(完整word版)五年级数学下册《图形的运动》知识点归纳,推荐文档
- 格式:doc
- 大小:56.80 KB
- 文档页数:2
五年级数学图形的运动重点知识点复习一、三种图形的运动——平移、旋转、翻折三种运动都不改变图形的大小和形状。
在运动前后的图形中,对应角和对应线段相等。
平移中,对应点的距离相等,并且就是图形的平移距离。
旋转中,对应点到旋转中心的距离相等。
翻折中,对应点到对称轴的距离相等。
二、三种图形——旋转对称图形、中心对称图形、轴对称图形都是指一个图形的性质。
旋转对称图形的最小旋转角和旋转角的区别。
中心对称图形是旋转对称图形中的.一种特殊情况。
三、几种特殊图形①正多边形:正多边形都是旋转对称图形,最小旋转角是360/n偶数正多边形是中心对称图形,奇数边正多边形不是。
正多边形都是轴对称图形,对称轴条数就是边数。
②圆形是旋转对称图形,没有最小旋转角,有无数个旋转角。
圆形是中心对称图形。
圆形是轴对称图形,对称轴有无数条。
③角是轴对称图形,对称轴是角平分线所在直线。
④线段有两条对称轴,一条是其中垂线,另一条是线段所在的直线。
四、两种位置关系——中心对称和轴对称都是指两个图形的位置关系。
两个图形关于某个点(对称中心)中心对称。
两个图形关于某条直线(对称轴)轴对称。
五、作图辅助线用虚线,其余用实线。
中心对称图形或两图形中心对称,任何一组对称点的中点就是对称中心。
或者任意两组对称点的交点也是对称中心。
轴对称图形或两图形轴对称,任何一组对称点的中垂线就是对称轴。
或者任意两组对称点连线段的中点的连线就是对称轴。
【五年级数学图形的运动重点知识点复习】。
(直打版)五年级数学下册《图形的运动》知识点归纳(word版可编辑修改) 编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)五年级数学下册《图形的运动》知识点归纳(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)五年级数学下册《图形的运动》知识点归纳(word版可编辑修改)的全部内容。
五年级数学下册《图形的运动》知识点归纳
1、旋转的含义:物体绕着一个点或轴转动,这种运动现象称为旋转。
2、旋转的三要素:旋转点(或旋转中心)、旋转方向和旋转角度.
3、旋转的特征:图形旋转前后,形状和大小都没有发生变化,只是位置改变.
4、旋转的性质:图形绕某点顺时针(或逆时针)旋转一定的角度,图中的对应点和对应线段也绕这个顺时针(或逆时针)旋转相同的角度,对应点到旋转中心的距离相等,对应线段和对应角都分别相等。
、在方格纸上画简单图形旋转90度的方法:
(1)找出原图形的关键点,根据旋转点和旋转方向,在线段的某一侧借助三角尺作垂线;从旋转点开始,在所作的垂线上量出与原线段相等的长度,并标出对应点(3)顺次连接所画出的对应点,就得到了旋转后的图形。
6、利用七巧板,通过把每块板平移或旋转可以拼出一些简单而美丽的图案.运用平移时,要确定平移的格数和方向;运用旋转时,要确定旋转点、旋转方向和旋转角度。
人教版五年级下册第五单元《图形的运动(三)》单元学习要点第五单元《图形的运动》,是在学生已经初步感知了生活中的对称、平移和旋转现象的基础上,进一步认识图形的旋转变换,并学习在方格纸上画出一个简单的图形旋转90°后的图形,发展空间观念。
一、旋转的意义及要素1、旋转的意义旋转就是物体绕一个点向某一方向转动一定的角度。
如:指针的转动2、旋转的三要素(1)旋转点(或旋转中心):物体旋转时所绕的点,就是旋转点(或旋转中心)。
(2)旋转方向:钟表中指针运动的方向为顺时针方向;与钟表中指针的运动方向相反的方向为逆时针方向。
(3)旋转角度指对应线段的夹角或对应顶点与旋转中心连线的夹角。
(简单的讲就是物体旋转了多少度)二、图形旋转的特征与性质1、旋转前后的图形,旋转中心的位置不变;2、旋转前后的图形,形状、大小不变;3、图形绕某一点按某种方向旋转一定的度数,图形中的对应点、对应线段都按某种方向旋转了相同的度数;4、旋转前后的图形,对应点到旋转中心的距离相等,对应的线段和对应的角度都相等。
三、简单图形旋转90°的画法1、找出原图形的几个关键点或线段(一般是图形的顶点或线段的交点、端点),根据旋转方向,从关键点与旋转点所在线段的某一侧借助三角板作垂线;2、从旋转点开始,在所作垂线上量出(数出)与原线段相等的长度,标出原图形关键点的对应点;3、顺次连接所标出的对应点。
简单概括画法就是三个字:找、标、连。
四、重要习题1、2、数学书第86页第6题这一题是要画出将三角形OAB绕点O按顺时针方向旋转90°后得到的图形。
观察:三角形OAB的关键点是A点和B点,关键线段是OA和OB。
三角形要绕点O按顺时针方向旋转90°,线段OA也会按顺时针方向旋转90°。
根据旋转角度和A点到O点的距离,通过数正方形格子数很快找到A'点,接着用同样的方法找到B'点,(也可以根据对称关系找到B'点),最后连接O、A'、B'三点,旋转后的三角形就画好了。
第⼆单元图形的运动知识点总结第⼆单元图形的运动知识点总结1 轴对称图形:把⼀个图形沿着⼀条直线对折后,折痕两侧的图形能完全重合的图形是轴对称图形。
2 对称轴:对折后能使两边重合的线叫做对称轴。
3 轴对称图形特点:对称轴是⼀条直线,对称轴两侧的对应点到对称轴两侧的距离相等,沿对称轴将它对折,左右两边完全重合。
4 轴对称图形的有:常见的图形有:⾓、五⾓星、等腰三⾓形、等边三⾓形、等腰梯形、正⽅形、长⽅形、圆和正多边形等都是轴对称图形等.字母是轴对称的有:A.B.C.D.E.H.I.K.M.O.T.V.U.W.X.Y5 有的轴对称图形有不⽌⼀条对称轴.圆有⽆数条对称轴,每条圆的直径所在的直线都是圆的对称轴.长⽅形有两条对称轴,正⽅形有4条对称轴,等边三⾓形有3条对称轴,等腰三⾓形有1条对称轴,等腰梯形有⼀条对称轴,五⾓星有五条对称轴,正n边形有n条对称轴(n≥3).6;①特点:轴对称图形的⼤⼩不变,但⽅向相反;②画法:定点数格——找对称点——描图。
7 平移:物体或图形沿着直线运动的现象叫做平移。
平移不改变图形的形状和⼤⼩。
图形经过平移,对应线段相等,对应⾓相等,对应点所连的线段相等。
8 平移的特征:图形平移前后的形状和⼤⼩没有变化,只是位置发⽣变化。
平移的⽅法:点和点对应,边和边对应。
①平移是整体移动。
②要知道平移了⼏格,只需要找到⼀个顶点,数出这个点平移的格⼦数,就是整个图形平移的格数。
③平移⼀个图形必须找到所有顶点平移后各点的位置,再按顺序连起来。
9 ⽣活中常见的平移现象:升国旗、妈妈⽤拖布擦地、飞机飞⾏、坐缆车、开汽车、拉抽屉、电梯。
10 镜⼦内外的左右⽅向是相反的。
11:旋转:物体或图形绕着⼀个点或⼀个轴做圆弧或圆周运动的现象叫做旋转。
①⽣活中常见的旋转现象:柠⽔龙头,汽车⽅向盘的转动,风车的转动,翻书,风扇的叶⽚,螺旋桨和钟摆的运动。
②特点:旋转后图形的⼤⼩、形状不变,但是位置和⽅向改变。
小学数学图形的运动知识点总结1.圆与组合图形【知识点归纳】1.圆知识的相关回顾:(1)圆的周长C=2πr=或C=πd(2)圆的面积S=πr2(3)扇形弧长L=圆心角(弧度制)×r=(n为圆心角)(4)扇形面积S==(L为扇形的弧长)(5)圆的直径d=2r2.组合图形的面积计算,可以根据几何图形的特征,通过分割、割补、平移、翻折、对称、旋转等方法,化复杂为简单,变组合图形为基本图形的加减组合.2.组合图形的面积【知识点归纳】方法:①“割法”:观察图形,把图形进行分割成容易求得的图形,再进行相加减.②“补法”:观察图形,给图形补上一部分,形成一个容易求得的图形,再进行相加减.③“割补结合”:观察图形,把图形分割,再进行移补,形成一个容易求得的图形.【命题方向】常考题型:例1:求图中阴影部分的面积.(单位:厘米)分析:根据图所示,可把组合图形分成一个直角梯形和一个圆,阴影部分的面积等于梯形的面积减去圆的面积再加上圆的面积减去三角形面积的差,列式解答即可得到答案.解:[(5+8+5)×5÷2﹣×3.14×52]+(×3.14×52﹣5×5÷2),=[18×5÷2﹣0.785×25]+(0.785×25﹣25÷2),=[90÷2﹣19.625]+(19.625﹣12.5),=[45﹣19.625]+7.125,=25.375+7.125,=32.5(平方厘米);答:阴影部分的面积为32.5平方厘米.点评:此题主要考查的是梯形的面积公式(上底+下底)×高÷2、三角形的面积公式底×高÷2和圆的面积公式S=πr2的应用.3.轴对称【知识点归纳】1.轴对称的性质:像窗花一样,把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,称这两个图形为轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点.把一个图形沿着某一条直线折叠,如果直线两旁的部分能够互相重合,那么称这个图形是轴对称图形,这条直线就是对称轴.2.性质:(1)成轴对称的两个图形全等;(2)如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线.【命题方向】常考题型:例:如果把一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形.分析:依据轴对称图形的意义,即在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这样的图形叫做轴对称图形,据此即可进行解答.解:据分析可知:如果把一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形.故答案为:一条直线、完全重合、轴对称图形.点评:此题主要考查轴对称图形的意义.4.确定轴对称图形的对称轴条数及位置【知识点归纳】1.对称轴的定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线就是它的对称轴.2.找到对应点的连线,如果连线的中点都在一条直线上,说明是其图形的对称轴.3.掌握一般图形的对称轴数目和位置对于快速判断至关重要.【命题方向】常考题型:例:下列图形中,()的对称轴最多.A、正方形B、等边三角形C、等腰三角形D、圆形分析:依据轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线就是其对称轴,从而可以作出正确选择.解:(1)因为正方形沿两组对边的中线及其对角线对折,对折后的两部分都能完全重合,则正方形是轴对称图形,两组对边的中线及其对角线就是其对称轴,所以正方形有4条对称轴;(2)因为等边三角形分别沿三条边的中线所在的直线对折,对折后的两部分都能完全重合,则等边三角形是轴对称图形,三条边的中线所在的直线就是对称轴,所以等边三角形有3条对称轴;(3)因为等腰梯形沿上底与下底的中点的连线对折,对折后的两部分都能完全重合,则等腰梯形是轴对称图形,上底与下底的中点的连线就是其对称轴,所以等腰梯形有1条对称轴;(4)因为圆沿任意一条直径所在的直线对折,对折后的两部分都能完全重合,则圆是轴对称图形,任意一条直径所在的直线就是圆的对称轴,所以说圆有无数条对称轴.所以说圆的对称轴最多.故选:D.点评:解答此题的主要依据是:轴对称图形的概念及特征.例2:下列图形中,对称轴条数最多的是()分析:先找出对称轴,从而得出对称轴最多的图形.解:A:根据它的组合特点,它有4条对称轴;B:这是一个正八边形,有8条对称轴;C:这个组合图形有3条对称轴;D:这个图形有5条对称轴;故选:B.点评:此题考查了轴对称图形的定义,要求学生能够正确找出轴对称图形的对称轴.5.轴对称图形的辨识【知识点归纳】1.轴对称图形的概念:如果一个图形沿着一条直线对折,直线两边的图形能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.2.学过的图形中,线段、角、等腰三角形、等边三角形、长方形、正方形、等腰梯形、圆形、扇形都是轴对称图形,各自有不同数目的对称轴.【命题方向】常考题型:例:如图的交通标志中,轴对称图形有()A、4B、3C、2D、1分析:依据轴对称图形的定义即可作答.解:图①、③沿一条直线对折后,直线两旁的部分能够互相重合,所以图①、③是轴对称图形;图②、④无论沿哪一条直线对折后,直线两旁的部分都不能够互相重合,所以它们不是轴对称图形.如图的交通标志中,轴对称图形有2个.故选:C.点评:此题主要考查轴对称图形的定义.6.作轴对称图形【知识点归纳】1.如果一个图形沿着一条直线对折,直线两边的图形能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.2.学过的图形中,线段、角、等腰三角形、等边三角形、长方形、正方形、等腰梯形、圆形、扇形都是轴对称图形,各自有不同数目的对称轴.通过以上图形的组合就可以得到轴对称图形了.【命题方向】常考题型:例:(1)画出图A的另一半,使它成为一个轴对称图形.(2)把图B向右平移4格.(3)把图C绕O点顺时针旋转180°.分析:(1)根据轴对称图形的特征,对称点到对称轴的距离相等,对称点的连线垂直于对称轴,在对称轴的下边画出图形A的关键对称点,连结涂色即可.(2)根据平移的特征,把图形B的各点分别向右平移4格,再依次连结、涂色即可.(3)根据旋转图形的特征,图形C绕点O顺时针旋转180°,点O的位置不动,其余各部分均绕点O按相同的方向旋转相同的度数即可画出旋转后的图形.解:(1)画出图A的另一半,使它成为一个轴对称图形(下图).(2)把图B向右平移4格(下图).(3)把图C绕O点顺时针旋转180°(下图).点评:此题是考查作轴对称图形、作平移的图形、作旋转图形.关键是确定对称点(对应点)的位置.7.平移【知识点归纳】1.平移:把一个图形整体沿某一方向移动一定的距离,图形的这种移动,叫做平移.2.平移后图形的位置改变,形状、大小不变.【命题方向】常考题型:例:电梯上升是()现象.A、旋转B、平移C、翻折D、对称分析:平移是物体运动时,物体上任意两点间,从一点到另一点的方向与距离都不变的运动.电梯的升降是上下位置的平行移动所以是平移,据此解答判断.解:电梯的升降是上下位置的平行移动,所以电梯的升降是平移现象;故选:B.点评:本题主要考查平移的意义,在实际当中的运用.8.作平移后的图形【知识点归纳】1.确定平移后图形的基本要素有两个:平移方向、平移距离.2.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.【命题方向】常考题型:例:分别画出将向上平移3格、向右平移8格后得到的图形.分析:根据平移图形的特征,把平行四边形A的四个顶点分别向上平移3格,再首尾连结各点,即可得到平行四边形A向上平移3格的平行四边形B;同理,把平行四边形B的四个顶点分别向右平移8格,再首尾连结各点,即可得到平行四边形B向右平移8格的平行四边形C.解:作平移后的图形如下:点评:作平移后的图形关键是把对应点的位置画正确.。
五年级下册图形的运动知识点篇目一:五年级数学图形的运动重点知识点复习一、三种图形的运动——平移、旋转、翻折三种运动都不改变图形的大小和形状。
在运动前后的图形中,对应角和对应线段相等。
平移中,对应点的距离相等,并且就是图形的平移距离。
旋转中,对应点到旋转中心的距离相等。
翻折中,对应点到对称轴的距离相等。
二、三种图形——旋转对称图形、中心对称图形、轴对称图形都是指一个图形的性质。
旋转对称图形的最小旋转角和旋转角的区别。
中心对称图形是旋转对称图形中的一种特殊情况。
三、几种特殊图形①正多边形:正多边形都是旋转对称图形,最小旋转角是360/n偶数正多边形是中心对称图形,奇数边正多边形不是。
正多边形都是轴对称图形,对称轴条数就是边数。
②圆形是旋转对称图形,没有最小旋转角,有无数个旋转角。
圆形是中心对称图形。
圆形是轴对称图形,对称轴有无数条。
③角是轴对称图形,对称轴是角平分线所在直线。
④线段有两条对称轴,一条是其中垂线,另一条是线段所在的直线。
四、两种位置关系——中心对称和轴对称都是指两个图形的位置关系。
两个图形关于某个点(对称中心)中心对称。
两个图形关于某条直线(对称轴)轴对称。
五、作图辅助线用虚线,其余用实线。
中心对称图形或两图形中心对称,任何一组对称点的中点就是对称中心。
或者任意两组对称点的交点也是对称中心。
轴对称图形或两图形轴对称,任何一组对称点的中垂线就是对称轴。
或者任意两组对称点连线段的中点的连线就是对称轴。
篇目二:一、认识图形的旋转,探索图形旋转的特征和性质,体会图形旋转的基本要素。
1.旋转的含义:物体绕某一点或轴运动,这种运动现象称为旋转。
2.旋转的特征:旋转中心的位置不变,所有边旋转的方向相同,旋转的角度也相同;旋转后图形的形状、大小都没有发生变化,只是位置变了。
3.把与钟表上指针的旋转方向相同的方向称为顺时针方向,与钟表上指针的方向相反的方向称为逆时针方向。
温馨提示:把钟面看作一个圆周,是360度。
(完整版)新人教版五年级数学下册各单元知识点总结(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)新人教版五年级数学下册各单元知识点总结(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)新人教版五年级数学下册各单元知识点总结(word版可编辑修改)的全部内容。
人教版五年级数学下册知识点班级: 姓名:第一单元观察物体1、由几个大小相同的小正方体摆成的立体图形,从同一个方向观察,看到的图形可能是相同的,也可能是不同的。
根据一个方向看到的图形摆立体图形,有多种摆法。
2、从同一个方向观察物体最多只能看到三个面。
几何视图一般是根据三个方向观察到的形状进行绘制。
3、根据两个方向观察到的形状能确定所用小正方体的个数。
根据三个方向观察到的形状摆小正方体结果只有一种。
第二单元因数和倍数1、在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。
因数和倍数是相互依存的,不能单独存在。
)2、注意:为了方便,在研究因数和倍数时候,我们所说的数指的是自然数(一般不包括0)3、找因数的方法:①乘法②除法; 找倍数的方法:逐次乘自然数。
4、①一个数的最小因数是1,最大因数是它本身.一个数的最小倍数是它本身,没有最大的倍数。
②一个数的因数的个数是有限的,一个数的倍数的个数是无限的。
一个数的最大因数和最小倍数是相等的都是它本身.③1是所有非0自然数的因数。
也是任一自然数(0除外)的最小因数。
④一个数的因数至少有1个,这个数是1。
⑤一个数的因数都小于等于他本身,一个数的倍数都大于等于他本身。
《图形的运动(三)》知识点归纳
1、物体绕着一个固定点转动,叫做旋转。
这个固定点叫做旋转中心。
2、旋转的方向有两种:顺时针方向、逆时针方向。
3、如果物体经过旋转之后,原来图形上的一个点变成了另一个点,那么这两个点叫做旋转的对应点。
4、对应点到旋转中心连线的夹角叫做旋转角。
5、旋转三要素:旋转中心、旋转方向、旋转角。
6、旋转的性质:
①旋转前后,图形的形状、大小不会发生改变,只是位置发生了改变。
因此对应线段相等,对应角也相等。
②图形的旋转,意味着这个图形中的所有点都绕着旋转中心旋转相同的角度,因此旋转角相等。
③旋转前后,对应点到旋转中心的距离相等。
7、图形旋转的画法:
步骤①:用虚线画出关键点与旋转中心所成的线段。
通常选取图形的顶点为关键点。
步骤②:根据旋转方向,用虚线画出这条线段的垂线。
步骤③:量取旋转中心到关键点的距离,在刚才所作的垂线上,以旋转中心为起点,截取该距离的线段,则这条线段的终点就是关键点的对应点。
步骤④:每个关键点都按以上方法确定出它们的对应点。
步骤⑤:根据对应点画出旋转后的图形。
如果是图形是多边形,则把这些对应点依次首尾连接就为所求。
8、图形变换的基本方式有3种,分别是:轴对称、平移、旋转。
五年级数学下册《图形的运动》知识点
归纳
1、旋转的含义:物体绕着一个点或轴转动,这种运动现象称为旋转。
2、旋转的三要素:旋转点(或旋转中心)、旋转方向和旋转角度。
3、旋转的特征:图形旋转前后,形状和大小都没有发生变化,只是位置改变。
4、旋转的性质:图形绕某点顺时针(或逆时针)旋转一定的角度,图中的对应点和对应线段也绕这个顺时针(或逆时针)旋转相同的角度,对应点到旋转中心的距离相等,对应线段和对应角都分别相等。
、在方格纸上画简单图形旋转90度的方法:
(1)找出原图形的关键点,根据旋转点和旋转方向,在线段的某一侧借助三角尺作垂线;从旋转点开始,在所作的垂线上量出与原线段相等的长度,并标出对应点(3)顺次连接所画出的对应点,就得到了旋转后的图形。
6、利用七巧板,通过把每块板平移或旋转可以拼出一些简单而美丽的图案。
运用平移时,要确定平移的格数和方向;运用旋转时,要确定旋转点、旋转方向和旋转角度。