高中数学 3_2_1 几类不同增长的函数模型教案 新人教版必修1
- 格式:doc
- 大小:1.22 MB
- 文档页数:6
“几种不同增长的函数模型”教学设计一、 教材分析(一) 、教学内容本节课的内容是高中数学必修1第三章《函数的应用》的第二节“几种不同增长的函数模型”第一课时,根据课程设置要求,“几种不同增长的函数模型”需用2个课时,因此我把教材中的例题1和例题2作为第一课时。
(二)教材的地位和作用本节课要求学生通过实例分析,体会“直线上升”“指数爆炸”“对数增长”的含义及其在实际生活中的应用。
它既是第二章基本初等函数知识的延续,又为函数模型的应用打下了基础,起着承前起后的作用。
(三)、教学目标和要求1、知识目标:利用计算工具,比较指数函数、对数函数、幂函数间的增长差异,结合实例体会直线上升,指数爆炸,对数增长等不同函数增长的含义。
2、能力目标:通过对几种不同增长的函数模型的分析,体会它们间的差异,培养学生利用图表分析问题的能力和数据处理能力;了解函数模型的广泛应用;培养学习数学的兴趣。
3、情感目标:通过对几种不同增长的函数模型的探究,体验指数函数、对数函数、幂函数与现实世界的密切联系及其在刻划现实生活中的作用。
(四)、教学重难点:重点: 认识指数函数、对数函数、幂函数等函数模型的增长差异,体会直线上升、指数爆炸、对数增长;应用函数模型解决简单问题。
难点:学生对指数函数、对数函数、幂函数的增长速度的认识还很少所以让学生比较这几种函数的增长差异会有一定困难;如何选择适当的函数模型分析解决实际问题是另一个困难。
二、教学方法:问题探究和启发式相结合的教学方法. 三、教学工具:电脑多媒体四、教学过程1、复习、引入:在《基本初等函数》中我们学习了哪几种函数? 2、创设问题情境一: (展示细胞生长故事的课件)12222324回顾:某种细胞分裂时,由1个分裂成两个,两个分裂成4个……,一个这样的细胞分裂x 次后,得到的细胞个数y 与x 的函数关系是。
第一次第二次第三次第四次引导学生观察,思考,回答问题。
3、创设问题情境二:(展示问题情境课件)假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案回报如下:方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元: 方案三:第一天回报0.4元,以后每天的回报比前一天翻一番。
§3.2.1 几类不同增长的函数模型一、教学目标:1. 知识与技能 结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义, 理解它们的增长差异性.2. 过程与方法 能够借助信息技术, 利用函数图象及数据表格, 对几种常见增长类型的函数的增长状况进行比较, 初步体会它们的增长差异性; 收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等), 了解函数模型的广泛应用.3. 情感、态度、价值观 体验函数是描述宏观世界变化规律的基本数学模型,体验指数函数、对数函数等函数与现实世界的密切联系及其在刻画现实问题中的作用.二、 教学重点、难点:1. 教学重点 将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义.2.教学难点 选择合适的数学模型分析解决实际问题.三、 学法与教学用具:1. 学法:学生通过阅读教材,动手画图,自主学习、思考,并相互讨论,进行探索.2.教学用具:多媒体.四、教学设想:(一)引入实例,创设情景.教师引导学生阅读例1,分析其中的数量关系,思考应当选择怎样的函数模型来描述;由学生自己根据数量关系,归纳概括出相应的函数模型,写出每个方案的函数解析式,教师在数量关系的分析、函数模型的选择上作指导.(二)互动交流,探求新知.1. 观察数据,体会模型.教师引导学生观察例1表格中三种方案的数量变化情况,体会三种函数的增长差异,说出自己的发现,并进行交流.2. 作出图象,描述特点. 教师引导学生借助计算器作出三个方案的函数图象,分析三种方案的不同变化趋势,并进行描述,为方案选择提供依据.(三)实例运用,巩固提高.1. 教师引导学生分析影响方案选择的因素,使学生认识到要做出正确选择除了考虑每天的收益,还要考虑一段时间内的总收益. 学生通过自主活动,分析整理数据,并根据其中的信息做出推理判断,获得累计收益并给出本例的完整解答,然后全班进行交流.2. 教师引导学生分析例2中三种函数的不同增长情况对于奖励模型的影响,使学生明确问题的实质就是比较三个函数的增长情况,进一步体会三种基本函数模型在实际中广泛应用,体会它们的增长差异.3.教师引导学生分析得出:要对每一个奖励模型的奖金总额是否超出5万元,以及奖励比例是否超过25%进行分析,才能做出正确选择,学会对数据的特点与作用进行分析、判断。
课题:§3.2.1几类不同增长的函数模型
教学目标:
知识与技能结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义,理解它们的增长差异性.
过程与方法能够借助信息技术,利用函数图象及数据表格,对几种常见增长类型的函数的增长状况进行比较,初步体会它们的增长差异性;收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等),了解函数模型的广泛应用.
情感、态度、价值观体验函数是描述宏观世界变化规律的基本数学模型,体验指数函数、对数函数等函数与现实世界的密切联系及其在刻画现实问题中的作用.教学重点:
重点将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义.
难点怎样选择数学模型分析解决实际问题.
教学程序与环节设计:
实际问题引入,激发学生兴趣.
选择变量、建立模型,利用数据表格、函数图象讨论模型,体会不同函数模型增长的含义及其差异.
总结例题的探究方法,并进一步探索研究幂函数、指数函数、对数函数的增长差异,形成结论性报告.
归纳一般的应用题的求
教学过程与操作设计:。
课题:3.2.1几类不同增长函数模型一、教材分析1、教材的地位和作用几类不同增长的函数模型是函数应用问题的基础,又是十分贴近生活的常见问题,教科书对几类不同增长的函数模型的认识及应用,都是通过实例让学生仔细体会直线上升、指数爆炸与对数增长,进而认识指数函数、对数函数、幂函数等函数模型的增长差异。
函数模型本身来源于现实,并用于解决实际问题,所以必须寻找更多的机会从实际问题中发现或建立数学模型,并体会数学在实际问题中的应用价值。
本节课是在学习了基本初等函数之后的后续内容,是对学生应用函数解决实际问题能力的进一步加强,也是对前面所学的函数知识的一种完善,有助于培养学生的学以致用的数学应用意识,让学生感受到“数学无处不在,数学就在我们生活周围”。
2、教学内容安排本节内容安排两个课时,第一课时:教科书选取了投资回投和选择奖励模型两个实例,让学生对直线上升、指数爆炸与对数增长有一个感性的认识,初步发现当自变量变得很大时,指数函数比一次函数增长得快,一次函数比对数函数增长得快。
第二课时:注重在知识教学中,让学生经历掌握数学思想和方法的过程,经历进行数学思考的过程,进一步体会到指数函数、对数函数、幂函数的增长差异。
接下来,我将重点说说第一节课的设计,并对整堂课作系统介绍。
3、教学重点、难点第一课时通过问题的提出、模型的建立、问题的解决这一过程展开,因此确定本节课的教学重点为:教学重点:将实际问题转化为数学问题,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。
由于学生对从现实生活中发现数学问题,训练较少,加上学生学习的现有函数模型的有限,确定本节课的教学难点为:教学难点:如何选择和利用不同函数模型增长差异性分析解决实际问题。
而这个难点容易让学生展开讨论、探索、合作交流,加以教师适时点拨、引导来逐步突破。
二、教学目标根据教材和教学大纲要求,确定如下:1、知识目标:能够借助计算器或计算机制作数据表格和函数图象,对几种常见函数类型的增长情况进行比较,在实际应用的背景中理解它们的增长差异。
课题几类不同增长的函数模型(1)教学目标:1. 能够找出简单实际问题中的函数关系式,2. 初步体会应用函数模型解决实际问题.3. 能够利用给定的函数模型或建立确定性函数模型解决实际问题.4.进一步感受运用函数概念建立函数模型的过程和方法,对给定的函数模型进行简单的分析评价.体会函数模型在数学和其他学科中的重要性.5.体会运用函数思想处理现实生活中和社会中的一些简单问题的实用价值.教学重点难点:1.重点:利用给定的函数模型或建立确定性质函数模型解决实际问题..2.难点:将实际问题转化为数学模型,并对给定的函数模型进行简单的分析评价.教法与学法:1.教法选择:在相对熟悉的问题情境中,通过学生自主探究,合作交流中完成的学习任务.尝试指导与自主学习相结合2.学法指导:学生自主阅读教材,采用尝试、讨论方式进行探究.教学过程:一、设置情境,激发探索点作铺垫⑤指出它们属于哪种函数模型.⑥讨论它们的单调性.⑦比较它们的增长差异.⑧另外还有哪种函数模型.生分析问题的能力虑问题的思路.实验探索辨析研讨①总价等于单价与数量的积.②面积等于边长的平方.③由特殊到一般,先求出经过1年、2年、….④列表画出函数图象.⑤引导学生回忆学过的函数模型.⑥结合函数表格与图象讨论它们的单调性.⑦让学生自己比较并体会.⑧另外还有与对数函数有关的函数模型.讨论结果:①y=x.②y=x2.③y=(1+5%)x,④如下表x 1 2 3 4 5 6y=x 1 2 3 4 5 6y=x2 1 4 9 16 25 36y=(1+5%)x 1.05 1.01 1.16 1.22 1.28 1.34它们的图象分别为图3-2-1-1,图3-2-1-2,图3-2-1-3.图3-2-1-1 图3-2-1-2 图3-2-1-3⑤它们分别属于:y=kx+b(直线型),y=ax2+bx+c(a≠0,抛物线型),y=ka x+b(指数型).⑥从表格和图象得出它们都为增函数.⑦在不同区间增长速度不同,随着x的增大y=(1+5%)x的增长速度越来越快,会远远大于另外两个函数.⑧另外还有与对数函数有关的函数模型,形如y=log a x+b,我们把它叫做对数型函数.引发学生思考,经历建立函数基本模型的过程倡导学生合作学习,让学生体验成功的快乐。
3.2.1几类不同增长的函数模型(教学设计)教学目标:知识与技能:结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义,理解它们的增长差异性. 过程与方法:能够借助信息技术,利用函数图象及数据表格,对几种常见增长类型的函数的增长状况进行比较,初步体会它们的增长差异性;收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等),了解函数模型的广泛应用.情感、态度、价值观:体验函数是描述宏观世界变化规律的基本数学模型,体验指数函数、对数函数等函数与现实世界的密切联系及其在刻画现实问题中的作用.教学重点:重点:将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义.难点:怎样选择数学模型分析解决实际问题.一、新课导入:材料:澳大利亚兔子数“爆炸” 在教科书第三章的章头图中,有一大群喝水、嬉戏的兔子,但是这群兔子曾使澳大利亚伤透了脑筋.1859年,有人从欧洲带进澳洲几只兔子,由于澳洲有茂盛的牧草,而且没有兔子的天敌,兔子数量不断增加,不到100年,兔子们占领了整个澳大利亚,数量达到75亿只.可爱的兔子变得可恶起来,75亿只兔子吃掉了相当于75亿只羊所吃的牧草,草原的载畜率大大降低,而牛羊是澳大利亚的主要牲口.这使澳大利亚头痛不已,他们采用各种方法消灭这些兔子,直至二十世纪五十年代,科学家采用载液瘤病毒杀死了百分之九十的野兔,澳大利亚人才算松了一口气.二、师生互动,新课讲解:例1(课本P95例1),假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下: 方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元;方案三:第一天回报0 .4元,以后每天的回报比前一天翻一番.请问,你会选择哪种投资方案?探究:1)在本例中涉及哪些数量关系?如何用函数描述这些数量关系?2)分析解答(略)(见P95--97)3)根据例1表格中所提供的数据,你对三种方案分别表现出的回报资金的增长差异有什么认识?例2:(课本P97例2)某公司为了实现1000万元利润的目标,准备制定一个激励销售部门的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金y (单位:万元)随销售利润x (单位:万元)的增加而增加但奖金不超过5万元,同时奖金不超过利润的25%.现有三个奖励模型:x y 25.0= 1log 7+=x y x y 002.1=.问:其中哪个模型能符合公司的要求?探究:1)本例涉及了哪几类函数模型?2)本例的实质是什么?3)你能根据问题中的数据,判定所给的奖励模型是否符合公司要求吗?解答:(课本P97—98)幂函数、指数函数、对数函数的增长差异分析:你能否仿照前面例题使用的方法,探索研究幂函数)0(>=n x y n 、指数函数)1(>=a a y x 、对数函数)1(log >=a x y a 在区间),0(+∞上的增长差异,并进行交流、讨论、概括总结。
§3.2.1 几类不同增长的函数模型一、教学目标:1. 知识与技能 结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义, 理解它们的增长差异性.2. 过程与方法 能够借助信息技术, 利用函数图象及数据表格, 对几种常见增长类型的函数的增长状况进行比较, 初步体会它们的增长差异性; 收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等), 了解函数模型的广泛应用.3. 情感、态度、价值观 体验函数是描述宏观世界变化规律的基本数学模型,体验指数函数、对数函数等函数与现实世界的密切联系及其在刻画现实问题中的作用.二、 教学重点、难点:1. 教学重点 将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义.2.教学难点 选择合适的数学模型分析解决实际问题.三、 学法与教学用具:1. 学法:学生通过阅读教材,动手画图,自主学习、思考,并相互讨论,进行探索.2.教学用具:多媒体.四、教学设想:(一)引入实例,创设情景.教师引导学生阅读例1,分析其中的数量关系,思考应当选择怎样的函数模型来描述;由学生自己根据数量关系,归纳概括出相应的函数模型,写出每个方案的函数解析式,教师在数量关系的分析、函数模型的选择上作指导.(二)互动交流,探求新知.1. 观察数据,体会模型.教师引导学生观察例1表格中三种方案的数量变化情况,体会三种函数的增长差异,说出自己的发现,并进行交流.2. 作出图象,描述特点. 教师引导学生借助计算器作出三个方案的函数图象,分析三种方案的不同变化趋势,并进行描述,为方案选择提供依据.(三)实例运用,巩固提高.1. 教师引导学生分析影响方案选择的因素,使学生认识到要做出正确选择除了考虑每天的收益,还要考虑一段时间内的总收益. 学生通过自主活动,分析整理数据,并根据其中的信息做出推理判断,获得累计收益并给出本例的完整解答,然后全班进行交流.2. 教师引导学生分析例2中三种函数的不同增长情况对于奖励模型的影响,使学生明确问题的实质就是比较三个函数的增长情况,进一步体会三种基本函数模型在实际中广泛应用,体会它们的增长差异.3.教师引导学生分析得出:要对每一个奖励模型的奖金总额是否超出5万元,以及奖励比例是否超过25%进行分析,才能做出正确选择,学会对数据的特点与作用进行分析、判断。
3.2.1几类不同增长的函数模型 教学目标:知识与技能:结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义,理解它们的增长差异性.过程与方法:能够借助信息技术,利用函数图象及数据表格,对几种常见增长类型的函数的增长状况进行比较,初步体会它们的增长差异性;收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等),了解函数模型的广泛应用.情感、态度、价值观:体验函数是描述宏观世界变化规律的基本数学模型,体验指数函数、对数函数等函数与现实世界的密切联系及其在刻画现实问题中的作用.教学重点:重点:将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义.难点:怎样选择数学模型分析解决实际问题. 一、新课导入:材料:澳大利亚兔子数“爆炸”在教科书第三章的章头图中,有一大群喝水、嬉戏的兔子,但是这群兔子曾使澳大利亚伤透了脑筋.1859年,有人从欧洲带进澳洲几只兔子,由于澳洲有茂盛的牧草,而且没有兔子的天敌,兔子数量不断增加,不到100年,兔子们占领了整个澳大利亚,数量达到75亿只.可爱的兔子变得可恶起来,75亿只兔子吃掉了相当于75亿只羊所吃的牧草,草原的载畜率大大降低,而牛羊是澳大利亚的主要牲口.这使澳大利亚头痛不已,他们采用各种方法消灭这些兔子,直至二十世纪五十年代,科学家采用载液瘤病毒杀死了百分之九十的野兔,澳大利亚人才算松了一口气.二、师生互动,新课讲解:例1(课本P95例1),假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下: 方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元;方案三:第一天回报0 .4元,以后每天的回报比前一天翻一番.请问,你会选择哪种投资方案?探究:1)在本例中涉及哪些数量关系?如何用函数描述这些数量关系?2)分析解答(略)(见P95--97)3)根据例1表格中所提供的数据,你对三种方案分别表现出的回报资金的增长差异有什么认识?例2:(课本P97例2)某公司为了实现1000万元利润的目标,准备制定一个激励销售部门的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金y (单位:万元)随销售利润x (单位:万元)的增加而增加但奖金不超过5万元,同时奖金不超过利润的25%.现有三个奖励模型:x y 25.0= 1log 7+=x y x y 002.1=.问:其中哪个模型能符合公司的要求?探究:1)本例涉及了哪几类函数模型?2)本例的实质是什么?3)你能根据问题中的数据,判定所给的奖励模型是否符合公司要求吗?解答:(课本P97—98)幂函数、指数函数、对数函数的增长差异分析:你能否仿照前面例题使用的方法,探索研究幂函数)0(>=nxy n、指数函数)1(>=aay x、对数函数)1(log>=axya在区间),0(+∞上的增长差异,并进行交流、讨论、概括总结。
§3.2.1 几类不同增长的函数模型一、教学目标:1. 知识与技能 结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义, 理解它们的增长差异性.2. 过程与方法 能够借助信息技术, 利用函数图象及数据表格, 对几种常见增长类型的函数的增长状况进行比较, 初步体会它们的增长差异性; 收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等), 了解函数模型的广泛应用.3. 情感、态度、价值观 体验函数是描述宏观世界变化规律的基本数学模型,体验指数函数、对数函数等函数与现实世界的密切联系及其在刻画现实问题中的作用.二、 教学重点、难点:1. 教学重点 将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义.2.教学难点 选择合适的数学模型分析解决实际问题.三、 学法与教学用具:1. 学法:学生通过阅读教材,动手画图,自主学习、思考,并相互讨论,进行探索.2.教学用具:多媒体.四、教学设想:(一)引入实例,创设情景.教师引导学生阅读例1,分析其中的数量关系,思考应当选择怎样的函数模型来描述;由学生自己根据数量关系,归纳概括出相应的函数模型,写出每个方案的函数解析式,教师在数量关系的分析、函数模型的选择上作指导.(二)互动交流,探求新知.1. 观察数据,体会模型.教师引导学生观察例1表格中三种方案的数量变化情况,体会三种函数的增长差异,说出自己的发现,并进行交流.2. 作出图象,描述特点.教师引导学生借助计算器作出三个方案的函数图象,分析三种方案的不同变化趋势,并进行描述,为方案选择提供依据.(三)实例运用,巩固提高.1. 教师引导学生分析影响方案选择的因素,使学生认识到要做出正确选择除了考虑每天的收益,还要考虑一段时间内的总收益. 学生通过自主活动,分析整理数据,并根据其中的信息做出推理判断,获得累计收益并给出本例的完整解答,然后全班进行交流.2. 教师引导学生分析例2中三种函数的不同增长情况对于奖励模型的影响,使学生明确问题的实质就是比较三个函数的增长情况,进一步体会三种基本函数模型在实际中广泛应用,体会它们的增长差异.3.教师引导学生分析得出:要对每一个奖励模型的奖金总额是否超出5万元,以及奖励比例是否超过25%进行分析,才能做出正确选择,学会对数据的特点与作用进行分析、判断。