当前位置:文档之家› 低温下添加剂对沥青混合料抗裂性能的

低温下添加剂对沥青混合料抗裂性能的

低温下添加剂对沥青混合料抗裂性能的
低温下添加剂对沥青混合料抗裂性能的

沥青混合料及其力学性能分析

沥青混合料及其力学性能分析 摘要:目前我国高等级公路主要采用沥青路面结构形式,沥青混合料性能的好 坏直接影响到公路的服务功能和使用年限。现代重载交通要求沥青混合料具有优 良的高温稳定性和其它性能;为提高沥青混合料的性能、实现混合料性能的优化,近年来先后出现了大量的新材料和新理论。本文首先对沥青混合料的级配构成原 理进行了分析,其次对其力学性能做出了分析。 关键词:沥青混合料力学性能级配构成 1引言 随着生产力的发展,现代道路工程的特点反映出愈来愈鲜明的功能化。为了 满足日趋复杂、高效的现代化生产过程和日益上涨的生活水平所提出的各种功能 要求,道路工程的使命愈来愈艰难。从这个意义上看,现代道路工程面临着一场 革命作为道路工程中广泛使用的一种复合材料,沥青混合料是由沥青、矿粉、集料、等多种具有不同力学特性、不同几何形状尺寸的材料所构成的具有多相结构 的非各向同性材料。本文主要对沥青混合料及其力学性能进行了研究,希望能够 为沥青混合料的技术发展提供帮助。 2新型沥青混合料的级配构成原理分析 2.1沥青玛蹄脂碎石混合料(SMA) 沥青玛蹄脂碎石(简称SMA)是一种由沥青、矿粉及纤维稳定剂组成的沥青 玛蹄脂混合料填充于间断级配的矿料骨架中所形成的沥青混合料。其4.75mm以 上的集料含量在70%-80%左右,同时小于0.075mm的填料含量通常达到10%,而0.6-4.75mm的颗粒通常仅有10%左右,而AC-I型混合料的0.6-4.75mm的颗粒通 常达30%。因此SMA混合料是典型的由填料填充在粗集料形成的骨架空隙中形成的骨架密实结构。 2.2多碎石沥青混凝土(SAC) 多碎石沥青混凝土(SAC;)是由我国沙庆林院士于1988年提出的一种沥青 混凝土结构形式。其定义为;4.75mm以上的碎石含量占主要部分的密实级配沥 青混凝土。 SAC是在总结我国传统的工型和II型沥青混凝土的有缺点的基础上提出的。 我国传统的工型沥青混凝土空隙率为设计3-6%,因此耐久性好、透水性小,但表面构造深度较小;同时由于细集料试用较多,粗集料悬浮于沥青和细集料所组成 的密实体系中,因此混合料的稳定性随温度的增加下降明显,从而易出现车辙等 病害。 2.3大粒径沥青混凝土(LSAM) 根据以有的研究成果,LSAM的的典型特点是颗粒尺寸大、粗集料含量高、粗集料接触程度高和主骨架稳定性高。LSAM中粗集料的排列特征和级配对混合料 的体积特征有着较大的影响,甚至起着决定性的作用,也即粗集料间必须充分形 成石一石接触的骨架特征。对于LSAM的骨架特征有两个重要指标;骨架稳定度 和骨架接触度。 2.4SuperPAVE沥青混合料 SuperPAVE推荐的级配采用了0.45次方级配图,此级配图是以Fuller最大密 实度理论(n=0.45)为基础,即此图的对角线即为最大密实度线,级配曲线越靠 近对角线,混合料的密实度越大。为便于级配的选择和创新,SuperPAVE摒弃了 传统的对各个筛孔的通过率都严格控制的方法,而改为仅对关键筛孔(如公称最

沥青混合料低温开裂影响机理

摘要 本文研究的主要内容是:沥青混合料低温开裂机理,沥青混合料低温开裂影响因素,沥青橡胶碎石,玻璃纤维沥青碎石的高温抗压强度,低温劈裂强度,抗滑性能及其施工工艺,技术与经济比较等,探索新型的沥青路面结构组合。 通过在室内对沥青碎石,沥青橡胶碎石,玻璃纤维沥青碎石进行了马歇尔试验和低温抗裂强度试验,得到了各种试验数据,应用数理统计的方法进行试验,得到了各种试验数据,应用数理统计的方法进行试验数据的处理,通过对比分析,提出了三种沥青碎石的最佳配合比。在试验室和沥青混合料拌和场摸索了沥青橡胶碎石的摊铺工艺。 通过试验研究认为:玻璃纤维沥青碎石的技术性能不如沥青碎石好,但路用弹性性能较好,如能解决拌和工艺问题,调整纤维丝的品种,增大其直径,其路用性能仍值得探讨,沥青橡胶碎石结构层具有变形性能和抗裂性能良好,空隙率小,防水性能好,热稳定性较好,施工工艺简单的特点,因此,沥青橡胶碎石是二级及二级以下公路因疲劳而开裂的沥青路面的良好罩面材料,也是防止半刚性基层收缩裂缝反射的良好结构措施,在沥青类路面面层和半刚性基层之间夹铺沥青橡胶碎石薄层,虽然造价比夹铺土工布高,但其施工工艺,抗裂性能和防水性能均优于土工布,不仅可以大大减少半刚性基层材料的反射裂缝,延长路面使用寿命,而且可能适当减薄沥青混合料面层的厚度,虽然初期造价有所增加,从长远来看,具有十分重要的技术和经济意义。 该成果对公路沥青路面的养护和设计具有重要的实践指导作用,对于减少公路沥青路面的养护费用,延长路面使用寿命具有重要的经济和社会意义。 关键词: 沥青橡胶碎石抗裂性能玻璃纤维沥青碎石经济与技术分析

Abstract The main contents that are researched in the thesis are : asphalt mixture low temperature crazing principle , the influencing factor of asphalt mixtures low temperature crazing ,asphalt-rubber macadam , the pressure-resistance intensity , the crazing high temperature , the smooth-resistance and construction technology ,the technological economical compare and so on , exploring the new-type structural combinations of asphalt pavement . Through the Marshall experiment and the low temperature crazing-resistance intensity experiment , which work on the asphalt-rubber macadam , fiberglass asphalt macadam indoors ,we have got various kinds of experimental data , carrying out experiment by means of the method of mathematical statistics ,we have got various kinds of experimental data ,dealing with the experimental data by means of the method of mathematical statistics , through contrast and analyzing , we have put forward the best suitable rate of the three asphalt macadam ,in the laboratory asphalt macadam ,In the laboratory and the asphalt mixtures blending gathering plane , we have groped after paving technology of the asphalt-rubber macadam . Through the experimental research , we think :the technological capacity of fiberglass asphalt macadam if weaker than asphalt macadam ,however ,if use elasticized capacity to solve blending technological problem ,adjust the breed of fiber silk , extend its diameter , its paving capacity is still worth exploring , Asphalt-rubber macadam structure lager have good deformed-become capacity and crazed-resistance capacity , small gap rate .good water-resistance capacity ,good hot-stability and simple construction technology ,therefore ,pitch rubber spall is a good cover material which is suitable for the second class or lower whose asphalt pavement has split open because of fatigue ,and is the good structural measure of preventing half-rigidity grass-roots unit shrink-rift reflecting ,pave a thin layer of pitch rubber spall between asphalt -type pavement layer and half-rigidity basic level ,although the cost of building is higher than paving Togongbu in the middle , the construction technology, crazing-resistance and water-resistance are better than Togongbu , not only could reduce greatly the reflex of half-rigidity grass-roots unit material , long then the use lifespan of pavement , but also

沥青混合料冷再生施工工法

乳化沥青处理沥青混合料厂拌冷再生施工工法 安徽开源路桥有限责任公司 1、前言 近年来,我国公路建设迅速发展,随着通车里程的逐年递增,许多高等级公路已进入大面积改造维护期,而路面的大修、重建等常规改造维修方法,耗用大量砂石及沥青等限量资源,占用大量的资金,已逐渐影响到我国高等级公路的建设进程及现代化公路交通网的规划与完善。 沥青属于高分子聚合物范畴,具有溶解、沉淀等热力学可逆过程的性质,而且研究表明,由于旧沥青已经受过氧化作用,性能趋于稳定,再生利用后不会迅速变质,再生路面不易硬化而出现裂缝,能够保持持久的柔韧性,使用寿命长。这决定了旧沥青混合料是一种可再生利用的材料资源。 因此,进行沥青混合料的再生,蕴含巨大的经济效益,顺应交通事业可持续发展的战略举措,同时更有利于保护生态环境。 安徽开源路桥有限责任公司在合徐高速公路南段沥青混凝土路面的养护施工中,采用了沥青混合料的冷再生技术,在该项施工中,我公司在华南理工大学的研究和指导下,已掌握该施工工法,具备了成功经验,并取得了良好效果。 2、工法特点 沥青混合料冷再生施工工法具备以下特点: 1、对原路面铣刨的沥青混合料,可全部回收利用,既降低了公路维修成本,又不至于对环境造成污染; 2、用改性乳化沥青和水泥作为再生剂,对废旧沥青混合料的再生,无需加热,施工简便,易于控制; 3、对原有拌和设备的改造简单,不需要太大的投入; 4、施工工艺易于控制,能够保证工程质量; 5、对路面的维修周期大大降低,确保车辆的通行; 6、大大改善了施工条件,延长了可施工季节。 3、适用范围

本施工工法目前可适用于沥青混合料经再生后,用于高速公路的中下面层、基层或低一级的沥青混凝土路面的面层。 4、工艺原理 乳化沥青处理沥青混合料冷再生工法原理是用铣刨后的废旧沥青混合料,按照一定的级配,用改性乳化沥青作为再生剂,重新拌和,再使用到路面的基层或面层中,对铣刨后的旧沥青混合料进行再生利用。 5、施工工艺流程及操作要点 本工法主要阐述沥青混合料冷再生后用于高速公路基层的施工工艺。

普通沥青混凝土路面施工工艺

普通沥青混凝土路面施工工艺 沥青混凝土路面具有良好的的行车舒适性和优异的的性能,建设速度快,维修费用低。为此,高速公路绝大部分都使用沥青路面。 1 工艺特点 成套大型机械施工,循环往复式作业,质量容易得到保证。 2 适用范围 高速公路、一级公路普通沥青混凝土路面面层施工,包括柔性基层沥青路面、半刚性基层沥青路面、刚性基层沥青路面和组合基层沥青路面的面层施工。 3 工艺原理 将搅拌设备拌和的沥青混合料热料,经沥青混凝土摊铺机摊铺,并对其进行一定程度的预压实和整形,再由各种组合的压路机充分碾压,成为具有足够的力学性能和路用性能的路面结构。 4 工艺流程 施工工艺流程见图1。 5 操作要点 5.1 施工准备 (1)沥青路面施工必须作好前期技术准备工 作,提前对现场情况进行调查,合理安排路面排水、 防护工程、通讯管线、交通安全等附属设施施工, 其他工程施工不得污染已施工的沥青路面。 (2)制订详细的试验路段摊铺、碾压方案。并 通过试验路段的施工得到以下参数: 1)验证沥青路面各层的混合料目标配合比,确 定正式施工的最佳沥青混合料生产配合比。 2)通过试验路段施工确定合理的施工机械型 号、数量、 组合方式、落实技术培训、技术岗位及 最佳工艺流程和生产效率。 3)通过试铺确定各种混合料的摊铺温度、摊铺 速度、摊铺宽度、松铺系数、初步振捣夯实的方法、 自动找平方式等施工工艺 ,避免或减少离析的措 施,梯队摊铺时两台摊铺机的摊铺厚度和宽度协调 方式及合理的间距。 4)通过碾压确定适宜的压路机类型和数量、压路机组合方式、碾压温度、碾压速度和碾压遍数图1 普通沥青混凝土路面施工工艺

【2017年整理】改性沥青混合料面层施工技术

改性沥青混合料面层施工技术本文简要介绍了改性沥青混合料和改性沥青SMA混合料(通称改性沥青混合料)面层的施工工艺,主要包括生产和运输、摊铺、碾压、接缝、开放交通等内容。 一、生产和运输 (一)生产 改性沥青混合料的生产除遵照普通沥青混合料生产要求外,尚应注意以下几点: 1.改性沥青混合料混合料生产温度应根据改性沥青品种、黏度、气候条件、铺装层的厚度确定,改性沥青混合料的正常生产温度根据实践经验并参照表1K41104 2选择。通常宜较普通沥青混合料的生产温度提高10~20℃。当采用表1K411042以外的聚合物或天然沥青改性沥青时,生产温度由试验确定。 改性沥青混合料的正常生产温度范围(℃) 表I

2.改性沥青混合料宜采用间歇式拌合设备生产,这种设备除尘系统完整,能达到环保要求;给料仓数量较多,能满足配合比设计配料要求;且具有添加纤维等外掺料的装置。 3.改性沥青混合料拌合时间根据具体情况经试拌确定,以沥青均匀包裹骨料为度。间歇式拌合机每盘的生产周期不宜少于45s(其中干拌时间不少于5~lOs)。改性沥青混合料的拌合时间应适当延长。 4.间歇式拌台机宜备有保温性能好的成品储料仓.贮存过程中混合料温降不得大于10℃,且具有沥青滴漏功能。改性沥青混合料的贮存时间不宜超过24h;改性沥青SMA 混合料只限当天使用;OGFC混合料宜随拌随用。 5.添加纤维的沥青混合料,纤维必须在混合料中充分分散,拌合均匀。拌合机应配备同步添加投料装置,松散的絮状纤维可在喷入沥青的同时或稍后采用风送装置喷入拌合锅,拌合时间宜延长5s以上。颗粒纤维可在粗骨料投入的同时自动加入,经5---lOs的干拌后,再投入矿粉。 6.使用改性沥青时应随时检查沥青泵、管道、计量器是否受堵,堵塞时应及时清洗。 (二)运输

低温环境沥青路面施工工艺

沥青路面的施工受季节和温度的影响,通常要求是天气晴朗气候条件下,气温不低于5摄氏度。然而在我国北方由于四季分明,温差变化比较大,因此施工期短,有时不得不在较低温度下施工,因此,施工将存在一些问题:在沥青混合料的运输期间,混合料温度下降速度比较快,尤其是料车周边的混合料,温度会明显降低,甚至出现凝块现象。 混合料出现严重的温度离析问题;在筋青混合料摊铺期间,靠近摊铺机料斗内混合料会出现结块现象,这些混合料混合在其中继续摊铺,必定给沥青路面质量带来隐患。在沥青混合料压实阶段,由于周围环境温度低,混合料温度下降速度快,将存在压实困难,难以实现标准压实度。 以上问题会给沥青路面质量带来隐患,造成沥青路面早期病害发生,对路面耐久性和使用寿命造成影响。因此,如何解决沥青路面冬季施工的工艺问题已经成为一大难题。 沥青混合料拌合 从热量扩散和传递角度考虑,沥青混合料的热量随时间的推移,热量会不断减少,而热量的减少,使沥青混合料的温度降低。在外界环境温度

较低的情况下,沥青混合料的热量损失速率会比较快。因此,在一定的时间内,为了使沥青混合料在低温环境下保持一定的温度,提高沥青混合料的出料温度能够起到一定的作用。由于沥青在高温下容易老化,老化后的沥青会对沥青路面的耐久性和使用寿命造成影响,沥青混合料的出料温度一般做以下规定,基质沥青混合料的出料温度不得高于190摄氏度,SBS 改性沥青混合料的出料温度不得高于195摄氏度,当采用环境温度为5摄氏度,层厚40mm进行温度测试研究。 沥青混合料的运输 生产中,通过对搅拌设备的调整.混合料的出料温度都比较均匀。通过红外线摄像分析仪发现此时料温比较均匀,温度变化范围为正负1摄氏度。在混合料的运输期间,由于车厢周边为钢板制成,是热的良导体具有很好的导热效果,因此散热速度非常快,料车周边的混合料温度下降比较多。在低温环境下,很容易造成料车周边混合料的结壳、凝块,为了尽量避免这种现象的发生,需要对料车进行保温处理,在车厢的外侧包裹一层保温板或者棉被,降低热量损失速率:当混合枓裝入料午后,在混合料表面迅速覆盖保温被,保温被的面积需要足够大,以保证覆盖混合料顶部并延伸至车厢侧面和尾门下至少0.3m,包裹整个车厢,以保证混合料免受风的影响。为了避免保温被在将混合料从拌和楼到摊铺机的运输途中随风飘动,应有足够的绑扎点固定保温被。 在摊铺之前料车不宜较早地掀开保温被,同时现场施工与拌和站之间及时调铯,避免出现等料成料车较多的情况。 沥青混合料的摊铺

沥青温度控制

普通沥青结合料的施工温度宜通过在135℃及175℃条件下测定的粘度-温度曲线按表5.2.2-1的规定确定。缺乏粘温曲线数据时,可参照表5.2.2-2的范围选择,并根据实际情况确定使用高值或低值。当表中温度不符实际情况时,容许作适当调整。 确定沥青混合料拌和及压实温度的适宜温度表5.2.2-1 粘度适宜于拌和的沥青结合料粘度适宜于压实的沥青结合料粘度测定方法 表观粘度(0.17±0.02)Pa?s (0.28±0.03)Pa?s T 0625 运动粘度(170±20)mm2/s (280±30)mm2/s T 0619 赛波特粘度(85±10)s (140±15)s T 0623 热拌沥青混合料的施工温度(℃) 表5.2.2-2 施工工序石油沥青的标号 50号70号90号110号 沥青加热温度160~170 155~165 150~160 145~155 矿料加热温度间隙式拌和机集料加热温度比沥青温度高10~30 连续式拌和机矿料加热温度比沥青温度高5~10 沥青混合料出料温度150~170 145~165 140~160 135~155 混合料贮料仓贮存温度贮料过程中温度降低不超过10 混合料废弃温度高于200 195 190 185 运输到现场温度不低于150 145 140 135 混合料摊铺温度 不低于正常施工140 135 130 125 低温施工160 150 140 135 开始碾压的混合料内部温度,不低于正常施工135 130 125 120 低温施工150 145 135 130 碾压终了的表面温度不低于钢轮压路机80 70 65 60 轮胎压路机85 80 75 70 振动压路机75 70 60 55 开放交通的路表温度不高于50 50 50 45 注①沥青混合料的施工温度采用具有金属探测针的插入式数显温度计测量。表面温度可采用表面接触式温度计测定。当采用红外线温度计测量表面温度时,应进行标定。 ②表中未列入的130号、160号及30号沥青的施工温度由试验确定。 5.2.2.2聚合物改性沥青混合料的施工温度根据实践经验并参照表5.2.2-3选择。通常宜较普通沥青混合料的施工温度提高10℃~20℃。对采用冷态胶乳直接喷入法制作的改性沥青混合料,集料烘干温度应进一步提高。 聚合物改性沥青混合料的正常施工温度范围(℃)表5.2.2-3 工序聚合物改性沥青品种 SBS类SBR胶乳类EVA、PE类 沥青加热温度160~165 改性沥青现场制作温度165~170 -165~170

浅析沥青混合料的技术性能和标准

2011年第8期(总第210期) 黑龙江交通科技 HEILONGJIANG JIAOTONG KEJI No.8,2011(Sum No.210) 浅析沥青混合料的技术性能和标准 攸立准 (衡水公路工程总公司) 摘 要:在工程实践中,会出现各项性能要求之间的矛盾情况,有时会顾此失彼,因此在设计和施工过程中要因地制宜,抓住主要矛盾,深入细致地对各项性能指标的影响因素按照工艺施工阶段进行质量控制。下面简要对沥青混合料的技术性质和标准进行阐述。关键词:沥青混合料;技术性质;标准;要求中图分类号:U416.217 文献标识码:C 文章编号:1008-3383(2011)08-0069-01 收稿日期:2011-04-28 1高温稳定性 1.1车辙的形成机理及影响因素 (1)失稳型车辙 这类车辙是由于沥青路面结构层在车轮荷载作用下,内部材料流动,产生横向位移而发生,通称集中在轮迹处。 (2)结构型车辙 这类车辙是由于路面结构在交通荷载作用下产生整体 永久变形而形成, 主要是由于路基变形传递到面层而产生。(3)磨耗型车辙 由于沥青路面结构顶层的材料在车轮磨耗和自然环境匀 速下持续不断的损失而形成。分析以上原因, 影响沥青路面车辙的因素主要有集料、结合料、混合料类型、荷载、环境等。此 外,压实方法会直接影响混合料的内部结构,从而产生车辙。1.2混合料稳定性的评价方法 影响沥青混合料高温稳定性的主要因素有沥青的用量、沥青的粘度、矿料的级配、矿料的尺寸、形状等。提高路面的高温稳定性,可采用提高沥青混合料的粘结力和内摩擦阻力的方法,增加粗骨料含量可以提高沥青混合料的内摩阻力。适当提高沥青材料的粘度,控制沥青与矿料比值,严格控制 沥青用量,均能改善沥青混合料的粘结力。这样可以增强沥 青混合料的高温稳定性。 1.3沥青路面车辙的防治措施 对于失稳型车辙,可以通过以下方法减缓:确保沥青混合料中含有较高的经过破碎的集料;集料中要含有足够的矿粉;大尺寸集料要具有较好的表面纹理和粗糙度;集料级配中要含有足够的粗颗粒;沥青结合料要有足够的粘度;集料颗粒表面的沥青膜要具有足够厚度,确保沥青与集料间的粘聚力。 对于结构型车辙通过以下方法可以减缓:确保基层设计满足工程实践要求;基层材料满足规范要求,含有较多经破碎的颗粒;混合料内含有足够的矿粉;基底应充分的压实,工后不产生附加压密;路基压实后应满足规范要求;磨耗型车辙可通过交通管制、改善混合料级配来防治。2低温抗裂性 沥青混合料随着温度的降低,变形能力下降。路面由于低温而收缩以及行车荷载的作用,在薄弱部位产生裂缝,从而影响道路的正常使用。因此,要求沥青混合料具有一定的低温抗裂性。 沥青混合料的低温裂缝是由混合料的低温脆化、低温缩裂和温度疲劳引起的。混合料的低温脆化是指其在低温条 件下, 变形能力降低;低温缩裂通常是由于材料本身的抗拉强度不足而造成的;对于温度疲劳,因温度循环而引起疲劳破坏。 沥青路面低温开裂受多种因素制约,就沥青材料选择和 沥青混合料设计而言,应注意以下几点:注意沥青的油源,在 严寒地区采用针入度较大, 粘度较低的沥青,但同时也应满足夏季的要求;选用温度敏感性小的沥青有利于减少沥青路面的温度裂缝;采用吸水率低的集料,粗集料的吸水率应小于2%;采用100%轧制碎石集料拌制沥青混合料;控制沥青用量在马歇尔最佳用量0.5%范围内对裂缝影响小,但同时也应保证高温稳定性;采用应力松弛性能好的聚合物改性沥 青;掺加纤维, 使用改性沥青。3耐久性 3.1沥青路面的水稳定性 经常会看到,路面在水损害后会出现松散、剥离、坑洞等病害,严重影响路面的使用。沥青路面的耐久性主要依靠沥青与集料之间的粘附程度,水和矿料的作用破坏了沥青与集料之间的粘附性,是影响沥青路面耐久性的主要因素之一。而影响沥青与集料间粘结力的因素包括沥青与集料表面的界面张力、沥青与集料的化学组成、沥青粘性、集料的表面构造、集料的空隙率、集料的清洁度及集料的含水量、集料与沥青拌和的温度。 3.2沥青路面的耐老化性 另一个影响沥青混合料耐久性的是热老化。沥青材料在拌和、摊铺、碾压过程中以及沥青路面的使用过程中都存在老化问题。老化过程可分为施工中的短期老化和道路使用中的长期老化。 (1)沥青短期老化 沥青短期老化可分为三个阶段。 ①运输和储存过程的老化。沥青从炼油厂到拌和厂的热态运输一般在170?左右,进入储油罐,温度有所降低。 调查资料表明,这一过程中沥青老化非常小 。②拌和过程的热老化。加热拌和过程中,沥青是在薄膜 状态下受到加热,比运输过程中的老化条件严酷的多。沥青混合料拌和后,沥青针入度降低到拌和前沥青针入度的 80% 85%。因此,拌和过程引起的沥青老化是严重的,是沥青短期老化的最主要阶段。 ③施工期的老化。沥青混合料运到施工现场摊铺、碾压完毕,降温至自然温度,这一过程中裹覆石料的沥青薄膜仍处于高温状态。沥青混合料在摊铺、碾压和降温期间,沥青热老化进一步发展。 (2)长期老化 混合料中的沥青长期老化是一个漫长而复杂的过程,具有如下特点。 ①沥青路面在使用早期针入度急剧变小,随后变化缓慢,大体发生在 1 4年之间。②沥青老化主要发生在路表与大气接触部分,在深度0.5cm 左右的沥青针入度降低幅度相当大。 ③沥青混合料的空隙率是影响沥青老化的主要原因。④当路面中的针入度减小到35 50之间时,路面容易产生开裂,针入度小于25时路面容易产生龟裂。4抗滑性 用于高等级公路沥青路面的沥青混合料,其表面应具有一定的抗滑性,才能保证汽车高速行驶的安全性。 沥青混合料路面的抗滑性与矿质集料为表面性质、混合料的级配组成以及沥青用量等因素有关。为提高路面抗滑性,配料时应特别注意矿料的耐磨光性,应选择硬质有棱角 的矿料。沥青用量对抗滑性影响也非常敏感, 沥青用量超过最佳用量的0.5%, 即可使抗滑系数明显降低。另外,含蜡量对沥青混合料行滑性有明显影响,我国 《公路工程沥青及沥青混合料试验规程》(JTJ052-93)的《重交通量道路路用石油沥青技术要求》提出,含蜡量应不大于3%,在沥青来源有困难时对下面层路面可放宽至4% 5%。 · 96·

沥青及沥青混合料疲劳性能影响因素

沥青及沥青混合料疲劳性能影响因素 作者:林敏 来源:《装备维修技术》2020年第07期 摘要:近年来,随着我国经济和科技的不断进步,人们对日常生活水平的质量要求越来越高。建筑作为人们日常生活和工作必不可少的一部分,人们对其质量要求也存在着定的关注。为了更好地保证沥青混合材料在使用中的抗疲劳性能,逼着对相关的沥青混合料进行了分析。分析研究发现,不同类型的沥青混合料疲劳寿命是与其应力之间有一定的联系。应力比增加,那么滤镜混合材料疲劳寿命就会随之减少。除此之外,还有一系列的研究发现,都有了一定的结果。 关键词:沥青混合料;疲劳性能;影響因素 在一些桥梁路面的基础施工过程中,沥青材料的使用是必不可少的。但是近年随着行车荷载力等方面的因素,很多沥青路面的强度与以前相比发生了明显的变化。不仅容易出现疲劳破坏,还导致路面的使用寿命及使用性能都得到了破坏。因此,对于我国相关企业和管理部门而言,研究影响沥青混合料疲劳性能的因素,并解决其疲劳寿命带来的影响是一项迫在眉睫的任务。笔者通过研究资料和实际情况,对多种沥青混合料的疲劳性能进行了相应的研究,通过研究认为ARAC—13在自愈合作用后疲劳寿命是最长的。此外,笔者还针对不同的行车荷载和温度作用下沥青路面的疲劳性能,并也对此进行了分析和整理。本次分析和整理主要的目的是为了提高今后沥青混合料在使用中的疲劳性和使用寿命,研究结果仅供参考。 一、原材料和混合料配合比 1、原材料技术性质 (1)沥青 根据实际情况,选取了一项路面工程进行研究。在研究中,选取70号沥青和SBS改性沥青进行加护性质的相关测定。研究结束后我们发现,70号沥青技术性质,无论是在针入度、延度、软化点还是闪点方面均符合相关的规定和标准值。而SBS改性沥青技术在这些方面也与70号沥青技术并无太大的区别。这也叫从一定程度上证明70号沥青在工程建筑使用阶段是符合相关规定和标准的。 (2)粗集料 所谓的粗集料指的是采用玄武岩的材料,这种材料的公称粒径分为两种,分别是5~10和10~15。经过研究分析粗集料的技术性质发现,5~10的针片状测试值与10~15的针片状测

沥青混合料低温性能及其改良

沥青混合料低温性能及其改良 摘要:沥青路面使用期开裂是世界各国普遍存在的问题, 沥青路面在温度骤降或温差较大地区, 会由于温度应力的作用而产生裂缝, 低温缩裂在我国北方地区是十分普遍的, 它的产生严重危害道路的使用寿命和质量, 是沥青路面主要破坏形式之一,为此研究沥青混合料低温抗裂性能的评价方法是很有必要的。本文简单介绍了沥青低温抗裂性的评价指标及改良措施。 关键词:破坏机理评价指标影响因素改良措施 裂缝作为我国高等级沥青路面的主要病害之一,不仅会影响行车的舒适性,而且水会沿着裂缝进入沥青路面体内,引起路面结构性的破坏。沥青混合料低温抗裂性能与沥青路面裂缝病害直接相关,为了提高路面的抗裂能力,必须提高沥青混合料的低温抗裂性能。自20世纪60年代以来,加拿大、美国、日本等国家重点对沥青混合料低温开裂与材料低温性能指标进行了系统调查和研究,并铺筑了许多试路,提出了沥青及沥青混合料低温抗裂的不同评价指标,但是这些指标都是针对本国具体实验进行的研究尚缺乏验证,尤其是沥青及沥青混合料性能指标与路用性能的相关关系。因此,提高沥青路面的抗裂性能仍是沥青路面的重要研究内容。 一、破坏机理 沥青路面的低温开裂是路面破坏的主要形式之一。一般认为沥青路面的低温开裂有3种形式:一是面层低温开裂,是由气温骤降造成面层温度收缩,在有约束的沥青层内产生温度应力超过沥青混凝土的抗拉强度时造成的开裂;二是温度疲劳裂缝,是由于沥青混凝土经过长时间的温度循环,使沥青混凝土的极限拉伸应变变小,应力松弛性能降低,将在温度应力小于其抗拉强度时开裂;三是反射裂缝,是指低温状态下基层产生横向开裂,在荷载和温度共同作用下,裂缝逐渐向沥青面层的横向开裂。沥青路面裂缝会导致路面承载力下降,影响行车舒适性,并缩短路面使用寿命。因此,提高路面抗裂性是道路领域研究的重要课题。 二、评价方法

北方冬季低温环境沥青路面施工工艺(优秀工程范文)

北方冬季低温环境沥青路面施工工艺沥青路面的施工受季节和温度的影响,通常要求是天气晴朗气候条件下,气温不低于5摄氏度.然而在我国北方由于四季分明,温差变化比较大,因此施工期短,有时不得不在较低温度下施工,因此,施工将存在一些问题:在沥青混合料的运输期间,混合料温度下降速度比较快,尤其是料车周边的混合料,温度会明显降低,甚至出现凝块现象. 混合料出现严重的温度离析问题;在筋青混合料摊铺期间,靠近摊铺机料斗内混合料会出现结块现象,这些混合料混合在其中继续摊铺,必定给沥青路面质量带来隐患.在沥青混合料压实阶段,由于周围环境温度低,混合料温度下降速度快,将存在压实困难,难以实现标准压实度. 以上问题会给沥青路面质量带来隐患,造成沥青路面早期病害发生,对路面耐久性和使用寿命造成影响.因此,如何解决沥青路面冬季施工的工艺问题已经成为一大难题. 1、沥青混合料拌合

从热量扩散和传递角度考虑,沥青混合料的热量随时间的推移,热量会不断减少,而热量的减少,使沥青混合料的温度降低.在外界环境温度较低的情况下,沥青混合料的热量损失速率会比较快.因此,在一定的时间内,为了使沥青混合料在低温环境下保持一定的温度,提高沥青混合料的出料温度能够起到一定的作用.由于沥青在高温下容易老化,老化后的沥青会对沥青路面的耐久性和使用寿命造成影响,沥青混合料的出料温度一般做以下规定,基质沥青混合料的出料温度不得高于190摄氏度,SBS改性沥青混合料的出料温度不得高于195摄氏度,当采用环境温度为5摄氏度,层厚40米米进行温度测试研究. 2、沥青混合料的运输 生产中,通过对搅拌设备的调整.混合料的出料温度都比较均匀.通过红外线摄像分析仪发现此时料温比较均匀,温度变化范围为正负1摄氏度.在混合料的运输期间,由于车厢周边为钢板制成,是热的良导体具有很好的导热效果,因此散热速度非常快,料车周边的混合料温度下降比较多.在低温环境下,很容易造成料车周边混合料的结壳、凝块,为了尽量避免这种现象的发生,需要对料车进行保温处理,在车厢的外侧包裹一层保温板或者棉被,降低热量损失速率:当混合枓裝入料午后,在混合料表面迅速覆盖保温被,保温被的面积需要足够大,以保证覆盖混合料顶部并延伸至车厢侧面和尾门下至少0.3米,包裹整个车厢,以保证混合料免受风的影响.为了避免保温被在将混合料从拌和楼到摊铺机的运输途中随风飘动,应有足够的绑扎点固定保温被. 在摊铺之前料车不宜较早地掀开保温被,同时现场施工与拌和站之间及时调铯,避免出现等料成料车较多的情况.

道路沥青混合料的种类与性质

第七章沥青混合料的组成设计 沥青混合料从颗粒均匀预涂沥青的沥青涂层碎石(coated stone)到沥青玛碲脂(mastic asphalt)其成分变化无穷。然而,沥青混合料大体上可以分为沥青混凝土(asphalt)和沥青碎石(macadam)两大类。 沥青混凝土与碎石的主要区别如下: ●沥青混凝土的集料级配一般由颗粒大致均匀的粗集料加上大量的细集料和很 少量的中等大小的集料组成。 ●沥青混凝土的强度与砂/填料/沥青成份的劲度即沥青砂浆有关;为了砂浆 要有足够的劲度,制造沥青混凝土时要用比较硬的沥青和含量高的填料;至于沥青碎石的强度,主要是依靠摩擦和集料颗粒间的机械互锁力,因此可以用较软等级的沥青。 ●由于沥青混凝土含的填料比例很大,也即是集料有大幅的表面积要用沥青裹 覆,因而沥青用量较高;而沥青碎石含细小的集料少,因此用以裹覆集料的沥青少量也够了;沥青碎石内的沥青主要功能是在压实时作为润滑剂和在使用过程中粘结着集料颗粒。 ●沥青混凝土的空隙率低,基本上不透水并且用予繁重交通的道路上非常耐 久;沥青碎石的空隙率相对较高而具透水性,并不如前者耐久。从沥青涂层碎石到沥青玛蹄脂各种沥青合料中,使用的沥青等级愈来愈硬,沥青、矿料和砂的含量增加,粗集料含量减少。 图7-1 各种沥青混合料的典型级配曲线

§7.1道路沥青混合料的种类与性质 7.1.1沥青混凝土 用不同粒径的碎石、天然砂、矿粉和沥青按一定比例以及最佳密实级配原则设计、在拌和机中热拌所得的混合料称沥青混凝土混合料。这种混合料的矿料部分应有严格的级配要求。它们经过压实后所得的材料具有规定的强度和孔隙率时称作沥青混凝土。沥青混凝土的强度和密实度是一般沥青混合料中最大的,但它们在常温或高温下都具有一定的塑性。沥青混凝土的高密实度使得它水稳性好,因此有较强的抗自然侵蚀能力,故寿命长、耐久性好,适合作为现代高速公路的柔性面层。从国外以及国内的工程实践来看,以沥青混凝土作为高等级公路或城市道路的路面材料已经相当普遍。 由于沥青混凝土的胶结料主要为沥青,沥青是一种对温度十分敏感的材料,这就导致了沥青混凝土的性质(主要为力学性能)受温度的影响十分突出(这也是沥青混合料最大的特点),如它们的劈裂强度随温度的变化可从零下温度的几兆帕到高温的零点几兆帕而不同。 沥青混凝土的分类从广义来说,可包括沥青玛碲脂(MA)、热压式沥青混凝土(HRA)、传统的密级配沥青混凝土(HMA)、多空隙沥青混凝土(PA)、沥青玛碲脂碎石(SMA)以及其它新型的沥青混凝土。 传统沥青混凝土、SMA和多空隙沥青混凝土典型级配曲线的比较见下图: 图7-2 三种典型混凝土级配比较 上图中,曲线1为传统沥青混凝土,孔隙率3%;曲线2为SMA,孔隙率3%;曲线3为多孔沥青混凝土、孔隙率20%。就孔隙率而言,当马歇尔设计孔隙率小于4%(或路面实际孔隙率小于8%)时,它已形成较为密实的结构,水不易进入沥青混凝土,整个结构的耐久性较好;或者路面实际孔隙率大于15%

沥青混凝土冬季低温施工方案

目录 四、施工工艺 (3) 一、编制说明 1、编制依据 ①《公路沥青路面施工技术规范(JTG F40-2004)》 ②《公路沥青路面设计规范(JTG D50-2006)》 ③《公路工程质量检验评定标准(JTG F80/1-2004)》 ④《公路工程沥青及沥青混合料试验规程(JTJ E20-2011)》 ⑤《沥青路面施工及验收规范(GB500092-96)》 ⑥《重庆三环高速公路铜梁至永川段沥青路面施工指导意见》 2、编制目的 由于各种原因,我项目施工进度相较于年初施工计划已明显滞后,将不可避免的要在冬季进行沥青混凝土路面施工。沥青混凝土路面对施工气候的要求较为苛刻,

鉴于重庆地区极端情况下1、2 月份白天气温有可能降到接近10℃。为了保证沥青混凝土路面的施工质量,特制定本方案。 3、适用范围 本方案根据本项目实际情况编制,仅适用于本项目。 二、工程概况 1、工程简介 重庆三环高速公路铜梁至永川段位于重庆市铜梁县、大足县、双桥区、永川区境内,是《重庆市高速公路网规划》(2003~2020)“三环、十射、三联”的重要组成部分,是联系重庆市周边区县的重要公路通道,有着环接重庆市各条对外高速公路的重要作用。本项目铜梁至永川段起于铜梁县,接铜合路起点,后沿西南方向,经土桥、万古,至永川区双石镇,路线全长62.540Km,路面一标起止桩号为K0+000~K29+650,路线长29.65Km。 2、水文地质条件 本项目区内属于亚热带季风暖湿气候区,冬暖春早,夏热秋雨,四季分明,降雨丰沛,空气湿润,雨热同季;日照少,多云雾,少霜雪,立体气候明显,气候资源丰富,气象灾害频繁,年平均气温16.6~18.6℃之间,冬季极端最低气温0℃以上,少霜雪,夏季极端最高气温在40℃以上,多酷暑;年总降水量1000~1350mm,年平均日照时间1000~1400小时,年平均相对湿度78.9%左右;受地形地势影响风速一般不大,历年平均风速1.4~1.6m/s,风向以北风为主。 地形为川中方山丘陵与川东平行岭谷的过渡地带;岩层呈单斜状产出,出露地层为侏罗系中统沙溪庙组、上统遂宁组紫红色粉砂质泥岩、砂岩,呈不等厚互层、单斜状产出,路线穿越的丘谷中地表为第四系全新统残坡积层覆盖,为浅紫色、灰黄色粉质粘土,厚度一般为2~5米,目前多为稻田,表层为耕植土层,由上至下分

沥青混合料力学性能指标2

10.2 沥青路面材料的力学特性与温度稳定性——这三个你仔细看一下吧 10.2.1 沥青混合料的强度特性 表征沥青混合料力学强度的参数是:抗压强度、抗剪强度和抗拉(包括抗弯拉)强度。一般沥青混合料均具有较高的抗压强度,而抗剪和抗拉强度则较低。因此,沥青路面的损坏,往往是由拉裂或滑移开始而逐渐扩展。 1、抗剪强度(shearing strength) 沥青混合料的剪切破坏可按摩尔一库仑原理进行分析。材料在外力作用下如不产生剪切破坏,则应具备下列条件: τmax< σ tg φ+c (2-4) 式中:τmax — 在外荷载作用下,某一点所产生最大的剪应力; σ — 在外荷载作用下,在同一剪切面上的正应力; c — 材料的粘结力; φ — 材料的内摩阻角; 在沥青路面的最不利位置取一单元体,设其三个方向的主应力为σ1、σ2和σ3,且σ1>σ2>σ3。由于单元体中最不利的剪切条件取决于σ1和σ3,故仅根据σ1和σ3分析单元体的应力状况。图2-17为单元体应力状况的摩尔圆。 图2-17 应力状况摩尔圆图 图2-18 三轴剪切实验装置 1-压力环;2-活塞;3-出水口;4-保温罩;5-进水口;6-接压力盒;7-试件;8-接水银压力计 从图2-17可得: ()φσστcos 2131-= (2-5) ()φφφσσσ2231sin cos 21tg c -+= (2-6)

将式(2-5)、(2-6)代人式(2-4)得: ()()[]c ≤+--φσσσσφsin cos 213131 (2-7a ) ()c tg ≤--φτσφτmax max cos (2-7b) 式(2-7a)或(2-7b)为沥青路面材料强度的判别式。 式左端称为活动剪应力,当活动剪应力等于粘结力c 时,材料处于极限平衡,若大于粘结力c ,材料出现塑性变形。 根据式(2-7a)或(2-7b)可求得沥青路面材料应具有的c 和Φ值。 c 和Φ值可通过三轴剪切试验取得。三轴剪切试验的装置如图2-18所示。 三轴剪切试验所用试件的直径应大于矿料最大粒径的4倍,试件的高与直径之比应大于 2。矿料最大粒径小于25cm 时,试件直径为10cm ,高为20m 。试验时,将一组试件分别在不同侧压力下以一定加荷速度施加垂直压力,直至试件破坏。此时测得的最大垂直压力,即为沥青混合料的最大主应力σ1 ,侧压力即为最小主应力σ3(σ1=σ3)。根据各试件的侧压力和最大垂直压力给出相应的摩尔圆,这些圆的公切线称为摩尔包线,切线与τ轴相交的截距即为粘结力,切线的斜率即为内摩阻角Φ(见图2-19)。 由于温度对沥青混合料的抗剪强度有很大的影响,故试件应在高温条件(65℃或50℃)下进行测试。 粘结力c 和内摩阻角Φ值,也可根据无侧限抗压和轴向拉伸试验取得的抗压强度和抗拉强度来计算: 抗压强度 ??? ??+=242φπctg R (2-8) 抗拉强度 ??? ??+= 242φπtg c r (2-9) 从式(2-8)或(2-9)可得: ??? ??+-=r R r R -1sin φ (2-10) Rr c 5.0= (2-11)

低温条件下施工沥青面层混凝土专项施工方案

低温条件下施工沥青面层混凝土专项 施工方案 1

2

芙蓉南路(侯家塘~万家丽路)道路 提质改造工程 冬雨季及低温条件下施工沥青面层混凝土 专项施工方案 编制单位:湖南东方红建设集团有限公司 编制时间:二零一五年十二月一日 3

目录 一、编制说明 (2) 二、工程概况 (3) 三、施工计划 (5) 四、施工工艺 (6) 五、冬季施工所面临的主要问题及采取的质量保证措施 (11) 六、危险源分析 (14) 七、安全保证体系 (16) 八、施工安全保障措施 (16) 九、安全事故应急预案 (22) 十、交通疏导方案 (26) 4

一、编制说明 1、编制依据 ①<公路沥青路面施工技术规范(JTG F40- )> ②<公路沥青路面设计规范(JTG D50- )> ③<公路工程质量检验评定标准(JTG F80/1- )> ④<公路工程沥青及沥青混合料试验规程(JTJ E20- )> ⑤<沥青路面施工及验收规范(GB500092-96)> ⑥<关于芙蓉南路(侯家塘~万家丽路)道路提质改造工程初步设计审查的批复>(长住建发[ ]142号) ⑦<芙蓉南路(侯家塘~万家丽路)路面提质改造工程路况技术调查与检测评价报告> ⑧<芙蓉南路(侯家塘~万家丽路)道路提质改造工程施工图设计> 2、编制目的 本项目于 11月16日经公开招标确定我单位为中标人,根据本项目招投标文件、合同文件等相关条款约定本项目的合同工期为60天。同时根据 11月30日长沙市政府组织召开的芙蓉南路(侯家塘~万家丽路)道路提质改造工程政府调度会议精神要求,为确保年前两会顺利召开,本项目道路主道道路提质改造工程应于元月18日前完成并全部开放和恢复交通。根据长沙多年气象资料信息以结合当前天气状况和气象部门对近期天气情况的预计,本项目在施 5

相关主题
文本预览
相关文档 最新文档