植物蛋白酶抑制剂及其在抗虫植物基因工程中的应用
- 格式:pdf
- 大小:115.02 KB
- 文档页数:3
转基因抗虫棉的研究进展摘要:综述了转基因抗虫棉的研究进展,包括抗虫基因的研究、载体构建技术的研究、转化技术的研究及存在的问题等,并展望了转基因抗虫棉未来发展前景。
关键词:转基因抗虫棉花研究进展引言棉花生长周期长、虫害多,造成的损失非常严重。
据统计,在转基因抗虫棉商品化之前,全球每年用于防治棉花虫害的费用高达20亿美元,约占所有农作物防虫费用的四分之一。
[1]传统的化学农药防治棉铃虫不仅费用高,且已引发了棉虫的抗药性,同时化学杀虫剂的过量使用也带来了环境污染的问题,而转基因植物所产生的杀虫蛋白主要是通过抑制害虫消化等生理功能而达到抗虫的目的。
与施药防治棉田害虫相比,转基因技术具有较多优势:不会在土壤和地下水中造成残留;不会被雨水冲刷流失;对非靶标生物无毒性;保护作用无盲区;减少农药及用工投入[2]等。
雪花凝集素(Gulanthus nivalis agglutinin gene,GNA)是第一个转入重要作物、并对刺吸式口器害虫有抗性的基因,转GNA的水稻可降低害虫的存活率,阻止害虫的发育[3]。
另外烟草阴离子过氧化物酶[4]、昆虫几丁质酶基因[5]也被用于抗虫基因工程的研究。
迄今为止在棉花抗虫基因工程研究领域,最成功的例子是苏云金芽孢杆菌Bt杀虫基因的应用,其次是蛋白酶抑制剂基因。
另外,凝集素、α-淀粉酶抑制剂、胆固醇氧化酶等转基因抗虫植物的研究也取得了进展,所以利用基因工程技术培育转基因抗虫棉受到了各国的高度重视。
自1996年商品化种植转基因作物开始,全球转基因植物的种植面积已由1996年的170万hm2猛增到2008年的1.25亿hm2,增长了73倍,2008年全球市场价值已达75亿美元,约占全球商业种子市场的22%,其市场价值优势明显,转基因产业得到了蓬勃发展,尤其在发展中国家。
印度Bt棉2002年引入,连年种植面积快速增加,至2008年达760万hm2,产量翻番,曾经是全球棉花产量很低的国家,现已成为棉花出口国。
现代农业基因工程在作物抗虫育种中的应用研究
苏云金杆菌毒素)在作
转雪花莲凝集素基因的植物都表现出对
相关昆虫实验研究证
基因的水稻能够显著缩减稻褐飞虱
的生存率,并使昆虫发育进程在一定程度上有所延
反而会促进害
因此这要求植物中凝集素应具有较高
是一类在植物中十分
小麦等作物中均被发现。
αAI
真菌淀粉糖苷酶相互结合,对其
促使昆虫难以对食物中淀粉成分
从而影响昆虫对营养物质的吸收,以此来
然而这类基因对细菌、高等植物的
表1样品中二氧化硫含量
(rep )=
S(S)
(n √×S ⎺)= 1.1(6√×36)
=0.0125
2.3合成标准不确定度
U r (S)=
μ2r (V A )+μ2r (V B )+μ2r (M W )+μ2r (V I 2
)+μ2
r (rep)
√
=0.0644苏云金杆菌毒素抗虫基因导入栽培棉花、
地弥补了用根癌农杆菌介导转化率不足,
难度大的不足。
结束语
近年来,在作物抗虫育种方面我国已获取了显著
的研究成效,而借助基因工程获取抗虫性强、
宽等的转基因作物势必成为作物抗虫育种的一个重要研究方向,相关人员务必要不断钻研研究、验,强化基因工程在作物抗虫育种中的有效应用,
极促进该项事业的有序健康发展。
参考文献:
[1]吴娜拉胡,郎志宏及在芸薹属作物上的应用1-7.
[2]徐鸿林,翟红利(上接第71页)
现代农业
. All Rights Reserved.。
抗虫转基因植物。
全球每年农作物因虫害造成的损失约占总产量的13%,而目前对农作物害虫的防治主要依赖于化学农药,它不仅造成了严重的环境污染,而且给人类的健康带来巨大的威胁。
基因工程技术的发展为培育抗虫作物、增加作物产量提供了广阔的前景。
目前已有多种途径获得抗虫转基因植物,包括利用苏云金杆菌的δ-内毒素基因、蛋白酶抑制剂基因、外源凝集素基因、α-淀粉酶抑制剂基因和几丁质酶基因等转化植物细胞获得抗虫转基因植物。
蛋白酶抑制剂转基因植物。
蛋白酶抑制剂发现于1938年,其成分为分子质量6.460kDa 的多肽或蛋白质,它广泛存在于植物中。
蛋白酶抑制剂能与昆虫消化道的蛋白消化酶结合,形成酶—抑制剂复合物,从而阻断或降低蛋白酶对外源蛋白的水解作用,导致外源蛋白不能被正常消化。
同时酶抑制剂复合物也能刺激昆虫分泌过量的消化酶,引起昆虫厌食反应。
此外,蛋白酶分子还能通过消化道进入血液和淋巴系统,干扰昆虫的蜕皮过程和免疫功能,影响昆虫的正常发育。
植物中存在丝氨酸蛋白酶抑制剂、巯基蛋白酶抑制剂和金属蛋白酶抑制剂等,其中对丝氨酸蛋白酶抑制剂的研究最多。
丝氨酸蛋白酶抑制剂富含于植物的种子和储藏组织中,包括6个家族,其中豇豆胰蛋白酶抑制剂(CpTI)和马铃薯蛋白抑制剂II 的抗虫效果较为理想。
巯基蛋白酶抑制剂对以巯基蛋白酶消化植物蛋白的昆虫具有特异的抗性。
由于蛋白酶抑制剂对哺乳动物是无害的,早在1987年科学家就将CpTI的cDNA转移到烟草等植物中。
由于昆虫是一种相对高等的生物,对环境表现一定的适应性,因此在蛋白酶抑制剂转基因植物中出现的不足之处是昆虫对蛋白酶抑制剂表现一定的适应性,能被诱导合成对蛋白酶抑制剂不敏感的消化酶,或通过过量表达现有的消化酶来弥补被抑制的消化酶。
解决该缺陷的方法是将两种不同的蛋白酶抑制剂同时转化到植物中,或对蛋白酶抑制剂进行改造以提高抑制剂与靶蛋白的亲和力。
目前已有十多种蛋白酶抑制剂基因被转移到植物中,其中大部分工作集中于豆科、茄科和禾本科的丝氨酸蛋白酶抑制剂基因的转移。
昆虫对植物消化酶抑制蛋白的研究及应用昆虫是生物界中数量最多的一类生物,他们以植物为食物,与植物之间形成了一种相互作用的生态关系。
植物为了保护自己不被昆虫吃掉,演化出了一些防御机制,其中包含了抑制昆虫消化酶的蛋白质,这些蛋白质被称为植物消化酶抑制蛋白(Plant Protease Inhibitor, PPI)。
而昆虫也不甘示弱,演化出了一些能够解除植物消化酶抑制蛋白的酶,从而达到能够吃到植物的目的。
这些酶被称为PPI酶。
PPI和PPI酶之间的相互作用一直是昆虫和植物相互作用关系研究的重要课题之一。
在过去的几十年间,学者们对这两类生物分别进行了大量的研究,揭示了大量的相关反应机制和生理功能。
例如,PPI酶能够与昆虫的肠道环境协同作用,从而消化植物蛋白。
而在植物方面,PPI蛋白由于具有独特的抗生理蛋白特性,因此被广泛应用于保护作物免受昆虫害虫的侵害。
除了上述基础研究外,还有一些关于PPI和PPI酶的应用研究值得我们关注。
例如,研究人员发现PPI酶在对抗植物消化酶抑制蛋白的过程中,会释放大量的氮气,从而产生一种类似于人工肥料的效果。
因为植物对氮素的吸收是生长过程中的一个瓶颈,因此这种现象能够为农业生产带来巨大的贡献。
基于这一点,关于利用PPI酶生产高效植物肥料的研究也开始逐渐升温。
此外,PPI酶还被广泛应用于新药的研发,这是由于PPI酶具有一定的药物代谢和分解能力,在一些新型药物的研发过程中有着广泛的应用。
研究人员通过对PPI酶的分离和提纯,可以较好地模拟人体内消化代谢过程,从而帮助新药的研发和评估。
总之,昆虫对植物消化酶抑制蛋白的研究及应用,不仅为我们揭示了昆虫与植物之间相互作用关系的本质,同时也带来了很多实际的应用价值。
在未来,我们有理由相信,这一领域的研究将会不断产生新的突破,为人类带来更多福祉。
生物技术在植物保护中的应用作者:王嘉启来源:《科技创新导报》2012年第13期摘要:随着科学技术的快速更新,生物技术已经被广泛地应用于植物保护方面。
21世纪,生物技术将成为植物保护的主流技术之一,生物技术的运用极大地促进了植物的保护。
生物技术的发展,对植物保护产生了革命性的影响关键词:生物技术植物保护基因工程中图分类号:S188 文献标识码:A 文章编号:1674-098X(2012)05(a)-0143-01生物技术(Biotechnology)是在20世纪70年代在分子生物学、细胞生物学等学科的基础上发展起来的一门综合性的科学技术,主要包括转基因育种技术(基因工程)、组织培养技术(细胞工程)、微生物发酵技术(发酵工程)等。
生物技术的运用主要体现在:对植物病毒和病源的判别和诊断,促进了植物病毒治理过程;选育抗病虫种苗,免除了病虫的危害;研制基因工程农药,有效的避免了化学农药产生的不良后果;培育抗病虫和抗除草剂植物。
1植物基因工程技术1.1 植物基因工程技术概况植物基因工程技术是利用生物或物理化学的手段将目的基因导入植物细胞,以获得人们需要的转基因植物的一项基因工程技术。
植物的遗传转化目前可分为间接转移和直接转移两类,通过染色体DNA的Southern分析、多聚酶链式反应技术等方法可检测基因转移是否成功。
1.1.1 间接转移法以某种菌或植物病毒为载体,把目的基因插入载体,通过菌或病毒感染植物,使目的基因整合到受体植物的DNA上复制和高效表达。
1.1.2 直接转移法利用植物细胞的生物学特性,通过基因枪法、脂质体介导法、多聚物介导法等物理和化学技术将目的基因直接转移到受体植物胞内。
1.2 植物抗逆基因工程1983年,转基因植物(烟草和马铃薯)首次诞生。
不到几年时间,科学家们就培育出了数十种具有抗虫、抗病毒和抗除草剂的农作物新品种。
一些重要农作物品种,并在生产上推广用,如棉花、烟草、大豆、花生、油菜等都包括在内。
抗虫基因的结构、功能和应用摘要:人类和昆虫自古就开始为了绿色植物争斗,而当人类发现了抗虫基因,人类就占据了上风,本文主要介绍了抗虫基因的几个种类,及其中一些的结构功能,了解抗虫基因的应用。
关键词:抗虫基因;BT基因;结构;功能;应用昆虫有100多万种,在地球上有4亿年历史了,因为抵抗逆境的能力强,所以一直繁衍到现在;又因为繁殖能力强,所以即便遭到毁灭性杀伤,残余势力很快就会恢复原来的种群。
以野生植物为食的昆虫有几十万种,它们主要受环境抑制;以栽培植物为食的昆虫有几万种,它们主要受人类抑制。
与人类争食,要么你死,要么我活。
人类与昆虫的战争,始于亘古,延至未来,永远不会停息,小战争司空见惯,大战争骇人听闻。
还记得民国三十一年(1942年)河南的蝗灾吗?吃光了一切绿色植物;还记得唐玄宗的宰相姚崇吗?破除迷信,力主灭蝗,虫口夺粮,传颂千年,可是依然歉收。
只有在化学农药出现以后,人类才取得胜利。
可是,胜利是短暂的。
一种新农药用不了几年,昆虫就会产生抗药性。
于是,再研制新农药,过不了几年,昆虫又产生抗药性。
如此恶性循环,环境污染越来越重。
而且,新农药也不是那么容易研制的,其研制难度不亚于人类吃的药。
美国科技水平最高,研制一种新农药约需10年,花费约需10亿美元。
幸亏分子遗传学发展到了转基因水平,农药的污染才得以大大减轻。
然而,昆虫对转基因抗虫作物也会产生抗性。
如果抗虫基因只有一种,人类算是没辙了。
所幸的是,科学家们已经发现了多种抗虫基因。
1.抗虫基因1.1 BT基因BT基因即是苏云金芽胞杆菌(Bacillus thuringiensis,简称Bt)基因,因其杀虫效果好、安全、高效等优点而成为应用最为广泛的杀虫微生物。
Bt与其它芽胞杆菌相比,一个显著特点就是不仅能够形成芽胞,同时还能产生由杀虫蛋白组成的晶体。
苏云金芽胞杆菌可以分泌一种毒蛋白,对鳞翅目鞘翅目昆虫(比如小菜蛾)有很强的杀伤作用。
人类很早就研究利用BT菌来杀灭害虫,总共有100多年历史。
植物病虫草害防治中生物技术的应用作者:陈兴丹来源:《南方农业·中旬》2016年第09期摘要我国属于农业大国,促进农业经济的发展对我国社会稳定和经济发展具有深远影响。
因此,必须保证植物的顺利健康生长,为我国农业经济的腾飞发展奠定良好的基础。
现阶段,病虫害已经成为严重影响植物生长的因素,而生物技术能够有效起到提升植物抗虫害性能的作用,所以在植物病虫草害的防治过程中,有必要推广生物技术。
通过对植物病虫草害防治中生物技术的应用进行研究分析,希望能够为相关人员提供一定的理论借鉴,有效提升植物抗病虫草害性能。
关键词病虫害;生物技术;应用分析中图分类号:S43;S45 文献标志码:B DOI:10.19415/ki.1673-890x.2016.26.023随着生物技术的不断发展和完善,在植物病虫草害的防治阶段,利用生物技术取得了较为理想的成效,能够有效起到良好的植物病虫害防治作用。
主要是在生物中存在抑制植物病虫害生存的微生物,极大程度地降低病虫害对植物带来的危害,且生物技术不会对环境造成损害,因此,生物技术广泛受到研究人员的欢迎。
1 生物技术在植物病害防治中的主要应用1.1 基因工程的应用在生物技术的研究过程中,基因工程技术具有特殊的意义,能够在植物病虫害的防止工作中,起到有效的作用,具体表现在以下几点。
第一,CP基因。
CP基因是一种蛋白基因,主要存在于病毒外壳,CP基因主要是起到一种诱导作用,通过植物对病毒免疫性能进行试探,有利于使植物抵御病虫害的性能提升。
我国很多区域的植物病虫害防止工作,已经普遍使用CP 基因技术,并取得了良好的成效,如在马铃薯C病毒、烟草花叶病毒等方面,利用CP基因,可以有效提升植物的免疫力,防止其受到病虫害的侵袭,并且此功能具有一定的遗传性。
通过对CP基因的不断研究,且根据相关研究数据发现,部分研究人员已经开展对CP基因的进一步研究,将其他具有抗性的基因同其进行融合处理,同时将此种基因移植到一个植物中,进而提升植物的抗病毒能力,保证植物能够健康顺利的生长[1]。
植物抗病毒病基因工程的研究现状
温孚江
【期刊名称】《山东农业大学学报:自然科学版》
【年(卷),期】1995(026)001
【摘要】本文简要讨论了植物正链RNA病毒的侵染循环、分子生物学以及据此
所设计的抗病毒基因工程的策略和研究现状。
这些策略包括利用病毒衣壳蛋白基因、卫星RNA基因、病毒复制酶基因、反义链RNA以及核酸裂解酶基因等为外源基因所进行的植物抗病毒基因工程。
并对各种策略在农业生产上的应用前景进行了讨论。
【总页数】5页(P126-130)
【作者】温孚江
【作者单位】无
【正文语种】中文
【中图分类】S432.4
【相关文献】
1.植物蛋白酶抑制剂抗虫基因工程研究现状与对策研究 [J], 曹鑫;孙文婷;邹世慧;
胡雨晴;陈雪;眭顺照
2.植物抗病毒病基因工程策略 [J], 杨竹平;邓晓梅
3.抗除草剂植物的基因工程研究现状 [J], 张化霜
4.植物蛋白酶抑制剂抗虫基因工程研究现状与对策研究 [J], 曹鑫;孙文婷;邹世慧;
胡雨晴;陈雪;眭顺照
5.植物抗病毒病基因工程研究与展望 [J], 叶亚新;顾永明
因版权原因,仅展示原文概要,查看原文内容请购买。