斐波那契数列与黄金比ppt
- 格式:ppt
- 大小:4.08 MB
- 文档页数:40
第八讲黄金分割与斐波那契数列一、黄金分割1.黄金分割的概念德国天文学家开普勒(J.Kepler)曾说“几何学有两大宝藏,其一为毕氏定理,其二为将一线段分成外内比。
前者如黄金,后者如珍珠。
”所谓将一线段分成“中外比(或称中末比或外内比)”,这是欧几里得在《几何原本》(公元前三世纪前后)里的说法:A straight line is said to have been cut in extreme and mean radio when, as the whole line is to the greater segment, so is the greater to the less.分一线段为二线段,当整体线段比大线段等于大线段比小线段时,则称此线段被分为中外比。
“中外比”指将一线段分成两段不等长的部分,使得长段与短段之比等于全长与长段之比。
此比值为215,取其前三位数字的近似值是0.618称为黄金比,或黄金数(Golden Number)。
一线段中使长段与短段之比为黄金比的那点,称为把此线段黄金分割。
有时也将黄金数称为黄金分割。
而一长方形,如长比宽等于黄金数,便称此为黄金长方形。
其实关于黄金分割的历史,可以追溯到公元前6世纪古希腊的毕达哥拉斯学派,他们已经研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。
公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。
而《几何原本》是吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。
中世纪后,黄金分割被披上神秘的外衣,意大利数学帕乔利称之为神圣比例,并专门为此著书立说。
德国天文学家开普勒称之为神圣分割。
当时,人们都还是称之为“中外比”,直到19世纪初,黄金分割这个名称才出现。
2.黄金分割在各领域中的应用(1)人体中的黄金分割:人的肚脐眼原是胎儿在母体中吸收养分的重要器官,其所在高度与一个人身高的比值恰为0.618。
黄金分割比和斐波那契数列1. 黄金分割比:自然中的奇妙比例1.1 什么是黄金分割比好啦,先聊聊黄金分割比吧。
这个比率听起来像个高深的数学名词,但实际上,它非常简单:黄金分割比大约是1.618。
这是什么意思呢?假如你有一条线段,把它分成两部分,其中一部分和整条线段的比例,等于另一部分和较长部分的比例。
这种比例就是黄金分割比。
有没有觉得很神奇?就像大自然中的秘密一样,几乎无处不在。
1.2 黄金分割比在生活中的应用你可能没注意到,但黄金分割比在生活中随处可见。
比如,我们的脸部比例、一些著名建筑的设计,甚至你最喜欢的艺术作品中,都有这个比率的影子。
它就像是一种神秘的美学标准,让一切看起来更加和谐自然。
就连《蒙娜丽莎》这样的经典画作也都蕴含了这个比例。
2. 斐波那契数列:数学中的魔法2.1 什么是斐波那契数列接下来,咱们聊聊斐波那契数列。
这是一串非常特别的数字序列,开头的两个数字是0和1,从第三个数字开始,每个数字都是前两个数字的和。
例如,0,1,1,2,3,5,8,13……以此类推。
听起来是不是有点像魔法?这种数列不仅在数学中有趣,而且在自然界里也经常出现。
2.2 斐波那契数列与黄金分割比的关系现在,你可能会好奇,斐波那契数列和黄金分割比到底有啥关系。
其实,它们之间有着密不可分的联系。
随着斐波那契数列不断增长,数列中的数字比值会越来越接近黄金分割比。
这就像数学中的一个小秘密,揭示了自然界和艺术作品的深层美学。
3. 黄金分割比和斐波那契数列的奇妙结合。
3.1 自然界中的应用大自然里可真是黄金分割比和斐波那契数列的“大舞台”。
比如,向日葵的种子排布、松果的鳞片、甚至某些贝壳的螺旋形状,都是按照这些数学法则排列的。
试着观察一下,你会发现这些自然界的奇迹,竟然都遵循着这样一种神秘的规律。
3.2 艺术和建筑中的体现不仅在自然界,黄金分割比和斐波那契数列在艺术和建筑中也有广泛应用。
古希腊的帕台农神庙、文艺复兴时期的画作,甚至现代建筑设计中,都可以找到它们的身影。
黄金比例和斐波那契数列
黄金比例和斐波那契数列是数学中常被提及的两个概念。
黄金比例指的是两个量之比等于它们的和与较大量之比,即φ=(1+√5)/2,约为1.618。
这个比例在自然界和艺术中都有广泛应用,例如黄金矩形和黄金螺旋等。
而斐波那契数列是一种数列,从第三项开始,每一项都是前两项之和。
其前几项为0、1、1、2、3、5、8、13、21……这个数列也被广泛应用在自然界和科学中,例如植物的叶子排列、蜂巢的结构等。
黄金比例和斐波那契数列之间有着紧密的联系,例如相邻两项的比值趋近于黄金比例,而将斐波那契数列的相邻两项放在一个矩形中,则这个矩形的长和宽的比例也趋近于黄金比例。
因此,黄金比例和斐波那契数列是数学中非常有趣和重要的概念。
- 1 -。