圆柱与圆锥整理复习12年3月
- 格式:ppt
- 大小:1016.50 KB
- 文档页数:32
完整版)圆柱体和圆锥体知识点复习整理圆柱体和圆锥体知识点复整理
本文档旨在提供关于圆柱体和圆锥体的知识点复整理。
以下是相关的知识点介绍:
圆柱体(Cylinder)
圆柱体是一个由两个平行的圆面和一个定位于两圆面之间的侧面所组成的几何体。
以下是一些圆柱体的重要特征:
底面积:圆柱体底面的面积可以通过圆的面积公式计算。
圆的面积公式为:A = πr²,其中 r 是圆的半径。
侧面积:圆柱体的侧面积可以通过将圆的周长乘以圆柱体的高度来计算。
侧面积公式为:A = 2πrh,其中 h 是圆柱体的高度,r 是圆的半径。
总表面积:圆柱体的总表面积可通过将底面积和侧面积相加来计算。
总表面积公式为:A = 2πr² + 2πrh。
圆锥体(Cone)
圆锥体是一个由一个圆形底面和一个定位于底面圆心的侧面所组成的几何体。
以下是一些圆锥体的重要特征:
底面积:圆锥体底面的面积可以通过圆的面积公式计算。
圆的面积公式为:A = πr²,其中 r 是底面圆的半径。
侧面积:圆锥体的侧面积可以通过将圆的周长乘以圆锥体的斜高来计算。
侧面积公式为:A = πrl,其中 l 是圆锥体的斜高,r 是底面圆的半径。
总表面积:圆锥体的总表面积可通过将底面积和侧面积相加来计算。
总表面积公式为:A = πr² + πrl。
以上是关于圆柱体和圆锥体的知识点复习整理。
希望对您有所帮助!。
人教版数学六年级下册《圆柱圆锥整理和复习》教案教案一. 教材分析《圆柱圆锥整理和复习》是人教版数学六年级下册的一章内容。
本章主要让学生掌握圆柱和圆锥的基本概念、特性、计算方法及其应用。
通过本章的学习,学生能够进一步理解和掌握圆柱和圆锥的相关知识,提高解决问题的能力。
二. 学情分析六年级的学生已经具备了一定的空间想象能力和逻辑思维能力,对圆柱和圆锥有一定的了解。
但部分学生可能对一些概念和计算方法的理解不够深入,需要在教学中加以引导和巩固。
三. 教学目标1.知识与技能:理解和掌握圆柱和圆锥的基本概念、特性、计算方法及其应用。
2.过程与方法:通过观察、操作、思考、交流等数学活动,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和克服困难的勇气。
四. 教学重难点1.重点:圆柱和圆锥的基本概念、特性、计算方法及其应用。
2.难点:对一些概念和计算方法的理解和运用。
五. 教学方法采用问题驱动法、合作学习法、案例分析法等教学方法,引导学生主动探究、合作交流,提高学生的数学素养。
六. 教学准备1.教具准备:圆柱和圆锥模型、多媒体课件等。
2.学具准备:学生自带圆柱和圆锥模型、练习本等。
七. 教学过程导入(5分钟)教师通过提问方式引导学生回顾圆柱和圆锥的基本概念、特性、计算方法,为新课的学习做好铺垫。
呈现(10分钟)1.教师通过展示圆柱和圆锥的模型,引导学生观察和描述其特征。
2.教师利用多媒体课件,展示圆柱和圆锥的计算方法及其应用。
操练(10分钟)1.教师给出几个有关圆柱和圆锥的问题,让学生独立解答。
2.学生互相交流解题过程,教师进行点评和指导。
巩固(10分钟)1.教师学生进行小组讨论,探讨如何运用圆柱和圆锥的知识解决实际问题。
2.学生代表分享讨论成果,教师进行点评和指导。
拓展(10分钟)1.教师提出一些有关圆柱和圆锥的拓展问题,引导学生进行思考和探究。
2.学生互相交流解题过程,教师进行点评和指导。
六年级下册数学教案《第3单元圆柱与圆锥整理和复习》人教版一. 教材分析本节课为人教版六年级下册数学第3单元“圆柱与圆锥”的整理和复习。
本单元的主要内容是圆柱和圆锥的特征、体积计算以及应用。
教材通过复习和整理,使学生对圆柱和圆锥的概念、性质、计算方法等有一个清晰、系统的认识,提高学生的空间想象能力和解决问题的能力。
二. 学情分析六年级的学生已经学习了圆柱和圆锥的基本知识,对圆柱和圆锥的特征、体积计算有一定的了解。
但部分学生对一些概念和公式的理解不够深入,应用能力有待提高。
此外,学生的空间想象能力和解决问题的能力参差不齐,需要在教学中加以关注和培养。
三. 教学目标1.知识与技能:通过对圆柱和圆锥的复习,使学生掌握圆柱和圆锥的基本概念、性质和体积计算方法,提高空间想象能力和解决问题的能力。
2.过程与方法:通过自主学习、合作交流、探究发现等方法,培养学生的动手操作能力和思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的创新意识和团队协作精神,使学生感受到数学与生活的密切联系。
四. 教学重难点1.重点:圆柱和圆锥的基本概念、性质和体积计算方法的掌握。
2.难点:对圆柱和圆锥体积公式的理解与应用,以及空间想象能力的培养。
五. 教学方法1.自主学习:引导学生独立思考,自主探究,发现和总结圆柱和圆锥的特点和规律。
2.合作交流:鼓励学生与他人分享学习心得,互相讨论,共同解决问题。
3.探究发现:引导学生动手操作,观察分析,发现圆柱和圆锥的体积计算方法。
4.启发引导:教师通过提问、设疑,引导学生思考,激发学生的学习兴趣。
六. 教学准备1.教具:圆柱和圆锥模型、图片、课件等。
2.学具:学生每人准备一个圆柱和圆锥模型,以及相关计算工具。
七. 教学过程1.导入(5分钟)利用课件展示生活中的圆柱和圆锥物体,引导学生回顾已学的知识,为新课的复习打下基础。
2.呈现(10分钟)教师通过讲解和示范,呈现圆柱和圆锥的基本概念、性质和体积计算方法。
【典型例题】【例1】 如右图所示,圆锥形容器中装有5升水,水面高度正好是圆锥高度的一半,这个容器还能装多少升水?分析与解:本题的关键是要找出容器上半部分的体积与下半部分的关系。
设圆锥容器的底面积半径为r ,则水面半径为2r 。
容器的容积为213r h π,容器中水的体积为2211()()32224r h r h ππ=。
解:22118324r h r h ππ÷= 这表明容器可以装8份5升水,已经装了1份,还能装水5×(8-1)=35(升)。
【例2】 比较甲、乙两只容器中,哪一只容器盛的水多,多的是少的几倍?(单位:厘米)(1)容器如图1所示;(2)甲、乙两容器相同(如图2),甲容器中水的高度是锥高的13,乙容器中水的高度是圆锥高的23。
分析与解(1)要想知道甲、乙两只容器哪一只盛的水多,我们只需依据条件分别计算一下甲、乙两只容器的容积各是多少,即可做出比较。
通过计算可知,乙容器装的水多,乙容器是甲容器容积的(4000π÷2000π=) 2倍。
(2)我们先分别将两容器内水的体积进行计算。
设圆锥的底面半径为r,高为h,则甲容器及乙容器中的水面半径均为23r,甲容器中无水部分椎体高位23h,而乙容器中有水部分椎体的高为23h,分别用V 甲、V乙表示两容器中水的体积,则有:222112219=-=333381V r h r h r hπππ甲()221228==33381V r h r hππ乙()22198==8181V V r h r hππ甲乙19:():()8由此可知,甲容器中的水多,甲容器中的水是乙容器中的水的198倍。
【例3】将一个棱长是20厘米的正方体,旋成一个圆柱体,并且使圆柱体的体积最大,求此时旋去的那部分体积。
分析与解要想知道旋去的那部分体积,我们应首先认识清楚,怎样才能使旋成的圆柱体体积最大?通过分析可以发现,当我们所旋成的圆柱体的底面直径和高均为20厘米时,圆柱的体积最大.即如图3去旋.此时,我们只需计算出正方体的体积及所得到的圆柱体的体积,其差就是所旋去部分的体积。
第一部分:面的旋转【重点知识】1、长方形以长或宽为轴旋转,得到圆柱。
补充:以谁为轴,谁就是高2、直角三角形以直角边为轴旋转,得到圆锥。
补充:以谁为轴,谁就是高;如长直角边为轴,则长直角边为高,短直角边为底面半径3、截面(1)圆柱的截面:圆形、长方形、正方形、平行四边形、梯形、椭圆、拱形。
(2)圆锥的截面:圆形、三角形、曲面(3)切一刀,增加2个面,切2刀,增加4个面,以此类推。
补充:圆柱切成多个小圆柱,切一刀,变为2个小圆柱,切2刀,变为3个小圆柱,以此类推。
4、展开图(1)圆柱的展开图:长方形、正方形、平行四边形①展开图为长方形:长方形的长=圆柱底面周长,长方形的宽=圆柱的高②展开图为正方形:圆柱的底面周长=圆柱的高=正方形的边长(2)圆锥的展开图:扇形【考试题精选】1、把一根圆柱体木料锯成三段,增加的底面有________个.()A.2B.3C.42、用一张长50厘米,宽20厘米的纸,以两种不同的方法围成一个圆柱,那么围成的圆柱()A.侧面积和高都相等B.高一定相等C.侧面积一定相等D.侧面积和高都不相等3、货架上正好装满了底面直径为32cm,高为60cm的油桶,这个货架的长至少________cm,高至少为________cm,宽为________cm.4、用塑料绳捆扎一个圆柱形的蛋糕盒(如图),打结处正好是底面圆心,打结用去绳长15厘米.扎这个盒子至少用去塑料绳多少厘米?5、一个底面半径是4cm的圆锥,从顶点沿着高将它切成两部分,表面积增加了48cm2。
这个圆锥的体积是多少立方厘米?6、一个圆锥的底面周长是15.7厘米,高是3厘米.从圆锥的顶点沿着高将它切成两半后,表面积之和比原圆锥的表面积增加了多少平方厘米?第二部分:圆柱的表面积【重点知识】1、公式(3个)(1)底面积公式:3.14×r×r(2)侧面积公式:3.14×r×2×h (不要改变字母和数字的顺序)(3)表面积公式:(3.14×r×r)×2 + 3.14×r×2×h补充:凡是有周长、直径,不管题目求什么,第一时间求出半径。