样本函数与统计量
- 格式:ppt
- 大小:381.01 KB
- 文档页数:14
样本和统计量1. 样本空间随机试验E的所有基本结果组成的集合为E的样本空间。
样本空间中的数据元素具有唯⼀性,不能重复。
2. 总体所研究对象的某项数量指标取值的全体称为总体,⽤随机变量X表⽰。
⽐如我们要研究亚洲⼈的⾝⾼分布,那所有亚洲⼈的⾝⾼数据就构成总体。
总体中数据个数⼤于等于样本空间中的数据个数,⽐如 100 个⼈⾝⾼全为 2m,那么总体就是 100 个 2m,⽽样本空间就只有⼀个2m。
3. 个体总体中的⼀个元素称为个体。
⽐如某⼀个⼈的⾝⾼。
4. 简单随机样本由于总体太过庞⼤,我们总不能真的统计全部亚洲⼈的⾝⾼,于是我们采⽤抽样的⼿段,在亚洲⼈中抽出 10000 ⼈,⽤这 10000 ⼈的⾝⾼分布来代表总体的⾝⾼分布,这 10000 次抽样相互独⽴。
我们现在只研究⼀次抽样:假如总体是\left \{ 0.1, 0.2, 0.2, 0.3, 0.3, 0.3 \right \},那么可以认为我们抽取出的这⼀个⼈有\frac{1}{6}的概率⾝⾼为 0.1,有\frac{1}{3}的概率⾝⾼为 0.2,有\frac{1}{2}的概率⾝⾼为 0.3。
由于每次抽样之前,不会知道抽样的结果,所以⽤⼀个随机变量来表⽰,将这 10000 次的抽样结果记为随机变量X_{1},X_{2},...X_{n},称为简单随机样本,简称样本,它们的具体观察值x_{1},x_{2},...x_{n}称为样本值。
样本与总体同分布,每⼀个个体都是⼀维随机变量,所以样本是多维,总体是⼀维。
这就和投硬币⼀样.投⼀次是⼀维随机变量.投多次是多维随机变量。
注意:总体是概率分布⾓度,是理论上的,样本是统计⾓度,是实际观察到的,两者是不同的。
5. 统计量样本X_{1},X_{2},...X_{n}不含参数的函数T = T(X_{1},X_{2},...X_{n})称为统计量,也称样本统计量。
常见的样本统计量有:样本均值、样本⽅差等。
我们需要认识到样本统计量本⾝也是⼀个随机变量,这是因为每次抽样的结果具有不确定性,即样本具有不确定性,那么样本的函数当然也具有不确定性。
第六章6.4 在例6.2.3 中, 设每箱装n 瓶洗净剂. 若想要n 瓶灌装量的平均阻值与标定值相差不超 过0.3毫升的概率近似为95%, 请问n 至少应该等于多少? 解:因为1)3.0(2)/3.0|/(|)3.0|(|-Φ≈<-=<-n nnX P X P σσμμ依题意有,95.01)3.0(2=-Φn ,即)96.1(975.0)3.0(Φ==Φn于是 96.13.0=n ,解之得 7.42=n 所以n 应至少等于43.6.5 假设某种类型的电阻器的阻值服从均值 μ=200 欧姆, 标准差σ=10 欧姆的分布, 在一个电子线路中使用了25个这样的电阻.(1) 求这25个电阻平均阻值落在199 到202 欧姆之间的概率; (2) 求这25个电阻总阻值不超过5100 欧姆的概率. 解:由抽样分布定理,知nX /σμ-近似服从标准正态分布N (0,1),因此(1) )25/10200199()25/10200202()202199(-Φ--Φ≈≤≤X P)5.0(1)1()5.0()1(Φ+-Φ=-Φ-Φ=5328.06915.018413.0=+-= (2) )204()255100()5100(≤=≤=≤X P X P X n P 9772.0)2()25/10200204(=Φ=-Φ≈6。
8 设总体X ~N (150,252), 现在从中抽取样本大小为25的样本, {140147.5}P X ≤≤。
解: 已知150=μ,25=σ,25=n ,)25/25150140()25/251505.147()5.147140(-Φ--Φ≈≤≤X P)5.0()2()2()5.0(Φ-Φ=-Φ--Φ= 2857.09615.09772.0=-=第六章《样本与统计量》定理、公式、公理小结及补充:。
教学单元案例: 参数估计与假设检验北京化工大学 李志强教学内容:统计量、抽样分布及其基本性质、点估计、区间估计、假设检验、方差分析 教学目的:统计概念及统计推断方法的引入和应用(1)理解总体、样本和统计量等基本概念;了解常用的抽样分布;(2)熟练掌握矩估计和极大似然估计等方法; (3)掌握求区间估计的基本方法; (4)掌握进行假设检验的基本方法; (5) 掌握进行方差分析的基本方法;(6)了解求区间估计、假设检验和方差分析的MA TLAB 命令。
教学难点:区间估计、假设检验、方差分析的性质和求法 教学时间:150分钟教学对象:大一各专业皆可用一、统计问题 引例例1 已知小麦亩产服从正态分布,传统小麦品种平均亩产800斤,现有新品种产量未知,试种10块,每块一亩,产量为:775,816,834,836,858,863,873,877,885,901问:新产品亩产是否超过了800斤?例2 设有一组来自正态总体),(2σμN 的样本0.497, 0.506, 0.518, 0.524, 0.488, 0.510, 0.510, 0.512. (i) 已知2σ=0.012,求μ的95%置信区间; (ii) 未知2σ,求μ的95%置信区间; (iii)求2σ的95%置信区间。
例3现有某型号的电池三批, 分别为甲乙丙3个厂生产的, 为评比其质量, 各随机抽取5只电池进行寿命测试, 数据如下表示, 这里假设第i 种电池的寿命),(.~2σμi i N X .(1) 试在检验水平下,检验电池的平均寿命有无显著差异? (2) 利用区间估计或假设检验比较哪个寿命最短.二 统计的基本概念: 总体、个体和样本(1)总体与样本总体 在数理统计中,我们将研究对象的某项数量指标的值的全体称为总体,总体中的每个元素称为个体比如,对电子元件我们主要关心的是其使用寿命.而该厂生产的所有电子元件的使用寿命取值的全体,就构成了研究对象的全体,即总体,显然它是一个随机变量,常用X 表示 为方便起见,今后我们把总体与随机变量X 等同起来看,即总体就是某随机变量X 可能取值的全体.它客观上存在一个分布,但我们对其分布一无所知,或部分未知,正因为如此,才有必要对总体进行研究.简单随机样本对总体进行研究,首先需要获取总体的有关信息. 一般采用两种方法:一是全面调查.如人口普查,该方法常要消耗大量的人力、物力、财力.有时甚至是不可能的,如测试某厂生产的所有电子元件的使用寿命. 二是抽样调查. 抽样调查是按照一定的方法,从总体X 中抽取n 个个体.这是我们对总体掌握的信息.数理统计就是要利用这一信息,对总体进行分析、估计、推断.因此,要求抽取的这n 个个体应具有很好的代表性.按机会均等的原则随机地从客观存在的总体中抽取一些个体进行观察或测试的过程称为随机抽样.从总体中抽出的部分个体,叫做总体的一个样本.从总体中抽取样本时,不仅要求每一个个体被抽到的机会均等,同时还要求每次的抽取是独立的,即每次抽样的结果不影响其他各次的抽样结果,同时也不受其他各次抽样结果的影响.这种抽样方法称为简单随机抽样.由简单随机抽样得到的样本叫做简单随机样本.往后如不作特别说明,提到“样本”总是指简单随机样本.从总体X 中抽取一个个体,就是对随机变量X 进行一次试验.抽取n 个个体就是对随机变量X 进行n 次试验,分别记为X1,X2,…,Xn.则样本就是n 维随机变量(X1,X2,…,Xn).在一次抽样以后, (X1,X2,…,Xn)就有了一组确定的值(x1,x2,…,xn),称为样本观测值.样本观测值(x1,x2,…,xn)可以看着一个随机试验的一个结果,它的一切可能结果的全体构成一个样本空间,称为子样空间.(2)样本函数与统计量设n x x x ,,,21 为总体的一个样本,称ϕϕ= (n x x x ,,,21 )为样本函数,其中ϕ为一个连续函数。
总体与样本、参数和统计量1. 介绍在统计学中,研究对象通常被称为总体。
总体是指研究者感兴趣的特定群体或现象,可以是人群、产品、事件等。
然而,由于取得总体数据的成本和时间都非常昂贵,因此研究者经常只能从总体中选择一部分数据进行分析,这部分数据被称为样本。
样本是总体的一个子集,它代表了总体的某些特征。
通过对样本进行研究和分析,研究者可以得出关于总体的结论或推断,以及对总体未知特征的估计。
2. 参数和统计量2.1 参数参数是描述总体特征的数值度量,它通常用希腊字母来表示。
例如,总体的平均值用μ表示,总体的标准差用σ表示。
参数是基于总体数据的固定值。
以人群身高为例,如果我们想了解某人群的平均身高,将全体人群的身高加起来再除以总人数就是该人群平均身高的参数。
2.2 统计量为了对总体进行研究和推断,我们需要从样本中计算数值度量,这些度量被称为统计量。
统计量是基于样本数据计算得到的,用拉丁字母来表示。
以人群身高为例,从人群中抽取一个样本,计算样本的平均身高作为样本的平均身高统计量。
样本统计量是样本数据的函数,通过样本研究和推断可以估计总体的参数。
3. 总体与样本的关系总体和样本是密切相关的,通过样本可以了解总体的特征。
在实际研究中,样本是从总体中随机选取的,因此样本应该能够代表总体。
样本收集需要注意一些问题,如样本的大小和抽样方法的合理性。
样本大小对于统计推断的准确性非常重要。
样本越大,通常可以提供更准确的估计和推断。
抽样方法的合理性涉及到随机性和无偏性的问题,确保选择的样本能够代表总体。
总体和样本之间的关系可以用下式表示:总体数据→ 样本选择→ 样本数据→ 统计量计算→ 参数估计和推断→ 总体特征估计和推断4. 参数估计和假设检验通过样本统计量,我们可以对总体参数进行估计和推断。
常见的估计方法包括点估计和区间估计。
点估计是使用样本统计量直接估计总体参数的数值。
例如,样本的平均值可以作为总体平均值的点估计。
然而,点估计存在估计误差的问题,可能导致估计结果偏离真实参数。