一元二次方程ax 2+bx+c=0(a ≠0)有两个相等的实数根.(3) △<0,一元二次方程ax 2+bx+c=0(a ≠0) 没有实数根.3. 一元二次方程根与系数的关系已知关于x 的一元二次方程ax 2+bx+c=0(a ≠0)的两根为x 1,x 2, 则有二十—、二次函数2. 二次函斂y=a(x-h)+k(a ≠0)的性质3. 二次函数y=ax +bx+c 的性质(1) a 的符号:由抛物线的开口方向确定 ○1开口向上○2开口向下。
初中数学必背公式大全初中数学重要公式定律汇总
一、几何公式
1、三角形面积公式
△ABC的面积S=1/2ab sin C
其中a、b为△ABC的两边,C为两边夹角
2、四边形面积公式
正方形面积公式:S=a2
长方形面积公式:S=ab
其中a、b分别为正方形或长方形的边长
3、圆的面积公式
S=πr2
其中r为圆的半径
4、梯形面积公式
S=(a+b)h/2
其中a、b分别为梯形的上下底,h为梯形的高
5、椭圆面积公式
S=πab
其中a、b分别为椭圆的长轴短轴
6、圆柱体体积公式
V=πr2h
其中r为圆柱体的底面半径,h为圆柱体的高
7、圆锥体体积公式
V=1/3πr2h
其中r为圆锥体的底面半径,h为圆锥体的高
8、球的表面积公式
S=4πr2
其中r为球的半径
9、球的体积公式
V=4/3πr3
其中r为球的半径
10、圆柱和圆锥的体积比公式
V1:V2=r2:2r
其中V1为圆柱体体积,V2为圆锥体体积,r为两个体积半径相同
二、三角函数
1、正弦定理
a/sinA=b/sinB=c/sinC=(2S)/R
其中a、b、c分别为△ABC的三边,A、B、C分别为两边夹角,S为△ABC的面积,R为三角形的外接圆半径
2、余弦定理
a2=b2+c2-2bc cosA
其中a、b、c分别为△ABC的三边,A为两边夹角3、正切关系
tanA= a/b
cotA= b/a
其中a、b分别为△ABC的两边,A为两边夹角4、正弦定理的应用
1)角的大小。
初中数学重要公式定律初中数学中有许多重要的公式和定律,它们是数学学习的基础和核心。
下面我将介绍一些常见的重要公式和定律。
一、平方公式平方公式是初中数学中最基础的公式之一。
它表达了一个数的平方与这个数本身的关系。
平方公式可以用来求解平方根,也可以用来求解平方的值。
平方公式的数学表达式为a² = b,其中a表示数的平方根,b表示数的平方。
二、勾股定理勾股定理是三角形中最重要的定理之一。
它描述了直角三角形中三条边的关系。
勾股定理表达了直角三角形中两直角边的平方和等于斜边的平方。
勾股定理的数学表达式为a² + b² = c²,其中a、b表示直角边的长度,c表示斜边的长度。
三、正比例关系正比例关系是数学中常见的一种关系。
它表示两个变量之间的关系是成比例的。
正比例关系可以用一个比例系数来表示。
当一个变量的值增加时,另一个变量的值也会按比例增加。
正比例关系的数学表达式为y = kx,其中y表示第一个变量的值,x表示第二个变量的值,k表示比例系数。
四、反比例关系反比例关系与正比例关系相反,它表示两个变量之间的关系是反比例的。
当一个变量的值增加时,另一个变量的值会按比例减少。
反比例关系的数学表达式为y = k/x,其中y表示第一个变量的值,x 表示第二个变量的值,k表示比例系数。
五、线性函数线性函数是数学中最常见的一种函数。
它表示两个变量之间的关系是线性的。
线性函数的图像是一条直线。
线性函数的数学表达式为y = kx + b,其中y表示函数的值,x表示自变量的值,k表示斜率,b表示截距。
六、平行线性质平行线性质是平面几何中的重要定理之一。
它表明如果两条直线被一条平行线所截,那么这两条直线之间的对应角是相等的。
这个定理在解题过程中经常使用,可以帮助我们求解各种几何问题。
七、面积公式面积公式是计算各种图形面积的基础公式。
不同的图形有不同的面积公式,常见的有矩形、三角形、圆等。
矩形的面积公式为S = a * b,其中S表示矩形的面积,a和b分别表示矩形的两条边的长度。
初中数学重要公式定理定律1. 一次函数的公式:y = kx + b,其中k是斜率,b是y轴截距。
2. 二次函数的公式:y = ax² + bx + c,其中a≠0,a、b、c是实数。
3. 三角函数的正弦定理:在任意三角形ABC中,有a/sinA =b/sinB = c/sinC,其中a、b、c分别是三角形的边长,A、B、C分别是对应的角度。
4. 三角函数的余弦定理:在任意三角形ABC中,有c² = a² + b² - 2abcosC,其中a、b、c分别是三角形的边长,C是夹角。
5. 三角函数的正切定理:在任意三角形ABC中,有tanA = a/b,tanB = b/a,tanC = c/b,其中a、b、c分别是三角形的边长,A、B、C 分别是对应的角度。
6. 对数的性质:logAB = logA + logB,log(A/B) = logA - logB,log(A^m) = m·logA,其中A、B为正实数,m是实数。
7. 平方差公式:(a + b)² = a² + 2ab + b²,(a - b)² = a² - 2ab + b²。
8.平方根性质:√(a·b)=√a·√b,√(a/b)=√a/√b,其中a、b都是非负实数。
9.相似三角形的性质:如果两个三角形的对应角度相等,那么它们对应边长之比相等。
10.二项式定理:(a+b)ⁿ=C(n,0)·aⁿ+C(n,1)·aⁿ⁻¹·b+C(n,2)·aⁿ⁻²·b²+...+C(n,n-1)·a·bⁿ⁻¹+C(n,n)·bⁿ,其中C(n,k)为组合数。
11. 最大公约数性质:如果a能整除b且a能整除c,那么a能整除b和c的最大公约数gcd(b, c)。
初中必背数学公式50个初中数学涉及许多公式,掌握这些公式对于学好数学非常重要。
以下是初中必背的50个数学公式:1. 勾股定理:a^2 + b^2 = c^22. 一次函数的表达式:y = kx + b3. 相似三角形的边长比公式:\(\frac{a}{a'} = \frac{b}{b'} =\frac{c}{c'}\)4. 一元二次方程求根公式:\(x = \frac{-b \pm \sqrt{b^2 -4ac}}{2a}\)5. 等腰三角形的性质:底角相等,底边中线相等6. 平行线的性质:对顶角相等,内错角相等7. 二次函数的顶点坐标公式:\(x = -\frac{b}{2a}\)8. 圆的周长公式:\(C = 2 \pi r\)9. 正比例函数的表达式:y = kx10. 形状相似的图形的面积比公式:\(\frac{S}{S'} =(\frac{a}{a'})^2\)11. 余弦定理:\(c^2 = a^2 + b^2 - 2ab \cos C\)12. 平行四边形的性质:对角线互相平分,对边平行且相等13. 一元一次方程的解法:将未知数移到一侧,常数移到另一侧14. 点到直线的距离公式:\(d = \frac{|Ax_0 + By_0 +C|}{\sqrt{A^2 + B^2}}\)15. 镜面反射定律:入射角等于反射角16. 抛物线的顶点坐标公式:\(x = -\frac{b}{2a}\),\(y = -\frac{\Delta}{4a}\)17. 面积为A的圆的半径公式:\(r = \sqrt{\frac{A}{\pi}}\)18. 二次函数与x轴交点的个数:判别式大于0,有两个不相等的实根;判别式等于0,有一个重根;判别式小于0,无实根19. 平行六边形的性质:对角线互相平分,对边平行且相等20. 一次函数与x轴交点的个数:有且仅有一个实根21. 凸多边形的内角和公式:\(S = (n-2) \times 180^\circ\)22. 弧长公式:\(l = 2\pi r \times (\frac{A}{360^\circ})\)23. 等差数列通项公式:\(a_n = a_1 + (n-1)d\)24. 等差数列求和公式:\(S_n = \frac{n}{2} (a_1 + a_n)\)25. 钝角三角形的性质:最大的角大于90度26. 等腰梯形的面积公式:\(S = \frac{(a+b)h}{2}\)27. 垂直平分线的性质:将线段分成两个相等的部分28. 判断直线与圆关系的条件:切线与圆的切点只有一个;直线与圆无交点;直线穿过圆29. 矩形的对角线公式:\(d = \sqrt{l^2 + w^2}\)30. 两个平行线夹在两直线之间的角平分线是垂线31. 连续两个顶点与中线的连线垂直32. 幂的乘法公式:\(a^m \times a^n = a^{m+n}\)33. 锐角三角形的性质:最大的角小于90度34. 等腰三角形的面积公式:\(S = \frac{1}{2} bh\)35. 立方体的体积公式:\(V = l \times w \times h\)36. 平行四边形的面积公式:\(S = bh\)37. 平面镜成像规律:物距等于焦距,像距等于物距38. 两数的和的平方:\((a+b)^2 = a^2 + b^2 + 2ab\)39. 等腰三角形的面积和底边关系:\(S = \frac{(b^2 \sin\alpha)}{2}\)40. 反比例函数的表达式:\(y = \frac{k}{x}\)41. 直角三角形斜边与其他两边关系:斜边的平方等于两边平方的和42. 正方体的体积公式:\(V = a^3\)43. 正多边形的内角和公式:\(S = (n-2) \times 180^\circ\)44. 等式中的两项交换位置不改变结果,可以交换任意次45. 绕原点旋转点P的坐标变换公式:\(P' (x', y') = (x \cos \theta - y \sin \theta, x \sin \theta + y \cos \theta)\)46. 直线的斜率公式:\(k = \frac{y_2 - y_1}{x_2 - x_1}\)47. 等差数列首项与末项之和:\(a_1 + a_n = a_2 + a_{n-1} =\dots = a_{\frac{n+1}{2}} + a_{\frac{n+3}{2}} = \frac{n+1}{2} (a_1 + a_n)\)48. 平行线的斜率相同49. 点到平面的距离公式:\(d = \frac{|Ax_0 + By_0 + Cz_0 +D|}{\sqrt{A^2 + B^2 + C^2}}\)50. 等腰四边形的性质:对角线互相平分,对边平行且相等以上是初中必背的50个数学公式,希望对你研究数学有所帮助!。
初中数学公式定理大全一、数的除法原则1.互除性:若a能整除b,b能整除c,那么a必然能整除c。
2.整除原理:给定两个整数a和b,如果a整除b且b整除c,则a 整除c。
二、运算定律1.加法和减法法则:(a+b)+c=a+(b+c)(加法结合律)a+b=b+a(加法交换律)a+0=0+a=a(加零律)a+(-a)=0(加法逆元)(a-b)-c=a-(b+c)(减法结合律)a-b≠b-a(减法不可交换)a-0=a(减零律)a-a=0(减法逆元)2.乘法法则:(a*b)*c=a*(b*c)(乘法结合律)a*b=b*a(乘法交换律)a*1=1*a=a(乘一律)a*0=0*a=0(乘零律)a*(b+c)=a*b+a*c(分配律)(a-b)*c=a*c-b*c(差的积)3.除法法则:a÷b=c且b≠0,那么a=b*c(乘法的逆运算)三、阿基米德原理阿基米德原理(也被称为浮力原理)表明任何浸没在液体中的物体所受到的浮力等于所排开的液体的重量,即Fb=ρVg,其中Fb为浮力,ρ为液体密度,V为液体中排开的体积,g为重力加速度。
四、平均数定理给定n个数a₁,a₂,...,aₙ,则它们的平均值为(a₁+a₂+...+aₙ)/n。
五、百分比和比例定理1.百分比定理:百分比指的是以100为基数进行计算的比例。
若a是一个数的百分之b,则a=b/100。
2.百分比的四则运算:a%=a/100a%+b%=(a+b)%(两个百分数的和)a%-b%=(a-b)%(两个百分数之差)a%×b%=(a×b)/100%(百分数的乘积)a%÷b%=(a/b)%(百分数的商)六、勾股定理在直角三角形中,设直角边分别为a和b,斜边为c,则有a²+b²=c²。
七、乘除法的分配律对于任意三个数a、b、c,有以下分配律成立:a×(b+c)=a×b+a×c(乘法对加法分配律)a×(b-c)=a×b-a×c(乘法对减法分配律)a÷(b+c)=a÷b+a÷c(除法对加法分配律)a÷(b-c)≠a÷b-a÷c(除法不可对减法分配律)八、线段分割定理线段分割定理也称为比例分割定理,对于线段AB上的一点M,有以下公式成立:AM/MB=AN/NB(如果N是另一个分割点)九、角的性质1.锐角:小于90°的角。