配套K12(江苏专用)2018-2019学年高中数学 第三章 导数及其应用 3.2 导数的运算 3.
- 格式:doc
- 大小:159.00 KB
- 文档页数:7
3.4 导数在实际生活中的应用学习目标 1.了解导数在解决实际问题中的作用.2.掌握利用导数解决简单的实际生活中的优化问题.知识点生活中的优化问题1.生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为________________.2.利用导数解决优化问题的实质是求函数最值.3.解决优化问题的基本思路:上述解决优化问题的过程是一个典型的______________过程.类型一几何中的最值问题命题角度1 平面几何中的最值问题例1 某市在市内主干道北京路一侧修建圆形休闲广场.如图,圆形广场的圆心为O,半径为100 m,并与北京路一边所在直线l相切于点M.点A为上半圆弧上一点,过点A作l的垂线,垂足为点B.市园林局计划在△ABM内进行绿化.设△ABM的面积为S(单位:m2),∠AON=θ(单位:弧度).(1)将S表示为θ的函数;(2)当绿化面积S最大时,试确定点A的位置,并求最大面积.反思与感悟平面图形中的最值问题一般涉及线段、三角形、四边形等图形,主要研究与面积相关的最值问题,一般将面积用变量表示出来后求导数,求极值,从而求最值.跟踪训练1 如图所示,在二次函数f(x)=4x-x2的图象与x轴所围成图形中有一个内接矩形ABCD,求这个矩形面积的最大值.命题角度2 立体几何中的最值问题例2 请你设计一个包装盒如图所示,ABCD是边长为60 cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E,F在AB上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x cm.(1)若广告商要求包装盒侧面积S最大,则x应取何值?(2)若广告商要求包装盒容积V最大,则x应取何值?并求出此时包装盒的高与底面边长的比值.反思与感悟(1)立体几何中的最值问题往往涉及空间图形的表面积、体积,并在此基础上解决与实际相关的问题.(2)解决此类问题必须熟悉简单几何体的表面积与体积公式,如果已知图形是由简单几何体组合而成,则要分析其组合关系,将图形进行拆分或组合,以便简化求值过程.跟踪训练 2 周长为20 cm的矩形,绕一条边旋转成一个圆柱,则圆柱体积的最大值为________ cm3.类型二 实际生活中的最值问题 命题角度1 利润最大问题例3 已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内生产该品牌服装x 千件并全部销售完,每千件的销售收入为R (x )万元,且R (x )=⎩⎪⎨⎪⎧10.8-130x 2,0<x ≤10,108x -1 0003x 2,x >10.(1)求年利润W (万元)关于年产量x (千件)的函数解析式;(2)当年产量为多少千件时,该公司在这一品牌服装的生产中所获得的年利润最大,并求出最大值.反思与感悟 解决此类有关利润的实际应用题,应灵活运用题设条件,建立利润的函数关系,常见的基本等量关系有: (1)利润=收入-成本;(2)利润=每件产品的利润×销售件数.跟踪训练3 某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式y =ax -3+10(x -6)2,其中3<x <6,a 为常数.已知销售价格为5元/千克时,每日可售出该商品11千克. (1)求a 的值;(2)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.命题角度2 费用(用料)最省问题例4 为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm)满足关系:C (x )=k3x +5(0≤x ≤10),若不建隔热层,每年能源消耗费用为8万元.设f (x )为隔热层建造费用与20年的能源消耗费用之和.(1)求k 的值及f (x )的表达式;(2)隔热层修建多厚时,总费用f (x )达到最小,并求最小值.反思与感悟 (1)用料最省、成本最低问题是日常生活中常见的问题之一,解决这类问题要明确自变量的意义以及最值问题所研究的对象.正确书写函数表达式,准确求导,结合实际作答.(2)利用导数的方法解决实际问题,当在定义区间内只有一个点使f ′(x )=0时,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道在这个点取得最大(小)值. 跟踪训练4 某单位用2 160万元购得一块空地,计划在该块空地上建造一栋至少10层、每层2 000平方米的楼房.经测算,如果将楼房建x (x ≥10)层,则每平方米的平均建筑费用为(560+48x )元.为了使楼房每平方米的平均综合费用最少,该楼房应建多少层? (注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=购地总费用建筑总面积)1.在某城市的发展过程中,交通状况逐渐受到更多的关注,据有关统计数据显示,从上午6时到9时,车辆通过该市某一路段的用时y (分钟)与车辆进入该路段的时刻t 之间的关系可近似地用函数表示为y =-18t 3-34t 2+36t -6294,则在这段时间内,通过该路段用时最多的时刻是________时.2.用长为24 m 的钢筋做成一个长方体框架,若这个长方体框架的底面为正方形,则这个长方体体积的最大值为________ m 3.3.某公司生产一种产品, 固定成本为20 000元,每生产一单位的产品,成本增加100元,若总收入R 与年产量x 的关系是R (x )=⎩⎪⎨⎪⎧-x 3900+400x ,0≤x ≤390,90 090,x >390,则当总利润最大时,每年生产产品的单位数是________.4.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器,已知底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________元.5.某商品每件成本9元,售价30元,每星期卖出432件.如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低额x (单位:元,0≤x ≤21)的平方成正比.已知商品单价降低2元时,每星期多卖出24件. (1)将一个星期的商品销售利润表示成x 的函数; (2)如何定价才能使一个星期的商品销售利润最大?1.利用导数解决生活中优化问题的一般步骤(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系y=f(x);(2)求函数的导数f′(x),解方程f′(x)=0;(3)比较函数在区间端点和使f′(x)=0的点的数值的大小,最大(小)者为最大(小)值.2.正确理解题意,建立数学模型,利用导数求解是解答应用问题的主要思路.另外需要特别注意:(1)合理选择变量,正确写出函数解析式,给出函数定义域;(2)与实际问题相联系;(3)必要时注意分类讨论思想的应用.提醒:完成作业第3章§3.4答案精析知识梳理 知识点 1.优化问题 3.数学建模 题型探究例1 解 (1)BM =AO sin θ=100sin θ,AB =MO +AO cos θ=100+100cos θ,θ∈(0,π).则S =12MB ·AB =12×100sin θ×(100+100cos θ)=5 000(sin θ+sin θcos θ),θ∈(0,π). (2)S ′=5 000(2cos 2θ+cos θ-1) =5 000(2cos θ-1)(cos θ+1). 令S ′=0,得cos θ=12或cos θ=-1(舍去),此时θ=π3.当θ变化时,S ′,S 的变化情况如下表:所以,当θ=π3时,S 取得最大值为S max =3 750 3 m 2,此时AB =150 m ,即点A 到北京路一边l 的距离为150 m. 跟踪训练1 解 设点B 的坐标为(x,0),且0<x <2, ∵f (x )=4x -x 2图象的对称轴为x =2, ∴点C 的坐标为(4-x,0), ∴BC =4-2x ,BA =f (x )=4x -x 2.∴矩形面积为y =(4-2x )(4x -x 2)=16x -12x 2+2x 3,y ′=16-24x +6x 2=2(3x 2-12x +8),令y ′=0,解得x =2±233,∵0<x <2,∴x =2-233.∵当0<x <2-233时,y ′>0,函数单调递增;当2-233<x <2时,y ′<0,函数单调递减,∴当x =2-233时,矩形的面积有最大值329 3.例2 解 (1)由题意知,包装盒的底面边长为2x cm , 高为2(30-x )cm ,所以包装盒侧面积为S =42x ×2(30-x ) =8x (30-x )≤8×(x +30-x2)2=8×225,当且仅当x =30-x ,即x =15时,等号成立, 所以若广告商要求包装盒侧面积S 最大,则x =15. (2)包装盒容积V =2x 2·2(30-x ) =-22x 3+602x 2(0<x <30),所以V ′=-62x 2+1202x =-62x (x -20). 令V ′>0,得0<x <20; 令V ′<0,得20<x <30.所以当x =20时,包装盒容积V 取得最大值,此时包装盒的底面边长为20 2 cm ,高为10 2 cm ,包装盒的高与底面边长的比值为1∶2. 跟踪训练24 00027π 例3 解 (1)当0<x ≤10时,W =xR (x )-(10+2.7x )=8.1x -x 330-10,当x >10时,W =xR (x )-(10+2.7x )=98-1 0003x-2.7x ,所以W =⎩⎪⎨⎪⎧8.1x -x 330-10,0<x ≤10,98-1 0003x-2.7x ,x >10.(2)①当0<x ≤10时, 由W ′=8.1-x 210=0,得x =9.当x ∈(0,9)时,W ′>0;当x ∈(9,10]时,W ′<0. 所以当x =9时,W 取得最大值, 即W max =8.1×9-130×93-10=38.6.②当x >10时,W =98-(1 0003x +2.7x )≤98-21 0003x×2.7x =38, 当且仅当1 0003x =2.7x ,即x =1009时,W 取得最大值38.综合①②知,当x =9(千件)时,W 取得最大值为38.6万元.答 当年产量为9千件时,该公司在这一品牌服装的生产中所获得的年利润最大,最大利润为38.6万元.跟踪训练3 解 (1)因为当x =5时,y =11,所以a2+10=11,所以a =2.(2)由(1)可知,该商品每日的销售量y =2x -3+10(x -6)2, 所以商场每日销售该商品所获得的利润f (x )=(x -3)[2x -3+10(x -6)2]=2+10(x -3)(x -6)2,3<x <6.从而f ′(x )=10[(x -6)2+2(x -3)(x -6)] =30(x -4)(x -6).于是,当x 变化时,f ′(x ),f (x )的变化情况如下表:由上表可得,x =4是函数f (x )在区间(3,6)内的极大值点,也是最大值点. 所以当x =4时,函数f (x )取得最大值,且最大值为42.答 当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大. 例4 解 (1)由题设知,每年能源消耗费用为C (x )=k3x +5, 再由C (0)=8,得k =40, 因此C (x )=403x +5,而建造费用为C 1(x )=6x .最后得隔热层建造费用与20年的能源消耗费用之和为f (x )=20C (x )+C 1(x )=20×403x +5+6x =8003x +5+6x (0≤x ≤10). (2)f ′(x )=6- 2 400x +2. 令f ′(x )=0,即2 400x +2=6,解得x =5(x =-253舍去),当0<x <5时,f ′(x )<0; 当5<x <10时,f ′(x )>0,故x =5为f (x )的最小值点,对应的最小值为f (5)=6×5+80015+5=70.答 当隔热层修建5 cm 厚时,总费用达到最小值为70万元. 跟踪训练4 解 设该楼房每平方米的平均综合费用为f (x )元, 则f (x )=560+48x +2 160×10 0002 000x =560+48x +10 800x,x ≥10,f ′(x )=48-10 800x2, 令f ′(x )=0,得x =15.当x >15时,f ′(x )>0;当10≤x <15时,f ′(x )<0. 所以当x =15时,f (x )取得最小值, 即f (15)=2 000.答 为了使楼房每平方米的平均综合费用最少,该楼房应建15层.K12学习教育资源当堂训练1.8 2.8 3.300 4.1605.解(1)设商品降价x元,则多卖的商品数为kx2.若记商品在一个星期的获利为f(x),则有f(x)=(30-x-9)(432+kx2)=(21-x)(432+kx2).由已知条件,得24=k×22,于是有k=6.所以f(x)=-6x3+126x2-432x+9 072,x∈[0,21].(2)根据(1),f′(x)=-18x2+252x-432=-18(x-2)(x-12).当x变化时,f′(x),f(x)的变化情况如下表:故当x=12时,f(x)取得极大值.因为f(0)=9 072,f(12)=11 664.所以当定价为30-12=18(元)时,才能使一个星期的商品销售利润最大.K12学习教育资源。
3.2.2 函数的和、差、积、商的导数学习目标:1.掌握导数的和、差、积、商的四则运算法则.(重点) 2.会利用导数公式表及导数的四则运算法则求简单函数的导数.(难点)[自 主 预 习·探 新 知]函数和、差、积、商的求导法则⎣⎢⎡⎦⎥⎤f x g x ′=fx g x -f x g xg 2x(g (x )≠0)1.判断正误:(1)若f (x )=a 2+2ax +x 2,则f ′(a )=2a +2x .( )(2)运用法则求导时,不用考虑f ′(x ),g ′(x )是否存在.( ) (3)[f (x )·g (x )]′=f ′(x )g ′(x ).( )【解析】 (1)×.∵f ′(x )=2a +2x ,∴f ′(a )=2a +2a =4a . (2)×.运用法则求导时,要首先保证f ′(x )、g ′(x )存在. (3)×.[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ). 【答案】 (1)× (2)× (3)× 2.若f (x )=xx -2,则f ′(x )=________.【导学号:95902205】【解析】 f ′(x )=x -2-x x -2=-2x -2.【答案】 -2x -2[合 作 探 究·攻 重 难](1)y =x 4-3x 2-5x +6; (2)y =x ·tan x ;(3)y =(x +1)(x +2)(x +3); (4)y =x +1x -1. [思路探究] 仔细观察和分析各函数的结构规律,紧扣导数公式,不具备求导条件的可进行适当的恒等变形,再结合基本初等函数的导数公式,小心计算.【自主解答】 (1) y ′=(x 4-3x 2-5x +6)′=(x 4)′-(3x 2)′-(5x )′+6′=4x 3-6x -5.(2) y ′=(x ·tan x )′=⎝ ⎛⎭⎪⎫x sin x cos x ′=x sin x ′cos x -x sin x cos x ′cos 2x=sin x +x cos x cos x +x sin 2x cos 2x =sin x cos x +x cos 2x. (3)∵(x +1)(x +2)(x +3)=(x 2+3x +2)(x +3)=x 3+6x 2+11x +6, ∴y ′=[(x +1)(x +2)(x +3)]′=(x 3+6x 2+11x +6)′=3x 2+12x +11. (4)方法一:y ′=⎝ ⎛⎭⎪⎫x +1x -1′=x +1′x -1-x +1x -1′x -12=x -1-x +1x -12=-2x -12.方法二:y =x +1x -1=x -1+2x -1=1+2x -1y ′=⎝⎛⎭⎪⎫2x -1′=2′x -1-2x -1′x -12=-2x -12.[规律方法] 深刻理解和掌握导数的四则运算法则是解决求函数的和、差、积、商的导数问题的前提.在具体求导时,可结合给定函数本身的特点,先分清函数结构,再将各部分的导数求出,具体的求解策略主要有以下几种.(1)直接求导:利用导数运算法则直接求导数,此法适用于一些比较简单的函数的求导问题.(2)先化简后求导:在求导中,有些函数形式上很复杂,可以先进行化简再求导,以减少运算量.(3)先分离常数后求导:对于分式形式的函数,往往可利用分离常数的方法使分式的分子不含变量,从而达到简化求导过程的目的.1.求下列函数的导数: (1)f (x )=x 13+4x2;(2)f (x )=sin x -cos x ; (3)f (x )=cos xx;(4)f (x )=e xsin x .【导学号:95902206】(2)f ′(x )=(sin x -cos x )′=(sin x )′-(cos x )′ =cos x +sin x . (3)f ′(x )=⎝ ⎛⎭⎪⎫cos x x ′=xx -x ′cos xx 2=-x sin x -cos x x2=-sin x x-cos xx2. (4)f ′(x )=(e x sin x )′=(e x )′sin x +e x(sin x )′ =e xsin x +e xcos x =e x(sin x +cos x ).(1)曲线y =x (3ln ________. (2)曲线y =x2x -1在点(1,1)处的切线方程为________.[思路探究] 利用导数的几何意义求出切线的斜率,再求出切点坐标,代入直线的点斜式方程得切线方程.【自主解答】 (1)∵y ′=3ln x +4,∴k =3×ln 1+4=4,故切线方程为y -1=4(x -1),即4x -y -3=0.(2)由y ′=2x -1-2xx -2=-1x -2,所以k =-1,得切线方程为y -1=-(x -1), 即x +y -2=0.【答案】 (1)4x -y -3=0 (2)x +y -2=0[规律方法] 利用常见函数的导数与导数运算公式来简化曲线切线的求法.在点P x 0,y 0处的切线方程:y -y 0=f x 0x -x 0;过点Px 1,y 1的切线方程:设切点坐标为x 0,y 0,则切线方程为y -y 0=f x 0x -x 0,代入点P x 1,y 1求出x 0,即可得出切线方程求出的x 0的个数就是过这点的切线的条数[跟踪训练]2.若直线y =kx 是曲线y =x 3-x 2+x 的切线,则k 的值为__________.【解析】 设切点为(x 0,y 0),y ′=3x 2-2x +1,则k =3x 2-2x 0+1,又k =y 0x 0=x 30-x 20+x 0x 0=x 20-x 0+1,∴3x 20-2x 0+1=x 20-x 0+1,解得x 0=0或x 0=12,∴k =1或k =34.【答案】 1或34[探究问题]1.在曲线y =f (x )上有一点(x 0,f (x 0)),那么曲线在这一点处切线的斜率是什么? 【提示】 k =f ′(x 0).2.在探究1中,若还已知切线上另外一点(x 1,f (x 1)),那么该切线的斜率还可以如何表示?和探究1中得到的结论有什么关系?【提示】 k =f x 1-f x 0x 1-x 0,f ′(x 0)=f x 1-f x 0x 1-x 0.3.若已知曲线y =ax 2在点P 处的切线方程为y =2x -1,能否求出切点P 的坐标?能否求出曲线的方程?【提示】 设切点P 的坐标为(x 0,y 0),因为y ′=2ax ,所以切线的斜率为2ax 0=2,又因为切点(x 0,y 0)在曲线y =ax 2和切线y =2x -1上,所以有y 0=ax 20,且y 0=2x 0-1,即⎩⎪⎨⎪⎧ 2ax 0=2y 0=2x 0-1,y 0=ax 20解之得⎩⎪⎨⎪⎧x 0=1y 0=1a =1,所以切点P 的坐标为(1,1),曲线的方程为y =x 2.4.通过以上讨论,你认为如何解决有关曲线切线的问题?【提示】 解决曲线的切线问题应充分利用切点满足的三个关系式:一是切线的斜率是函数在此切点处的导数;二是切点的坐标满足切线的方程;三是切点的坐标满足切线的方程.可根据上述三个方面的条件建立相关的方程(组)求解未知数.设函数f (x )=ax -b x,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.【导学号:95902207】[思路探究] (1)利用已知切线的斜率、切点的坐标满足曲线的方程和切线的方程构建方程组可求出a ,b 的值,可得函数f (x )的解析式;(2)根据已知条件求出曲线y =f (x )上任一点处的切线方程,得到所求面积的表达式即知其为定值.【自主解答】 (1)由7x -4y -12=0,得y =74x -3.当x =2时,y =12,∴f (2)=12, ①又∵f ′(x )=a +b x 2,∴f ′(2)=74. ②由①②得⎩⎪⎨⎪⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x.(2)证明:设P (x 0,y 0)为曲线上任一点,由y ′=1+3x2知,曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝⎛⎭⎪⎫1+3x 20(x -x 0),即y -⎝⎛⎭⎪⎫x 0-3x 0=⎝⎛⎭⎪⎫1+3x20(x -x 0).令x =0,得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝ ⎛⎭⎪⎫0,-6x 0.令y =x ,得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形面积为:12|-6x 0||2x 0|=6.故曲线y =f (x )上任一点处的切线与直线x=0,y =x 所围成的三角形的面积为定值,此定值为6.[规律方法] 利用导数来处理与切线斜率有关的问题是一种非常有效的方法,它适用于任何导数存在的函数,一般可以根据条件建立相关的方程(组)求解未知量.[跟踪训练]3.已知函数f (x )=2x 3+ax 与g (x )=bx 2+cx 的图象都过点P (2,0),且在点P 处有公共切线.求f (x )和g (x )的表达式及在点P 处的公切线的方程.【解】 由题意,得f ′(2)=g ′(2),f (2)=g (2)=0. ∵f ′(x )=6x 2+a ,g ′(x )=2bx +c , ∴⎩⎪⎨⎪⎧ 16+2a =0,4b +2c =0,24+a =4b +c ,解得⎩⎪⎨⎪⎧a =-8,b =8,c =-16.∴f (x )=2x 3-8x ,g (x )=8x 2-16x ,即f ′(x )=6x 2-8,∴f ′(2)=16,∴在点P 处的公切线方程为y =16(x -2).[构建·体系][当 堂 达 标·固 双 基]1.函数y =x 3cos x 的导数是______.【解析】 y ′=3x 2cos x +x 3(-sin x )=3x 2cos x -x 3sin x . 【答案】 3x 2cos x -x 3sin x 2.函数y =xx +2的导数为 ________.【导学号:95902208】【解析】 ∵y ′=⎝ ⎛⎭⎪⎫x x +2′=xx +-x x +x +2=x +2-x x +2=2x +2.【答案】2x +23.函数f (x )=sin x2-cos x,则f ′(0)的值为__________.【解析】 f ′(x )=x-cos x -sin x-cos x-cos x2=cos x-cos x -sin xx-cos x2=2cos x -1-cos x 2,∴f ′(0)=2cos 0-1-2=1.【答案】 14.曲线f (x )=13x 3-x 2+5在x =1处的切线的倾斜角为________.【导学号:95902209】【解析】 f ′(x )=x 2-2x ,k =f ′(1)=-1,故切线的倾斜角为3π4.【答案】3π45.求下列函数的导数:(1)y =x 2sin x ;(2)y =ln x +1x ;(3)y =cos x ex ;【解】 (1)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x . (2)y ′=⎝ ⎛⎭⎪⎫ln x +1x ′=(ln x )′+⎝ ⎛⎭⎪⎫1x ′=1x -1x2.(3)y ′=⎝ ⎛⎭⎪⎫cos x e x ′=x x -cos xxx2=-sin x +cos x ex.。
第三课 导数及其应用[体系构建][题型探究]运用导数的几何意义,可以求过曲线上任一点的切线的斜率,从而进一步求出过此点的切线方程.还可以结合几何的有关知识,求解某些点的坐标、三角形面积等.导数的几何意义是近几年高考的要点和热点之一,常结合导数的运算进行考查,常以选择题、填空题的形式出现.对于较为复杂的此类问题,一般要利用k =f ′(x 0)((x 0,f (x 0))为切点)及切点的坐标满足切线方程和曲线方程列方程组求解.求过曲线y =x 3-2x 上的点(1,-1)的切线方程.[思路探究] 切线过曲线上一点(1,-1),并不代表(1,-1)就是切点,故需先设出切点,再求解.【规范解答】 设切点为P (x 0,y 0),则y 0=x 30-2x 0.∵y ′=3x 2-2,则切线的斜率k =f ′(x 0)=3x 20-2,∴切线方程为y -(x 30-2x 0)=(3x 20-2)(x -x 0).又∵切线过点(1,-1),∴-1-(x 30-2x 0)=(3x 20-2)(1-x 0),整理,得(x 0-1)2(2x 0+1)=0,解得x 0=1或x 0=-12.∴切点为(1,-1)或⎝ ⎛⎭⎪⎫-12,78,相应的切线斜率为k =1或k =-54.故所求切线方程为y -(-1)=x -1或y -78=-54·⎝ ⎛⎭⎪⎫x +12,即x -y -2=0或5x +4y-1=0.[跟踪训练]1.已知函数f (x )=x 3+ax 2+bx +c 在x =2处取得极值,并且它的图象与直线y =-3x +3在点(1,0)处相切,则函数f (x )的表达式为________.【导学号:95902257】【解析】 f ′(x )=3x 2+2ax +b .∵f (x )与直线y =-3x +3在点(1,0)处相切,∴⎩⎪⎨⎪⎧f =-3,f =0.即⎩⎪⎨⎪⎧3+2a +b =-3,①1+a +b +c =0.②∵f (x )在x =2处取得极值,∴f ′(2)=12+4a +b =0.③由①②③解得⎩⎪⎨⎪⎧a =-3,b =0,c =2.∴f (x )=x 3-3x 2+2.【答案】 f (x )=x 3-3x 2+21x )>0,f ′(x )<0的解集确定单调区间,这是函数中常见问题,是考查的重点.2.求含参数的函数的单调区间讨论时要注意的三个方面:(1)f ′(x )=0有无根,(2)f ′(x )=0根的大小,(3)f ′(x )=0的根是否在定义域内.另外当f ′(x )=0的最高次项系数含有字母时,则要讨论系数是否为0.3.已知函数的单调性求参数的取值范围有两种思路:①转化为不等式在某区间上恒成立问题,即f ′(x )≥0(或≤0)恒成立,用分离参数求最值或函数的性质求解,注意验证使f ′(x )=0的参数是否符合题意,②构造关于参数的不等式求解,即令f ′(x )>0(或<0)求得用参数表示的单调区间,结合所给区间,利用区间端点列不等式求参数的范围.已知函数f (x )=x 3-ax -1. (1)讨论f (x )的单调性;(2)若f (x )在R 上为增函数,求实数a 的取值范围.[思路探究] (1)求出f ′(x ),讨论f ′(x )=0的根是否存在,求函数的单调区间; (2)根据题意有f ′(x )≥0在(-∞,+∞)上恒成立,分离参数后可求实数a 的取值范围.【规范解答】 (1)f ′(x )=3x 2-a .①当a ≤0时,f ′(x )≥0,所以f (x )在(-∞,+∞)上为增函数. ②当a >0时,令3x 2-a =0得x =±3a 3;当x >3a 3或x <-3a3时,f ′(x )>0;当-3a 3<x <3a 3时,f ′(x )<0. 因此f (x )在⎝ ⎛⎭⎪⎫-∞,-3a 3,⎝ ⎛⎭⎪⎫3a 3,+∞上为增函数,在⎝ ⎛⎭⎪⎫-3a 3,3a 3上为减函数.综上可知,当a ≤0时,f (x )在R 上为增函数; 当a >0时,f (x )在⎝ ⎛⎭⎪⎫-∞,-3a 3,⎝ ⎛⎭⎪⎫3a 3,+∞上为增函数,在⎝ ⎛⎭⎪⎫-3a 3,3a 3上为减函数.(2)因为f (x )在(-∞,+∞)上是增函数,所以f ′(x )=3x 2-a ≥0在(-∞,+∞)上恒成立,即a ≤3x 2对x ∈R 恒成立.因为3x 2≥0,所以只需a ≤0.又因为a =0时,f ′(x )=3x 2≥0,f (x )=x 3-1在R 上是增函数, 所以a ≤0,即a 的取值范围为(-∞,0].[跟踪训练]2.设函数f (x )=12x 2+e x -x e x.(1)求f (x )的单调区间;(2)若当x ∈[-2,2]时,不等式f (x )>m 恒成立,求实数m 的取值范围.【导学号:95902258】【解】 (1)函数f (x )的定义域为(-∞,+∞),f ′(x )=x +e x -(e x +x e x )=x (1-e x). 若x <0,则1-e x>0,所以f ′(x )<0; 若x >0,则1-e x<0,所以f ′(x )<0; 若x =0,则f ′(x )=0.∴f (x )在(-∞,+∞)上为减函数,即f (x )的单调减区间为(-∞,+∞). (2)由(1)知f (x )在[-2,2]上单调递减, ∴f (x )min =f (2)=2-e 2.∴当m <2-e 2时,不等式f (x )>m 恒成立.即实数m 的取值范围是(-∞,2-e 2).1.2.求函数f (x )在[a ,b ]上的最大值和最小值的步骤: (1)求函数在(a ,b )内的极值;(2)求函数在区间端点的函数值f (a ),f (b );(3)将函数f (x )的极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.3.注意事项:(1)求函数最值时,不可想当然地认为极值点就是最值点,要通过认真比较才能下结论. (2)解题时要注意区分求单调性和已知单调性的问题,处理好f ′(x )=0时的情况;区分极值点和导数为0的点.已知函数f (x )=x 3+ax 2+bx +c ,曲线y =f (x )在点x =1处的切线为l :3x -y+1=0,若x =23时,y =f (x )有极值.(1)求a ,b ,c 的值;(2)求y =f (x )在[-3,1]上的最大值和最小值.[思路探究] (1)利用f ′(1)=3、f ′⎝ ⎛⎭⎪⎫23=0、f (1)=4构建方程组求解; (2)令fx =0→列表→求极值和区间端点的函数值→比较大小→得最大值和最小值【规范解答】 (1)由f (x )=x 3+ax 2+bx +c ,得f ′(x )=3x 2+2ax +b . 当x =1时,切线l 的斜率为3,可得2a +b =0,①当x =23时,y =f (x )有极值,则f ′⎝ ⎛⎭⎪⎫23=0,可得4a +3b +4=0,② 由①②,解得a =2,b =-4.由于切点的横坐标为1,所以f (1)=4. 所以1+a +b +c =4,得c =5.(2)由(1)可得f (x )=x 3+2x 2-4x +5,f ′(x )=3x 2+4x -4.令f ′(x )=0,解得x 1=-2,x 2=23.当x 变化时,f ′(x ),f (x )的取值及变化情况如下表所示:由表可知,函数y =f (x )在[-3,1]上的最大值为13,最小值为27.[跟踪训练]3.已知函数f (x )=13x 3-12x 2+cx +d 有极值.(1)求c 的取值范围;(2)若f (x )在x =2处取得极值,且当x <0时,f (x )<16d 2+2d 恒成立,求d 的取值范围.【导学号:95902259】【解】 (1)∵f (x )=13x 3-12x 2+cx +d ,∴f ′(x )=x 2-x +c ,要使f (x )有极值,则方程f ′(x )=x 2-x +c =0有两个实数解,从而Δ=1-4c >0,∴c <14.(2)∵f (x )在x =2处取得极值,∴f ′(2)=4-2+c =0,∴c =-2.∴ f (x )=13x 3-12x2-2x +d .∵f ′(x )=x 2-x -2=(x -2)(x +1),∴当x ∈(-∞,-1)时,f ′(x )>0,函数单调递增,当x ∈(-1,2]时,f ′(x )<0,函数单调递减.∴x <0时,f (x )在x =-1处取得最大值76+d , ∵x <0时,f (x )<16d 2+2d 恒成立,∴ 76+d <16d 2+2d ,即(d +7)(d -1)>0,∴d <-7或d >1,即d 的取值范围是(-∞,-7)∪(1,+∞).在含参数的问题中,无论是研究单调性,还是极值、最值,一般都需要分类讨论.已知函数f (x )=x -ln(x +a )的最小值为0,其中a >0.(1)求a 的值;(2)若对任意的x ∈[0,+∞),有f (x )≤kx 2成立,求实数k 的最小值. [思路探究] (1)求出函数f (x )的最小值用a 表示解方程可得a 的值;(2)构造函数g (x )=f (x )-kx 2,分类讨论求其在[0,+∞)的最大值,使其最大值≤0可得k 的取值范围,即得其最小值.【规范解答】 (1)f (x )的定义域为(-a ,+∞).f ′(x )=1-1x +a =x +a -1x +a. 由f ′(x )=0,得x =1-a >-a .当x 变化时,f ′(x ),f (x )的变化情况如下表:因此,f (x )a =1. (2)当k ≤0时,取x =1,有f (1)=1-ln 2>0,故k ≤0不合题意. 当k >0时,令g (x )=f (x )-kx 2,即g (x )=x -ln(x +1)-kx 2.g ′(x )=x x +1-2kx =-x [2kx --2kx +1.令g ′(x )=0,得x 1=0,x 2=1-2k2k>-1.①当k ≥12时,1-2k2k≤0,g ′(x )<0在(0,+∞)上恒成立,因此g (x )在[0,+∞)上单调递减.从而对于任意的x ∈[0,+∞),总有g (x )≤g (0)=0,即f (x )≤kx 2在[0,+∞)上恒成立.故k ≥12符合题意.②当0<k <12时,1-2k 2k >0,对于x ∈⎝⎛⎭⎪⎫0,1-2k 2k ,g ′(x )>0,故g (x )在⎝ ⎛⎭⎪⎫0,1-2k 2k 内单调递增,因此当取x 0∈⎝⎛⎭⎪⎫0,1-2k 2k 时, g (x 0)>g (0)=0,即f (x 0)≤kx 20不成立.故0<k <12不合题意.综上,k 的最小值为12.[跟踪训练]4.设函数f (x )=a e x+1a e x+b (a >0). (1)求f (x )在[0,+∞)内的最小值;(2)设曲线y = f (x )在点(2,f (2))处的切线方程为y =32x ,求a ,b 的值.【解】 (1)f ′(x )=a e x-1a e x, 当f ′(x )>0,即x >-ln a 时,f (x )在(-ln a ,+∞)上单调递增; 当f ′(x )<0,即x <-ln a 时,f (x )在(-∞,-ln a )上单调递减.①当0<a <1时,-ln a >0,f (x )在(0,-ln a )上单调递减,在(-ln a ,+∞)上单调递增,从而f (x )在[0,+∞)上的最小值为f (-ln a )=2+b;②当a ≥1时,-ln a ≤0,f (x )在[0,+∞)上单调递增, 从而f (x )在[0,+∞)上的最小值为f (0)=a +1a+b .(2)依题意f ′(2)=a e 2-1a e 2=32,解得a e 2=2或a e 2=-12(舍去),所以a =2e2,代入原函数可得2+12+b =3,即b =12,故a =2e 2,b =12.[链接高考]1.曲线y =x 2+1x在点(1,2)处的切线方程是__________.【导学号:95902260】【解析】 因为y ′=2x -1x 2,所以在点(1,2)处的切线方程的斜率k =2×1-112=1,所以切线方程为y -2=x -1,即y =x +1.【答案】 y =x +12.已知a ∈R ,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为________.【解析】 ∵f ′(x )=a -1x,∴f ′(1)=a -1.又∵f (1)=a ,∴切线l 的斜率为a -1,且过点(1,a ), ∴切线l 的方程为y -a =(a -1)(x -1). 令x =0,得y =1,故l 在y 轴上的截距为1. 【答案】 1 3.函数f (x )=xx -1(x ≥2)的最大值为________.【解析】 f ′(x )=x --x x -2=-1x -2,当x ≥2时,f ′(x )<0,所以f (x )在[2,+∞)上是减函数,故f (x )max =f (2)=22-1=2.【答案】 24.已知函数f (x )=x 3-2x +e x -1e x ,其中e 是自然对数的底数.若f (a -1)+f (2a 2)≤0,则实数a 的取值范围是________.【导学号:95902261】【解析】 因为f (-x )=(-x )3-2(-x )+e -x-1e-x =-x 3+2x -e x+1e x =-f (x ),所以f (x )=x 3-2x +e x-1e x 是奇函数.因为f (a -1)+f (2a 2)≤0,所以f (2a 2)≤-f (a -1),即f (2a 2)≤f (1-a ).因为f ′(x )=3x 2-2+e x +e -x ≥3x 2-2+2e x ·e -x =3x 2≥0, 所以f (x )在R 上单调递增, 所以2a 2≤1-a ,即2a 2+a -1≤0, 所以-1≤a ≤12.【答案】 ⎣⎢⎡⎦⎥⎤-1,12 5.已知函数f (x )=x 3+ax 2+bx +1(a >0,b ∈R )有极值,且导函数f ′(x )的极值点是f (x )的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b 关于a 的函数关系式,并写出定义域; (2)证明:b 2>3a .【解】 (1)由f (x )=x 3+ax 2+bx +1,得f ′(x )=3x 2+2ax +b =3⎝ ⎛⎭⎪⎫x +a 32+b -a 23. 当x =-a 3时,f ′(x )有极小值b -a 23.因为f ′(x )的极值点是f (x )的零点,所以f ⎝ ⎛⎭⎪⎫-a 3=-a 327+a 39-ab 3+1=0.又a >0,故b =2a 29+3a.因为f (x )有极值,故f ′(x )=0有实根,从而b -a 23=19a (27-a 3)≤0,即a ≥3.当a =3时,f ′(x )>0(x ≠-1), 故f (x )在R 上是增函数,f (x )没有极值; 当a >3时,f ′(x )=0有两个相异的实根 x 1=-a -a 2-3b 3,x 2=-a +a 2-3b 3.列表如下:12从而a >3.因此b =2a 29+3a ,定义域为(3,+∞).(2)证明:由(1)知,b a =2a a 9+3a a.设g (t )=2t 9+3t ,则g ′(t )=29-3t 2=2t 2-279t 2. 当t ∈⎝⎛⎭⎪⎫362,+∞时,g ′(t )>0, 从而g (t )在⎝⎛⎭⎪⎫362,+∞上单调递增. 因为a >3,所以a a >33, 故g (a a )>g (33)=3,即ba> 3. 因此b 2>3a .。
章末综合测评(三) 导数及其应用(时间120分钟,满分160分)一、填空题(本大题共14小题,每小题5分,共70分.请把答案填写在题中横线上.) 1.质点运动规律s =t 2+3,则在时间(3,3+Δt )中,质点的平均速度等于________. 【解析】 平均速度为V =+Δt 2+3-2+3+Δt -3=6+Δt .【答案】 6+Δt2.若f ′(x 0)=-3,则当h →0时,f x 0+h -f x 0-3hh趋于常数________.【导学号:95902262】【解析】 f x 0+h -f x 0-3hh=4×f x 0+h -f x 0-3h4h.∵f ′(x 0)=-3,∴当h →0时,f x 0+h -f x 0-3h4h趋于-3,故当h →0时,f x 0+h -f x 0-3hh趋于-12.【答案】 -123.已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________.【解析】 f ′(x )=a ⎝ ⎛⎭⎪⎫ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3. 【答案】 34.已知曲线f (x )=x 2+2x -2在点M 处的切线与x 轴平行,则点M 的坐标是________. 【解析】 ∵f ′(x )=2x +2,由f ′(x )=0得x =-1,又f (-1)=1-2-2=-3,∴点M 的坐标为(-1,-3).【答案】 (-1,-3)5.函数y =x e x在其极值点处的切线方程为__________.【导学号:95902263】【解析】 由题知y ′=e x+x e x,令y ′=0,解得x =-1,代入函数解析式可得极值点的坐标为⎝⎛⎭⎪⎫-1,-1e ,又极值点处的切线为平行于x 轴的直线,故方程为y =-1e .【答案】 y =-1e6.下列结论①(sin x )′=-cos x ;②⎝ ⎛⎭⎪⎫1x ′=1x 2;③(log 3x )′=13ln x ;④(x 2)′=1x ;⑤⎝ ⎛⎭⎪⎫-x e x ′=x -1ex,其中正确的有________(填序号).【解析】 由于(sin x )′=cos x ,故①错误;由于⎝ ⎛⎭⎪⎫1x ′=-1x2,故②错误;由于(log 3x )′=1x ln 3,故③错误;由于x 2=2x ,故④错误;由于⎝ ⎛⎭⎪⎫-x e x ′=-e x -x e xx 2=x -1ex,所以⑤正确. 【答案】 ⑤7.函数y =e xcos x 在⎝⎛⎭⎪⎫0,π2内的单调增区间是________.【解析】 y ′=e x(cos x -sin x ),当x ∈⎝⎛⎭⎪⎫0,π4时cos x >sin x ,y ′>0,∴函数y =e x cos x 在⎝⎛⎭⎪⎫0,π2内的单调增区间为⎝⎛⎭⎪⎫0,π4.【答案】 ⎝⎛⎭⎪⎫0,π48.函数f (x )=12e x(sin x +cos x )在区间上的值域为________.【导学号:95902264】【解析】 f ′(x )=12e x (sin x +cos x )+12e x (cos x -sin x )=e xcos x ,当0≤x ≤π2时,f ′(x )≥0,∴f (x )故⎣⎢⎡⎦⎥⎤0,π2上单调递增.∴f (x )的最大值在x =π2处取得,f ⎝ ⎛⎭⎪⎫π2=12e π2,f (x )的最小值在x =0处取得,f (0)=12.∴函数值域为⎣⎢⎡⎦⎥⎤12,12e π2.【答案】 ⎣⎢⎡⎦⎥⎤12,12e π29.已知函数y =f (x )在定义域[-4,6]内可导,其图象如图1,记y =f (x )的导函数为y =f ′(x ),则不等式f ′(x )≤0的解集为________.图1【解析】 不等式f ′(x )≤0的解集即为函数y =f (x )的减区间,由题图知y =f (x )的减区间为⎣⎢⎡⎦⎥⎤-43,1,⎣⎢⎡⎦⎥⎤113,6,故f ′(x )≤0的解集为⎣⎢⎡⎦⎥⎤-43,1∪⎣⎢⎡⎦⎥⎤113,6. 【答案】 ⎣⎢⎡⎦⎥⎤-43,1∪⎣⎢⎡⎦⎥⎤113,610.如图2,是y =f (x )的导函数的图象,现有四种说法: ①f (x )在(-2,-1)上是增函数; ②x =-1是f (x )的极小值点; ③f (x )在(-1,2)上是增函数; ④x =2是f (x )的极小值点.以上说法正确的序号是________(填序号).图2【解析】 由函数的图象可知:f ′(-2)<0,f ′(-1)=0,f (x )在(-2,-1)上是减函数,①不正确;x =-1时f ′(1)=0,函数在(-3,-1)递减,在(-1,2)单调递增,所以x =-1是f (x )的极小值点,所以②正确;f (x )在(-1,2)上f ′(x )>0,所以函数在(-1,2)上是增函数,所以③正确;函数在(-1,2)单调递增,在(2,4)单调递减,所以x =2是f (x )的极大值点,所以④不正确.【答案】 ②③11.已知f (x )=x 3-3x 2+2x +a ,若f (x )在R 上的极值点分别为m ,n ,则m +n 的值为________.【导学号:95902265】【解析】 ∵f (x )=x 3-3x 2+2x +a ,∴f ′(x )=3x 2-6x +2,∵f (x )在R 上的极值点分别为m ,n ,则m ,n 为f ′(x )=0的两个根,根据根与系数的关系可得,m +n =--63=2,∴m +n 的值为2.【答案】 212.若a >2,则函数f (x )=13x 3-ax 2+1在区间(0,2)上恰好有________个零点.【解析】 ∵f ′(x )=x 2-2ax =x (x -2a ),由f ′(x )=0,得x =0或x =2a ,又a >2,∴2a >4.当x ∈(0,2)时,f ′(x )<0,此时f (x )单调递减,又f (0)=1,f (2)=83-4a +1=113-4a ,由a >2知f (2)<0,∴函数f (x )在(0,2)上只有1个零点. 【答案】 113.对于R 上可导的任意函数f (x ),若满足(x -1)f ′(x )≥0,则f (0)+f (2)与2f (1)的大小关系为________.【解析】 依题意,当x ≥1时,f ′(x )≥0,函数f (x )在(1,+∞)上是增函数; 当x <1时,f ′(x )≤0,f (x )在(-∞,1)上是减函数,故当x =1时,f (x )取得极小值也为最小值,即有f (0)≥f (1),f (2)≥f (1),∴f (0)+f (2)≥2f (1).【答案】 f (0)+f (2)≥2f (1)14.已知函数f (x )=13x 3+12x 2-2x +m 的图象不经过第四象限,则实数m 的取值范围是________.【导学号:95902266】【解析】 f ′(x )=x 2+x -2.令f ′(x )=0,解得x =-2或1,则f (x )在(0,1)内单调递减,在(1,+∞)上单调递增,∴x =1是极小值点.∵f (x )的图象不经过第四象限,即当x >0时,f (x )≥0.∴f (1)=13+12-2+m ≥0,∴m ≥76.【答案】 m ≥76二、解答题(本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤.) 15.(本小题满分14分)已知函数y =ax 3+bx 2,当x =1时,有极大值3. (1)求a ,b 的值; (2)求函数y 的极小值.【解】 (1)y ′=3ax 2+2bx ,当x =1时,y ′|x =1=3a +2b =0,y |x =1=a +b =3,即⎩⎪⎨⎪⎧3a +2b =0a +b =3,解得:a =-6,b =9.(2)由(1)得y =-6x 3+9x 2,y ′=-18x 2+18x ,令y ′=0,得x =0,或x =1 当x >1或x <0时,y ′<0,函数在(-∞,0),(1,+∞)内单调递减;当0<x <1时,y ′>0,函数在(0,1)单调递增.∴y 极小值=y |x =0=0.16.(本小题满分14分)已知函数f (x )=-x 3+3x 2+9x +a .(1)求f (x )的单调递减区间;(2)若f (x )在区间[-1,2]上的最大值为20,求它在该区间上的最小值.【导学号:95902267】【解】 (1)f ′(x )=-3x 2+6x +9.令f ′(x )<0,解得x <-1或x >3, 所以函数f (x )的单调递减区间为(-∞,-1),(3,+∞). (2)f (2)=-8+12+18+a =22+a .因为f (x )在区间[-1,2]上,所以f ′(x )>0,所以f (x )在区间[-1,2]上单调递增, 因此f (2)和f (-1)分别是f (x )在区间[1,2]上的最大值和最小值,于是有22+a =20,解得a =-2.故f (x )=-x 3+3x 2+9x -2,因此f (-1)=1+3-9-2=-7,即函数f (x )在区间[-1,2]上的最小值为-7.17.(本小题满分14分)设函数f (x )=ln x +ln(2-x )+ax (a >0). (1)当a =1时,求f (x )的单调区间; (2)若f (x )在(0,1]上的最大值为12,求a 的值.【解】 函数f (x )的定义域为(0,2),f ′(x )=1x -12-x+a .(1)当a =1时,f ′(x )=-x 2+2x -x ,令f ′(x )=0,得x =2或x =-2(舍去)所以f (x )的单调递增区间为(0,2),单调递减区间为(2,2). (2)当x ∈(0,1]时,f ′(x )=2-2xx -x+a >0,即f (x )在(0,1]上单调递增,故f (x )在(0,1]上的最大值为f (1)=a ,因此a =12.18.(本小题满分16分)一火车锅炉每小时煤的消耗费用与火车行驶速度的立方成正比,已知当速度为20 km/h 时,每小时消耗的煤价值40元,其他费用每小时需400元,火车的最高速度为100 km/h ,火车以何速度行驶才能使从甲城开往乙城的总费用最少?【解】 设火车的速度为x km/h ,甲、乙两城距离为a km.由题意,令40=k ·203,∴k =1200, 则总费用f (x )=(kx 3+400)·a x =a ⎝⎛⎭⎪⎫kx 2+400x =a ⎝ ⎛⎭⎪⎫1200x 2+400x (0<x ≤100). 由f ′(x )=a x 3-100x2=0,得x =2035.当0<x <2035时,f ′(x )<0,f (x )单调递减;当2035<x ≤100时,f ′(x )>0,f (x )单调递增.∴当x =2035时,f (x )取极小值也是最小值,即速度为2035 km/h 时,总费用最少. 19.(本小题满分16分)已知a 为实数,函数f (x )=x (x -a ). (1)求函数f (x )的单调区间;(2)设g (a )为f (x )在区间[0,2]上的最小值,试写出g (a )的表达式.【导学号:95902268】【解】 (1)由题意知函数的定义域为[0,+∞),f ′(x )=x +x -a 2x =3x -a2x(x >0) ①若a ≤0,则f ′(x )>0,故f (x )有单调递增区间[0,+∞);②若a >0,令f ′(x )=0,得x =a 3.当0<x <a 3时,f ′(x )<0,当x >a3时,f ′(x )>0.故f (x )有单调递减区间⎝ ⎛⎦⎥⎤0,a 3,单调递增区间⎝ ⎛⎭⎪⎫a3,+∞.由于函数在某一点处没有增减性, 故函数的单调区间的情况为: 若a ≤0,f (x )有单调递增区间[0,+∞);若a >0,f (x )有单调递减区间⎝ ⎛⎦⎥⎤0,a 3,单调递增区间⎝ ⎛⎭⎪⎫a3,+∞.(2)①若a ≤0,f (x )在[0,2]上单调递增,所以g (a )= f (0)=0.②若0<a <6,f (x )在[0,a 3 ]上单调递减,在⎝ ⎛⎦⎥⎤a3,2上单调递增, 所以g (a )=f ⎝ ⎛⎭⎪⎫a 3=-2a 3a3.③若a ≥6,f (x )在[0,2]上单调递减, 所以g (a )=f (2)=2(2-a ).综上所述,g (a )=⎩⎪⎨⎪⎧0,a ≤0,-2a3a3,0<a <6,2-a ,a ≥6.20.(本小题满分16分)已知二次函数h (x )=ax 2+bx +c (c <4),其导函数y =h ′(x )的图象如图3所示,函数f (x )=8ln x +h (x ).图3(1)求a ,b 的值;(2)若函数f (x )在区间⎝⎛⎭⎪⎫m ,m +12上是单调增函数,求实数m 的取值范围; (3)若对任意k ∈[-1,1],x ∈(0,8],不等式(k +1)x ≥f (x )恒成立,求实数c 的取值范围.【解】 (1)h ′(x )=2ax +b ,由h ′(5)=0,h ′(0)=-10,解得a =1,b =-10. (2)f (x )=8ln x +x 2-10x +c ,则f ′(x )=8x+2x -10=x -x -x,令f ′(x )=0,得x =1或x =4,列表如下:因f (x )在区间⎝ ⎛⎭⎪⎫m ,m +2是单调增函数, 所以⎝ ⎛⎭⎪⎫m ,m +12⊆(0,1)或⎝ ⎛⎭⎪⎫m ,m +12⊆(4,+∞),所以⎩⎪⎨⎪⎧0≤m ,m +12≤1或m ≥4,所以实数m 的取值范围为⎣⎢⎡⎦⎥⎤0,12∪[4,+∞).(3)由(k +1)x ≥f (x )在x ∈(0,8]恒成立,整理得k ≥8ln x x +x -11+cx对任意k ∈[-1,1]恒成立,所以应有-1≥8ln x x +x -11+c x恒成立,即c ≤-8ln x -x 2+10x 对x ∈(0,8]恒成立, 设g (x )=-8ln x -x 2+10x ,x ∈(0,8], 则g ′(x )=-8x-2x +10=-x -x -4.令g′(x)=0,得x=1或x=4,列表如下:所以g(x)在x∈(0,8]的最小值为g(8)=16-8ln 8,又c<4,16-8ln 8-4=12-8ln 8<12-8ln e2=12-16<0,所以实数c的取值范围是(-∞,16-8ln 8].。
第1讲 导数的概念及运算考试要求 1.导数的概念及其实际背景,A 级要求;2.导数的几何意义,B 级要求;3.根据导数定义求函数y =c ,y =x ,y =1x,y =x 2,y =x 3,y =x 的导数,A 级要求;4.利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,B 级要求.知 识 梳 理1.导数的概念设函数y =f (x )在区间(a ,b )上有定义,且x 0∈(a ,b ),若Δx 无限趋近于0时,比值ΔyΔx=f x 0+Δx -f x 0Δx无限趋近于一个常数A ,则称f (x )在x =x 0处可导,并称该常数A 为函数f (x )在x =x 0处的导数,记作f ′(x 0).若函数y =f (x )在区间(a ,b )内任意一点都可导,则f (x )在各点的导数也随着x 的变化而变化,因而是自变量x 的函数,该函数称作f (x )的导函数,记作f ′(x ). 2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,过点P 的切线方程为y -y 0=f ′(x 0)(x -x 0). 3.基本初等函数的导数公式4.若f ′(x ),g ′(x )存在,则有: (1)[f (x )±g (x )]′=f ′(x )±g ′(x );(2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎢⎡⎦⎥⎤f x g x ′=fx g x -f x gx[g x2(g (x )≠0).诊 断 自 测1.判断正误(在括号内打“√”或“×”) (1)f ′(x 0)与(f (x 0))′表示的意义相同.( ) (2)求f ′(x 0)时,可先求f (x 0),再求f ′(x 0).( ) (3)曲线的切线与曲线不一定只有一个公共点.( ) (4)若f (x )=a 3+2ax +x 2,则f ′(x )=3a 2+2x .( )解析 (1)f ′(x 0)表示函数f (x )的导数在x 0处的值,而f ((x 0))′表示函数值f (x 0)的导数,其意义不同,(1)错.(2)求f ′(x 0)时,应先求f ′(x ),再代入求值,(2)错.(4)f (x )=a 3+2ax +x 2=x 2+2ax +a 3,∴f ′(x )=2x +2a ,(4)错. 答案 (1)× (2)× (3)√ (4)×2.(选修1-1P57例4改编)函数f (x )=-2x +10在区间[-3,-1]内的平均变化率为________. 解析 平均变化率为f (-1)-f (-3)-1-(-3)=-2×(-1)+10-[-2×(-3)+10]2=-2.答案 -23.(2016·天津卷)已知函数f (x )=(2x +1)e x,f ′(x )为f (x )的导函数,则f ′(0)的值为________.解析 因为f (x )=(2x +1)e x,所以f ′(x )=2e x +(2x +1)e x =(2x +3)e x, 所以f ′(0)=3e 0=3. 答案 34.(2017·镇江期末)曲线y =-5e x+3在点(0,-2)处的切线方程为________. 解析 ∵y ′=-5e x ,∴所求曲线的切线斜率k =y ′|x =0=-5e 0=-5,∴切线方程为y -(-2)=-5(x -0),即5x +y +2=0. 答案 5x +y +2=05.(2015·全国Ⅰ卷)已知函数f (x )=ax 3+x +1的图象在点(1,f (1))处的切线过点(2,7),则a =________.解析 由题意可得f ′(x )=3ax 2+1,则f ′(1)=3a +1, 又f (1)=a +2,∴切线方程为y -(a +2)=(3a +1)(x -1). ∵切线过点(2,7),∴7-(a +2)=3a +1,解得a =1. 答案 1考点一 导数的计算 【例1】 求下列函数的导数: (1)y =e xln x ;(2)y =x ⎝⎛⎭⎪⎫x 2+1x +1x 3;(3)y =x -sin x2cos x2;(4)y =cos x ex .解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x 1x =⎝ ⎛⎭⎪⎫ln x +1x e x .(2)因为y =x 3+1+1x2,所以y ′=(x 3)′+(1)′+⎝ ⎛⎭⎪⎫1x 2′=3x 2-2x3.(3)因为y =x -12sin x ,所以y ′=⎝ ⎛⎭⎪⎫x -12sin x ′=x ′-⎝ ⎛⎭⎪⎫12sin x ′=1-12cos x . (4)y ′=⎝ ⎛⎭⎪⎫cos x e x ′=xx-cos xxx2=-sin x +cos x ex. 规律方法 (1)熟记基本初等函数的导数公式及运算法则是导数计算的前提,求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量提高运算速度,减少差错.(2)如函数为根式形式,可先化为分数指数幂,再求导.【训练1】 (1)f (x )=x (2 017+ln x ),若f ′(x 0)=2 018,则x 0=________.(2)(2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________.解析 (1)f ′(x )=2 017+ln x +1x·x =2 018+ln x .由f ′(x 0)=2 018,得ln x 0=0,则x 0=1.(2)f ′(x )=a ⎝ ⎛⎭⎪⎫ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3. 答案 (1)1 (2)3考点二 导数的几何意义(多维探究) 命题角度一 求切线方程【例2-1】 (1)(2016·全国Ⅲ卷)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1-x ,则曲线y =f (x )在点(1,2)处的切线方程是________.(2)(2017·扬州中学质检)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为________. 解析 (1)设x >0,则-x <0,f (-x )=e x -1+x .又f (x )为偶函数,f (x )=f (-x )=e x -1+x ,所以当x >0时,f (x )=ex -1+x .因此,当x >0时,f ′(x )=e x -1+1,f ′(1)=e 0+1=2.则曲线y =f (x )在点(1,2)处的切线的斜率为f ′(1)=2,所以切线方程为y -2=2(x -1),即2x -y =0.(2)∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0).又∵f ′(x )=1+ln x ,∴⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=+ln x 0x 0,解得x 0=1,y 0=0.∴切点为(1,0),∴f ′(1)=1+ln 1=1. ∴直线l 的方程为y =x -1,即x -y -1=0. 答案 (1)2x -y =0 (2)x -y -1=0 命题角度二 求切点坐标【例2-2】 (2017·苏、锡、常、镇四市调研)设曲线y =e x在点(0,1)处的切线与曲线y =1x(x >0)上点P 处的切线垂直,则P 的坐标为________.解析 由y ′=e x,知曲线y =e x在点(0,1)处的切线斜率k 1=e 0=1. 设P (m ,n ),又y =1x (x >0)的导数y ′=-1x2,曲线y =1x (x >0)在点P 处的切线斜率k 2=-1m2.依题意k 1k 2=-1,所以m =1,从而n =1. 则点P 的坐标为(1,1).答案 (1,1)命题角度三 求与切线有关的参数值(或范围)【例2-3】 已知直线y =12x +b 与曲线y =-12x +ln x 相切,则b 的值为________.解析 设切点坐标为P (x 0,y 0), 由y =-12x +ln x ,得y ′=-12+1x .∴y ′|x =x 0=-12+1x 0,依题意,-12+1x 0=12,∴x 0=1,则P ⎝ ⎛⎭⎪⎫1,-12, 又切点P ⎝ ⎛⎭⎪⎫1,-12在直线y =12x +b 上,故-12=12+b ,得b =-1.答案 -1规律方法 (1)导数f ′(x 0)的几何意义就是函数y =f (x )在点P (x 0,y 0)处的切线的斜率,切点既在曲线上,又在切线上.切线有可能和曲线还有其他的公共点.(2)“曲线在点P 处的切线”是以点P 为切点,“曲线过点P 的切线”则点P 不一定是切点,此时应先设出切点坐标.(3)当曲线y =f (x )在点(x 0,f (x 0))处的切线垂直于x 轴时,函数在该点处的导数不存在,切线方程是x =x 0.【训练2】 (1)若曲线y =x ln x 上点P 处的切线平行于直线2x -y +1=0,则点P 的坐标是________.(2)(2017·常州复习检测)已知曲线y =x +1x -1在点(3,2)处的切线与直线ax +y +1=0垂直,则a =________.解析 (1)由题意得y ′=ln x +x ·1x=1+ln x ,直线2x -y +1=0的斜率为2.设P (m ,n ),则1+ln m =2,解得m =e , 所以n =eln e =e ,即点P 的坐标为(e ,e). (2)y ′⎪⎪⎪⎪⎪⎪x =3=-2x -2x =3=-12, 又切线与直线ax +y +1=0垂直.∴-a ·⎝ ⎛⎭⎪⎫-12=-1,则a =-2.答案 (1)(e ,e) (2)-2[思想方法]1.f ′(x 0)代表函数f (x )在x =x 0处的导数值;(f (x 0))′是函数值f (x 0)的导数,而函数值f (x 0)是一个常数,其导数一定为0,即(f (x 0))′=0.2.对于函数求导,一般要遵循先化简再求导的基本原则.在实施化简时,必须注意交换的等价性.3.曲线的切线与二次曲线的切线的区别:曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次曲线相切只有一个公共点. [易错防范]1.利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.2.曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别:前者P (x 0,y 0)为切点,而后者P (x 0,y 0)不一定为切点.3.对含有字母参数的函数要分清哪是变量哪是参数,参数是常量,其导数为零.基础巩固题组(建议用时:40分钟)一、填空题1.设y =x 2e x,则y ′=________. 解析 y ′=2x e x +x 2e x =(2x +x 2)e x. 答案 (2x +x 2)e x2.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2x ·f ′(1)+ln x ,则f ′(1)=________.解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1x,∴f ′(1)=2f ′(1)+1,则f ′(1)=-1. 答案 -13.曲线y =sin x +e x在点(0,1)处的切线方程是________.解析 y ′=cos x +e x ,故切线斜率为k =2,切线方程为y =2x +1,即2x -y +1=0. 答案 2x -y +1=04.(2017·苏州调研)已知曲线y =ln x 的切线过原点,则此切线的斜率为________. 解析 y =ln x 的定义域为(0,+∞),且y ′=1x ,设切点为(x 0,ln x 0),则y ′|x =x 0=1x 0,切线方程为y -ln x 0=1x 0(x -x 0),因为切线过点(0,0),所以-ln x 0=-1,解得x 0=e ,故此切线的斜率为1e .答案 1e5.若曲线y =ax 2-ln x 在点(1,a )处的切线平行于x 轴,则a =________.解析 因为y ′=2ax -1x,所以y ′|x =1=2a -1.因为曲线在点(1,a )处的切线平行于x 轴,故其斜率为0,故2a -1=0,解得a =12.答案 126.(2017·南师附中月考)如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),其中g ′(x )是g (x )的导函数,则g ′(3)=________.解析 由图形可知:f (3)=1,f ′(3)=-13,∵g ′(x )=f (x )+xf ′(x ),∴g ′(3)=f (3)+3f ′(3)=1-1=0. 答案 07.(2017·苏北四市模拟)设曲线y =1+cos x sin x 在点⎝ ⎛⎭⎪⎫π2,1处的切线与直线x -ay +1=0平行,则实数a =________. 解析 ∵y ′=-1-cos xsin 2x ,∴ 由条件知1a=-1,∴a =-1.答案 -18.(2015·全国Ⅱ卷)已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.解析 由y =x +ln x ,得y ′=1+1x,得曲线在点(1,1)处的切线的斜率为k =y ′|x =1=2,所以切线方程为y -1=2(x -1),即y =2x -1. 又该切线与y =ax 2+(a +2)x +1相切, 消去y ,得ax 2+ax +2=0,∴a ≠0且Δ=a 2-8a =0,解得a =8. 答案 8 二、解答题9.已知点M 是曲线y =13x 3-2x 2+3x +1上任意一点,曲线在M 处的切线为l ,求:(1)斜率最小的切线方程;(2)切线l 的倾斜角α的取值范围. 解 (1)y ′=x 2-4x +3=(x -2)2-1≥-1, 所以当x =2时,y ′=-1,y =53,所以斜率最小的切线过点⎝ ⎛⎭⎪⎫2,53,斜率k =-1, 所以切线方程为3x +3y -11=0. (2)由(1)得k ≥-1,所以tan α≥-1,所以α∈⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π.10.已知曲线y =x 3+x -2在点P 0处的切线l 1平行于直线4x -y -1=0,且点P 0在第三象限. (1)求P 0的坐标;(2)若直线l ⊥l 1,且l 也过切点P 0,求直线l 的方程. 解 (1)由y =x 3+x -2,得y ′=3x 2+1, 由已知令3x 2+1=4,解之得x =±1. 当x =1时,y =0;当x =-1时,y =-4.又∵点P 0在第三象限,∴切点P 0的坐标为(-1,-4). (2)∵直线l ⊥l 1,l 1的斜率为4, ∴直线l 的斜率为-14.∵l 过切点P 0,点P 0的坐标为(-1,-4), ∴直线l 的方程为y +4=-14(x +1),即x +4y +17=0.能力提升题组 (建议用时:20分钟)11.(2016·山东卷改编)若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质,下列函数: ①y =sin x ;②y =ln x ;③y =e x;④y =x 3. 其中具有T 性质的是________(填序号).解析 若y =f (x )的图象上存在两点(x 1,f (x 1)),(x 2,f (x 2)), 使得函数图象在这两点处的切线互相垂直,则f ′(x 1)·f ′(x 2)=-1.对于①:y ′=cos x ,若有cos x 1·cos x 2=-1,则当x 1=2k π,x 2=2k π+π(k ∈Z )时,结论成立;对于②:y ′=1x ,若有1x 1·1x 2=-1,即x 1x 2=-1,∵x 1>0,x 2>0,∴不存在x 1,x 2,使得x 1x 2=-1;对于③:y ′=e x ,若有e x 1·e x 2=-1,即ex 1+x 2=-1.显然不存在这样的x 1,x 2;对于④:y ′=3x 2,若有3x 21·3x 22=-1,即9x 21x 22=-1,显然不存在这样的x 1,x 2. 答案 ①12.(2017·合肥模拟改编)点P 是曲线x 2-y -ln x =0上的任意一点,则点P 到直线y =x -2的最小距离为________.解析 点P 是曲线y =x 2-ln x 上任意一点,当过点P 的切线和直线y =x -2平行时, 点P 到直线y =x -2的距离最小,直线y =x -2的斜率为1,令y =x 2-ln x , 得y ′=2x -1x =1,解得x =1或x =-12(舍去),故曲线y =x 2-ln x 上和直线y =x -2平行的切线经过的切点坐标为(1,1), 点(1,1)到直线y =x -2的距离等于2, ∴点P 到直线y =x -2的最小距离为 2. 答案213.若函数f (x )=12x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________.解析 ∵f (x )=12x 2-ax +ln x ,∴f ′(x )=x -a +1x(x >0).∵f (x )存在垂直于y 轴的切线,∴f ′(x )存在零点,即x +1x -a =0有解,∴a =x +1x≥2(当且仅当x =1时取等号).答案 [2,+∞)14.已知函数f (x )=x -2x,g (x )=a (2-ln x )(a >0).若曲线y =f (x )与曲线y =g (x )在x=1处的切线斜率相同,求a 的值,并判断两条切线是否为同一条直线. 解 根据题意有f ′(x )=1+2x 2,g ′(x )=-ax.曲线y =f (x )在x =1处的切线斜率为f ′(1)=3, 曲线y =g (x )在x =1处的切线斜率为g ′(1)=-a , 所以f ′(1)=g ′(1),即a =-3.曲线y=f(x)在x=1处的切线方程为y-f(1)=3(x-1).所以y+1=3(x-1),即切线方程为3x-y-4=0.曲线y=g(x)在x=1处的切线方程为y-g(1)=3(x-1),所以y+6=3(x-1),即切线方程为3x-y-9=0,所以,两条切线不是同一条直线.。
第1讲 导数的概念及运算考试要求 1.导数的概念及其实际背景,A 级要求;2.导数的几何意义,B 级要求;3.根据导数定义求函数y =c ,y =x ,y =1x,y =x 2,y =x 3,y =x 的导数,A 级要求;4.利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,B 级要求.知 识 梳 理1.导数的概念设函数y =f (x )在区间(a ,b )上有定义,且x 0∈(a ,b ),若Δx 无限趋近于0时,比值ΔyΔx=f x 0+Δx -f x 0Δx无限趋近于一个常数A ,则称f (x )在x =x 0处可导,并称该常数A 为函数f (x )在x =x 0处的导数,记作f ′(x 0).若函数y =f (x )在区间(a ,b )内任意一点都可导,则f (x )在各点的导数也随着x 的变化而变化,因而是自变量x 的函数,该函数称作f (x )的导函数,记作f ′(x ). 2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,过点P 的切线方程为y -y 0=f ′(x 0)(x -x 0). 3.基本初等函数的导数公式4.若f ′(x ),g ′(x )存在,则有: (1)[f (x )±g (x )]′=f ′(x )±g ′(x );(2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎢⎡⎦⎥⎤f x g x ′=fx g x -f x gx[g x2(g (x )≠0).诊 断 自 测1.判断正误(在括号内打“√”或“×”) (1)f ′(x 0)与(f (x 0))′表示的意义相同.( ) (2)求f ′(x 0)时,可先求f (x 0),再求f ′(x 0).( ) (3)曲线的切线与曲线不一定只有一个公共点.( ) (4)若f (x )=a 3+2ax +x 2,则f ′(x )=3a 2+2x .( )解析 (1)f ′(x 0)表示函数f (x )的导数在x 0处的值,而f ((x 0))′表示函数值f (x 0)的导数,其意义不同,(1)错.(2)求f ′(x 0)时,应先求f ′(x ),再代入求值,(2)错.(4)f (x )=a 3+2ax +x 2=x 2+2ax +a 3,∴f ′(x )=2x +2a ,(4)错. 答案 (1)× (2)× (3)√ (4)×2.(选修1-1P57例4改编)函数f (x )=-2x +10在区间[-3,-1]内的平均变化率为________. 解析 平均变化率为f (-1)-f (-3)-1-(-3)=-2×(-1)+10-[-2×(-3)+10]2=-2.答案 -23.(2016·天津卷)已知函数f (x )=(2x +1)e x,f ′(x )为f (x )的导函数,则f ′(0)的值为________.解析 因为f (x )=(2x +1)e x,所以f ′(x )=2e x +(2x +1)e x =(2x +3)e x, 所以f ′(0)=3e 0=3. 答案 34.(2017·镇江期末)曲线y =-5e x+3在点(0,-2)处的切线方程为________. 解析 ∵y ′=-5e x ,∴所求曲线的切线斜率k =y ′|x =0=-5e 0=-5,∴切线方程为y -(-2)=-5(x -0),即5x +y +2=0. 答案 5x +y +2=05.(2015·全国Ⅰ卷)已知函数f (x )=ax 3+x +1的图象在点(1,f (1))处的切线过点(2,7),则a =________.解析 由题意可得f ′(x )=3ax 2+1,则f ′(1)=3a +1, 又f (1)=a +2,∴切线方程为y -(a +2)=(3a +1)(x -1). ∵切线过点(2,7),∴7-(a +2)=3a +1,解得a =1. 答案 1考点一 导数的计算 【例1】 求下列函数的导数: (1)y =e xln x ;(2)y =x ⎝⎛⎭⎪⎫x 2+1x +1x 3;(3)y =x -sin x2cos x2;(4)y =cos x ex .解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x 1x =⎝ ⎛⎭⎪⎫ln x +1x e x .(2)因为y =x 3+1+1x2,所以y ′=(x 3)′+(1)′+⎝ ⎛⎭⎪⎫1x 2′=3x 2-2x3.(3)因为y =x -12sin x ,所以y ′=⎝ ⎛⎭⎪⎫x -12sin x ′=x ′-⎝ ⎛⎭⎪⎫12sin x ′=1-12cos x . (4)y ′=⎝ ⎛⎭⎪⎫cos x e x ′=xx-cos xxx2=-sin x +cos x ex. 规律方法 (1)熟记基本初等函数的导数公式及运算法则是导数计算的前提,求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量提高运算速度,减少差错.(2)如函数为根式形式,可先化为分数指数幂,再求导.【训练1】 (1)f (x )=x (2 017+ln x ),若f ′(x 0)=2 018,则x 0=________.(2)(2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________.解析 (1)f ′(x )=2 017+ln x +1x·x =2 018+ln x .由f ′(x 0)=2 018,得ln x 0=0,则x 0=1.(2)f ′(x )=a ⎝ ⎛⎭⎪⎫ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3. 答案 (1)1 (2)3考点二 导数的几何意义(多维探究) 命题角度一 求切线方程【例2-1】 (1)(2016·全国Ⅲ卷)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1-x ,则曲线y =f (x )在点(1,2)处的切线方程是________.(2)(2017·扬州中学质检)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为________. 解析 (1)设x >0,则-x <0,f (-x )=e x -1+x .又f (x )为偶函数,f (x )=f (-x )=e x -1+x ,所以当x >0时,f (x )=ex -1+x .因此,当x >0时,f ′(x )=e x -1+1,f ′(1)=e 0+1=2.则曲线y =f (x )在点(1,2)处的切线的斜率为f ′(1)=2,所以切线方程为y -2=2(x -1),即2x -y =0.(2)∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0).又∵f ′(x )=1+ln x ,∴⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=+ln x 0x 0,解得x 0=1,y 0=0.∴切点为(1,0),∴f ′(1)=1+ln 1=1. ∴直线l 的方程为y =x -1,即x -y -1=0. 答案 (1)2x -y =0 (2)x -y -1=0 命题角度二 求切点坐标【例2-2】 (2017·苏、锡、常、镇四市调研)设曲线y =e x在点(0,1)处的切线与曲线y =1x(x >0)上点P 处的切线垂直,则P 的坐标为________.解析 由y ′=e x,知曲线y =e x在点(0,1)处的切线斜率k 1=e 0=1. 设P (m ,n ),又y =1x (x >0)的导数y ′=-1x2,曲线y =1x (x >0)在点P 处的切线斜率k 2=-1m2.依题意k 1k 2=-1,所以m =1,从而n =1. 则点P 的坐标为(1,1).答案 (1,1)命题角度三 求与切线有关的参数值(或范围)【例2-3】 已知直线y =12x +b 与曲线y =-12x +ln x 相切,则b 的值为________.解析 设切点坐标为P (x 0,y 0), 由y =-12x +ln x ,得y ′=-12+1x .∴y ′|x =x 0=-12+1x 0,依题意,-12+1x 0=12,∴x 0=1,则P ⎝ ⎛⎭⎪⎫1,-12, 又切点P ⎝ ⎛⎭⎪⎫1,-12在直线y =12x +b 上,故-12=12+b ,得b =-1.答案 -1规律方法 (1)导数f ′(x 0)的几何意义就是函数y =f (x )在点P (x 0,y 0)处的切线的斜率,切点既在曲线上,又在切线上.切线有可能和曲线还有其他的公共点.(2)“曲线在点P 处的切线”是以点P 为切点,“曲线过点P 的切线”则点P 不一定是切点,此时应先设出切点坐标.(3)当曲线y =f (x )在点(x 0,f (x 0))处的切线垂直于x 轴时,函数在该点处的导数不存在,切线方程是x =x 0.【训练2】 (1)若曲线y =x ln x 上点P 处的切线平行于直线2x -y +1=0,则点P 的坐标是________.(2)(2017·常州复习检测)已知曲线y =x +1x -1在点(3,2)处的切线与直线ax +y +1=0垂直,则a =________.解析 (1)由题意得y ′=ln x +x ·1x=1+ln x ,直线2x -y +1=0的斜率为2.设P (m ,n ),则1+ln m =2,解得m =e , 所以n =eln e =e ,即点P 的坐标为(e ,e). (2)y ′⎪⎪⎪⎪⎪⎪x =3=-2x -2x =3=-12, 又切线与直线ax +y +1=0垂直.∴-a ·⎝ ⎛⎭⎪⎫-12=-1,则a =-2.答案 (1)(e ,e) (2)-2[思想方法]1.f ′(x 0)代表函数f (x )在x =x 0处的导数值;(f (x 0))′是函数值f (x 0)的导数,而函数值f (x 0)是一个常数,其导数一定为0,即(f (x 0))′=0.2.对于函数求导,一般要遵循先化简再求导的基本原则.在实施化简时,必须注意交换的等价性.3.曲线的切线与二次曲线的切线的区别:曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次曲线相切只有一个公共点. [易错防范]1.利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.2.曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别:前者P (x 0,y 0)为切点,而后者P (x 0,y 0)不一定为切点.3.对含有字母参数的函数要分清哪是变量哪是参数,参数是常量,其导数为零.基础巩固题组(建议用时:40分钟)一、填空题1.设y =x 2e x,则y ′=________. 解析 y ′=2x e x +x 2e x =(2x +x 2)e x. 答案 (2x +x 2)e x2.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2x ·f ′(1)+ln x ,则f ′(1)=________.解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1x,∴f ′(1)=2f ′(1)+1,则f ′(1)=-1. 答案 -13.曲线y =sin x +e x在点(0,1)处的切线方程是________.解析 y ′=cos x +e x ,故切线斜率为k =2,切线方程为y =2x +1,即2x -y +1=0. 答案 2x -y +1=04.(2017·苏州调研)已知曲线y =ln x 的切线过原点,则此切线的斜率为________. 解析 y =ln x 的定义域为(0,+∞),且y ′=1x ,设切点为(x 0,ln x 0),则y ′|x =x 0=1x 0,切线方程为y -ln x 0=1x 0(x -x 0),因为切线过点(0,0),所以-ln x 0=-1,解得x 0=e ,故此切线的斜率为1e .答案 1e5.若曲线y =ax 2-ln x 在点(1,a )处的切线平行于x 轴,则a =________.解析 因为y ′=2ax -1x,所以y ′|x =1=2a -1.因为曲线在点(1,a )处的切线平行于x 轴,故其斜率为0,故2a -1=0,解得a =12.答案 126.(2017·南师附中月考)如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),其中g ′(x )是g (x )的导函数,则g ′(3)=________.解析 由图形可知:f (3)=1,f ′(3)=-13,∵g ′(x )=f (x )+xf ′(x ),∴g ′(3)=f (3)+3f ′(3)=1-1=0. 答案 07.(2017·苏北四市模拟)设曲线y =1+cos x sin x 在点⎝ ⎛⎭⎪⎫π2,1处的切线与直线x -ay +1=0平行,则实数a =________. 解析 ∵y ′=-1-cos xsin 2x ,∴由条件知1a=-1,∴a =-1.答案 -18.(2015·全国Ⅱ卷)已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.解析 由y =x +ln x ,得y ′=1+1x,得曲线在点(1,1)处的切线的斜率为k =y ′|x =1=2,所以切线方程为y -1=2(x -1),即y =2x -1. 又该切线与y =ax 2+(a +2)x +1相切,消去y ,得ax 2+ax +2=0,∴a ≠0且Δ=a 2-8a =0,解得a =8. 答案 8 二、解答题9.已知点M 是曲线y =13x 3-2x 2+3x +1上任意一点,曲线在M 处的切线为l ,求:(1)斜率最小的切线方程;(2)切线l 的倾斜角α的取值范围. 解 (1)y ′=x 2-4x +3=(x -2)2-1≥-1, 所以当x =2时,y ′=-1,y =53,所以斜率最小的切线过点⎝ ⎛⎭⎪⎫2,53,斜率k =-1, 所以切线方程为3x +3y -11=0. (2)由(1)得k ≥-1,所以tan α≥-1,所以α∈⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π.10.已知曲线y =x 3+x -2在点P 0处的切线l 1平行于直线4x -y -1=0,且点P 0在第三象限. (1)求P 0的坐标;(2)若直线l ⊥l 1,且l 也过切点P 0,求直线l 的方程. 解 (1)由y =x 3+x -2,得y ′=3x 2+1, 由已知令3x 2+1=4,解之得x =±1. 当x =1时,y =0;当x =-1时,y =-4.又∵点P 0在第三象限,∴切点P 0的坐标为(-1,-4). (2)∵直线l ⊥l 1,l 1的斜率为4, ∴直线l 的斜率为-14.∵l 过切点P 0,点P 0的坐标为(-1,-4), ∴直线l 的方程为y +4=-14(x +1),即x +4y +17=0.能力提升题组 (建议用时:20分钟)11.(2016·山东卷改编)若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质,下列函数: ①y =sin x ;②y =ln x ;③y =e x;④y =x 3.其中具有T 性质的是________(填序号).解析 若y =f (x )的图象上存在两点(x 1,f (x 1)),(x 2,f (x 2)), 使得函数图象在这两点处的切线互相垂直,则f ′(x 1)·f ′(x 2)=-1.对于①:y ′=cos x ,若有cos x 1·cos x 2=-1,则当x 1=2k π,x 2=2k π+π(k ∈Z )时,结论成立;对于②:y ′=1x ,若有1x 1·1x 2=-1,即x 1x 2=-1,∵x 1>0,x 2>0,∴不存在x 1,x 2,使得x 1x 2=-1;对于③:y ′=e x ,若有e x 1·e x 2=-1,即ex 1+x 2=-1.显然不存在这样的x 1,x 2;对于④:y ′=3x 2,若有3x 21·3x 22=-1,即9x 21x 22=-1,显然不存在这样的x 1,x 2. 答案 ①12.(2017·合肥模拟改编)点P 是曲线x 2-y -ln x =0上的任意一点,则点P 到直线y =x -2的最小距离为________.解析 点P 是曲线y =x 2-ln x 上任意一点,当过点P 的切线和直线y =x -2平行时, 点P 到直线y =x -2的距离最小,直线y =x -2的斜率为1,令y =x 2-ln x , 得y ′=2x -1x =1,解得x =1或x =-12(舍去),故曲线y =x 2-ln x 上和直线y =x -2平行的切线经过的切点坐标为(1,1), 点(1,1)到直线y =x -2的距离等于2, ∴点P 到直线y =x -2的最小距离为 2. 答案213.若函数f (x )=12x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________.解析 ∵f (x )=12x 2-ax +ln x ,∴f ′(x )=x -a +1x(x >0).∵f (x )存在垂直于y 轴的切线,∴f ′(x )存在零点,即x +1x -a =0有解,∴a =x +1x≥2(当且仅当x =1时取等号).答案 [2,+∞)14.已知函数f (x )=x -2x,g (x )=a (2-ln x )(a >0).若曲线y =f (x )与曲线y =g (x )在x=1处的切线斜率相同,求a 的值,并判断两条切线是否为同一条直线.解根据题意有f′(x)=1+2x2,g′(x)=-ax.曲线y=f(x)在x=1处的切线斜率为f′(1)=3,曲线y=g(x)在x=1处的切线斜率为g′(1)=-a,所以f′(1)=g′(1),即a=-3.曲线y=f(x)在x=1处的切线方程为y-f(1)=3(x-1).所以y+1=3(x-1),即切线方程为3x-y-4=0.曲线y=g(x)在x=1处的切线方程为y-g(1)=3(x-1),所以y+6=3(x-1),即切线方程为3x-y-9=0,所以,两条切线不是同一条直线.。
3.2.1 常见函数的导数
学习目标:1.能根据导数的定义,求函数y =c ,y =x ,y =x 2,y =1
x
,y =x 的导数. 2.
能利用给出的基本初等函数的导数公式,求简单函数的导数.(重点、难点)
[自 主 预 习·探 新 知]
基本函数的导数公式
1.判断正误:
(1)(log 3π)′=1
πln 3
.( )
(2)若f (x )=1
x
,则f ′(x )=ln x .( )
(3)因为(sin x )′=cos x ,所以(sin π)′=cos π=-1.( ) (4)f (x )=a 3
(a 为常数),f ′(x )=3a 2
.( ) 【解析】 (1)×.(lo g 3π)′=0. (2)×.若f (x )=1x ,则f ′(x )=-1
x
2.
(3)×.(sin π)′=0.
(4)×.∵a 是常数,∴f (x )=a 3
是常数,故f ′(x )=0. 【答案】 (1)× (2)× (3)× (4)×
2.函数y =ln x 在x =2处的切线的斜率为________. 【解析】 k =y ′|x =2=(ln x )′|x =2=1x |x =2=1
2.
【答案】 1
2
[合 作 探 究·攻 重 难]
(1)y =x 2
·x ;(2)y =2cos 2
x
2
-1;(3)y =log 2x ;
(4)y =3x 4;(5)y =⎝ ⎛⎭
⎪⎫12-x
;(6)y =x x . 【导学号:95902195】
[思路探究] (3)可直接利用公式求导;(1)(2)(4)(5)(6)需变形之后利用公式求导. 【自主解答】 (1)
(2)∵y =2cos 2
x
2-1=cos x ,
∴y ′=(cos x )′=-sin x . (3)y ′=(log 2x )′=
1
x ln 2
.
[规律方法] 利用求导公式求函数的导数的两个关注点
直接用公式:若所求函数符合基本初等函数导数公式,则直接利用公式求解. 变形用公式:对于不能直接利用公式的类型,关键是利用代数恒等变换对函数解
析式进行化简或变形,合理转化为可以直接应用公式的基本函数的模式,如根式化成分数指数幂的形式等.
[跟踪训练]
1.求下列函数的导函数: (1)y =2x
;
(2)y =4x 3
; (3)y =2sin x 2cos x
2
.
(1)曲线y =x 3
. (2)过点(3,5)且与曲线y =x 2
相切的切线方程为__________. [思路探究] (1)可直接利用k =f ′(x 0)求切线的斜率.
(2)点(3,5)不在曲线上,故解答本题需先设出切点坐标,再利用导数的几何意义求出斜率,进而求出切点坐标,得到切线的方程.
【自主解答】 (1)∵y ′=3x 2
,∴k =3×12
=3,故切线方程为y -1=3(x -1),即3x -y -2=0.
(2)∵点(3,5)不在曲线y =x 2上,
∴可设过点(3,5)与曲线y =x 2相切的直线与曲线的切点为(x 0,y 0). ∵y ′=2x ,∴当x =x 0时,y ′=2x 0,故切线方程为y -x 2
0=2x 0(x -x 0). 又∵直线过(3,5)点,∴5-x 2
0=2x 0(3-x 0), 即x 2
0-6x 0+5=0,解得x 0=1或x 0=5. 故切线方程为2x -y -1=0或10x -y -25=0.
【答案】 (1)3x -y -2=0 (2)2x -y -1=0或10x -y -25=0 [规律方法]
1.利用导数的几何意义解决切线问题的两种情况
(1)若已知点是切点,则在该点处的切线斜率就是该点处的导数.
(2)如果已知点不是切点,则应先设出切点,再借助两点连线的斜率公式进行求解. 2.求过点P 与曲线相切的直线方程的三个步骤
[跟踪训练]
2.设P (x 0,y 0)⎝ ⎛⎭⎪⎫x 0∈⎝
⎛⎭⎪⎫0,π2是曲线y =cos x 上的点,在点P 处的切线与直线3x +
2y -1=0平行,则P 点的坐标为________.
【导学号:95902196】
【解析】 ∵点P 处的切线与3x +2y -1=0平行, ∴切线斜率k =-
32
, ∴y ′=-sin x 0=-
32,∴sin x 0=32
. 又∵x 0∈⎝ ⎛⎭⎪⎫0,π2,∴x 0=π3,
∴y 0=cos π3=12,∴P 点为⎝ ⎛⎭
⎪⎫π3,12. 【答案】 ⎝ ⎛⎭
⎪⎫π3,12
[探究问题]
1.函数y =f (x )的导数为f ′(x ),f ′(x 0)的几何意义是什么?
【提示】 f ′(x 0)的几何意义是曲线y =f (x )在点(x 0,f (x 0))处切线的斜率. 2.在涉及曲线的切线问题时,若切点坐标没有作为条件给出,应如何处理? 【提示】 应设出切点坐标,利用k =f ′(x 0),y 0=f (x 0)等条件构建方程组求解. 3.设某物体运动的位移为y =f (t ),那么f ′(t 0)的实际意义是什么? 【提示】 f ′(t 0)是物体在t =t 0时刻的瞬时速度.
(1)曲线y =x 3
上一点B 处的切线l 交x 轴于点A ,△OAB (O 是原点)是以A 为顶
点的等腰三角形,则切线l 的倾斜角为________.
(2)某质点运动的方程为y =2x
,则在x =3时的瞬时速度为________.
【导学号:95902197】
[思路探究] (1)设出切点的坐标,由已知条件求出切点坐标,并求出斜率从而得出l 的倾斜角.
(2)求x =3时的导数.
【自主解答】 (1)设切点为B (x 0,y 0),倾斜角为α,则k =y ′|x =x 0
=3x 2
0,
∴切线方程为y -y 0=3x 2
0(x -x 0), 即y -x 30=3x 20·x -3x 3
0,令y =0得x =23x 0,
依题意得2
3
|x 0|=
⎝ ⎛⎭
⎪⎫x 0-23x 02
+x 30
2
,
∴x 40=13,∴x 2
0=33,
∴k =3×
3
3
=3,∴tan α=3,α=60°. (2)y ′=2x
ln 2,当x =3时瞬时速度为23
ln 2=8ln 2. 【答案】 (1)60° (2)8ln 2 [规律方法] 导数综合应用的解题策略
导数在实际问题中的应用非常广泛,如运动物体在某一时刻的瞬时速度等,解决
此类问题的关键是正确理解导数的实际意义,准确求出导数.
利用基本初等函数的求导公式,结合导数的几何意义可以解决一些与距离、面积
相关的最值问题,解题的关键是正确确定切线的斜率,进而求出切点坐标.
[跟踪训练]
3.求曲线y =1x
和y =x 2
在它们交点处的两条切线与x 轴所围成的三角形的面积.
【解】 由⎩⎪⎨⎪⎧
y =1x
,
y =x 2,
解得交点为(1,1).
∵y ′=⎝ ⎛⎭
⎪⎫1x ′
=-1x 2,∴k 1=-1,
∴曲线y =1
x
在(1,1)处的切线方程为y -1=-x +1,
即y =-x +2.
∵y ′=(x 2
)′=2x ,∴k 2=2,
∴曲线y =x 2在(1,1)处的切线方程为y -1=2(x -1), 即y =2x -1.
y =-x +2与y =2x -1和x 轴的交点分别为(2,0),⎝
⎛⎭
⎪⎫1
2
,0. ∴所求面积S =12×1×⎝ ⎛⎭⎪⎫2-12=3
4
.
[构建·体系]
[当 堂 达 标·固 双 基]
1.f (x )=x ,f ′(x )=________.
【答案】
12x
2.函数f (x )=cos x ,则f ′(π2)+f (π
3
)=________.
【导学号:95902198】
【解析】 f ′(x )=(cos x )′=-sin x ,
∴f ′⎝ ⎛⎭⎪⎫π2+f ⎝ ⎛⎭⎪⎫π3=-sin π2+cos π3=-1+12=-12. 【答案】 -1
2
3.曲线f (x )=ln x 在(2,ln 2)处切线的斜率是________. 【解析】 ∵f ′(x )=1x ,∴k =f ′(2)=1
2.
【答案】 1
2
4.过点P (-1,2)且与曲线y =3x 2
在点M (1,3)处的切线平行的直线方程是__________.
【导学号:95902199】
【解析】 y ′=6x ,∴曲线y =3x 2在点M (1,3)处切线的斜率为6×1=6,∴所求直线方程为y -2=6(x +1),即6x -y +8=0.
【答案】 6x -y +8=0 5.求下列函数的导数:
(1)y =cos ⎝ ⎛⎭
⎪⎫π2-x ; (2)y =log 22x -1.
【解】 (1)∵y =cos ⎝ ⎛⎭
⎪⎫π2-x =sin x ,∴y ′=cos x .
(2)∵y =log 22x -1=log 2x ,∴y ′=
1
x ln 2
.。