浙教版数学八年级下册反比例函数复习
- 格式:docx
- 大小:260.85 KB
- 文档页数:5
浙教版八年级下册数学第六章反比例函数含答案一、单选题(共15题,共计45分)1、反比例函数,当x<0时,y随x的增大而增大,则m的值是()A.-1B.3C.-1或3D.22、如图,已知点 A 、B分别在反比例函数的图象上,且OA ⊥OB ,则的值为()A. B.2 C. D.43、如图,直线y=x−2与双曲线y=(k>0)在第一象限内的交点为R,与x轴的交点为P,与y轴的交点为Q;作RM⊥x轴于点M,若△OPQ与△PRM的面积是4:1,则k等于( )A. B. C.2 D.34、下列各点中,在函数y=-的图象上的是( )A.(3,1)B.(-3,1)C.(,3)D.(3,-)5、如图,在Rt△ABC中,∠ABC=90°,点B在x轴上,且B(﹣1,0),A点的横坐标是2,AB=3BC,双曲线y= (m>0)经过A点,双曲线y=﹣经过C点,则m的值为()A.12B.9C.6D.36、已知抛物线y=ax2+bx+c与反比例函数y= 的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是()A. B. C. D.7、如图,过点C(1,2)分别作x轴、y轴的平行线,交直线y=﹣x+6于A、B 两点,若反比例函数y=(x>0)的图象与△ABC有公共点,则k的取值范围是()A.2≤k≤9B.2≤k≤8C.2≤k≤5D.5≤k≤88、下列各点中,在函数的图象上的点是()A.(3,4)B.(﹣2,﹣6)C.(﹣2,6)D.(﹣3,﹣4)9、已知点A(m,4)在双曲线上,则m的值是()A.-4B.4C.1D.-110、如图,以原点为圆心的圆与反比例函数y=的图象交于A、B、C、D四点,已知点A的横坐标为1,则点C的横坐标()A.﹣4B.﹣3C.﹣2D.﹣111、已知反比例函数y=的图象经过点(3,2),那么下列四个点中,也在这个函数图象上的是()A.(3,﹣2)B.(﹣2,﹣3)C.(1,﹣6)D.(﹣6,1)12、若点,,都在反比例函数的图象上,则,,的大小关系是()A. B. C. D.13、如图,点A是反比例函数y= (x>0)图象上任意一点,AB⊥y轴于点B,点C是x轴上的一个动点,则△ABC的面积为( )A.1B.2C.4D.无法确定14、下列四个点,在反比例函数图象上的是()。
浙教版 八下 数学 第六章 反比例函数【知识要点】 1、一般地,函数ky x=或()10y kx k -=≠叫做反比例函数. 2、反比例函数图象的特点:3、反比例函数的应用就是指运用反比例函数的概念、性质去解决实际问题,因此必须要通过对题目的阅读理解抽象出实际问题的函数关系,再利用反比例函数的思想去解决.4、应注意以下几个问题:⑴在反比例函数关系中,xy k =(定值);⑵在实际问题中:0x >. 【典型例题】例1:已知()2212,mm y m m x ++=+⑴如果y 是x 的正比例函数,求m 的值; ⑵如果y 是x 的反比例函数,求m 的值.例2:已知一次函数(),0y kx b k =+≠的图象与x 轴,y 轴分别交于A 、B 两点,且与反比例函数(),0my m x=≠的图象在第一象限交于C 点,CD 垂直于x 轴,垂足为D ,若 1.OA OB OD ===⑴求点,,A B C 的坐标; ⑵求一次函数和反比例函数的解析式.例3:一定质量的氧气,它的密度()3/kg m ρ是它的体积()3V m 的反比例函数,当310V m =时, 31.43/.kg m ρ= :⑴ 求ρ与V 的函数关系式; ⑵求当32V m =时,氧气的密度ρ.单元巩固一、选择题1.在下列选项中,是反比例函数关系的为( )A.在直角三角形中,30°角所对的直角边与斜边之间的关系B.在等腰三角形中,顶角与底角之间的关系C.圆的面积与它的直径之间的关系D.面积为20的菱形,其中一条对角线与另一条对角线之间的关系 2.(2012·哈尔滨中考)如果反比例函数的图象经过点(-1,-2),则k 的值是( ) A.2B.-2C.-3D.33.在同一坐标系中,函数xky =和3+=kx y 的图象大致是( )4.当>0,<0时,反比例函数的图象在()A.第一象限B.第二象限C.第三象限D.第四象限5.购买只茶杯需15元,则购买一只茶杯的单价与的关系式为( ) A.x y 15= (取实数) B. xy 15= (取整数) C. x y 15=(取自然数) D. xy 15= (取正整数) 6.若反比例函数的图象位于第二、四象限,则的值是( )A. 0B.0或1C.0或2D.47.如图,A 为反比例函数xk y =图象上一点,AB 垂直于x 轴B 点,若S △AOB =3,则k 的值为 ( ) A.6 B.3C.23D.不能确定8.已知点、、都在反比例函数4y x=的图象上,则的大小关系是( )A.B. C.D.9.正比例函数与反比例函数1x的图象相交于A 、C 两点,AB ⊥x 轴于点B ,CD ⊥x 轴于点D (如图),则四边形ABCD 的面积为( ) A.1 B.32C.2D.5210.(2012·福州中考)如图所示,过点C (1,2)分别作x 轴、y 轴的平行线,交直线k x ky =-x +6于A 、B 两点,若反比例函数y=(x >0)的图象与△ABC 有公共点,则k 的取值范围是( ) A.2≤k ≤9 B.2≤k ≤8 C.2≤k ≤5D.5≤k ≤8二、填空题(每小题3分,共24分)11.已知与成反比例,且当时,,那么当时,.12.(2012·山东潍坊中考)点P 在反比例函数(k ≠0)的图象上,点Q (2,4)与点P关于y 轴对称,则反比例函数的解析式为 .13.已知反比例函数x m y 33-=,当______m 时,其图象的两个分支在第一、三象限内;当______m 时,其图象在每个象限内y 随x 的增大而增大.14.若反比例函数xk y 3-=的图象位于第一、三象限内,正比例函数x k y )92(-=的图象过第二、四象限,则k 的整数值是________.15.现有一批救灾物资要从A 市运往B 市,如果两市的距离为500千米,车速为每小时千米,从A 市到B 市所需时间为小时,那么与之间的函数关系式为_________,是的________函数.16.(2012·河南中考)如图所示,点A 、B 在反比例函数(k >0,x >0)的图象上,过点A 、B 作x 轴的垂线,垂足分别为M 、 N ,延长线段AB 交x 轴于点C ,若OM =MN =NC ,△AOC 的面积 为6,则k 的值为 . 17.已知反比例函数,则当函数值时,自变量x 的取值范围是___________.18.在同一直角坐标系中,正比例函数x k y 1=的图象与反比例函 数xk y 2=的图象有公共点,则21k k 0(填“>”、“=”或“<”). 三、解答题(共46分)19.(6分)已知一次函数kx y =与反比例函数xy 3=的图象都经过点A (m ,1).求: (1)正比例函数的解析式;(2)正比例函数与反比例函数的图象的另一个交点的坐标.20.(6分)如图,正比例函数12y x=的图象与反比例函数kyx=(0)k≠在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知△的面积为1.(1)求反比例函数的解析式;(2)如果B为反比例函数在第一象限图象上的点(点B与点A不重合),且B点的横坐标为1,在x轴上求一点P,使PA PB+最小.21.(6分)如图所示是某一蓄水池的排水速度h)与排完水池中的水所用的时间t(h)之间的函数关系图象.(1)请你根据图象提供的信息求出此蓄水池的蓄水量;(2)写出此函数的解析式;(3)若要6 h排完水池中的水,那么每小时的排水量应该是多少?(4)如果每小时排水量是,那么水池中的水要用多少小时排完?22.(7分)若反比例函数xky =与一次函数42-=x y 的图象都经过点A (a ,2). (1)求反比例函数xky =的解析式; (2) 当反比例函数xky =的值大于一次函数42-=x y 的值时,求自变量x 的取值范围.23.(7分)(2012·天津中考)已知反比例函数y=(k 为常数,k ≠1).(1)其图象与正比例函数y=x 的图象的一个交点为P ,若点P 的纵坐标是2,求k 的值; (2)若在其图象的每一支上,y 随x 的增大而减小,求k 的取值范围;(3)若其图象的一支位于第二象限,在这一支上任取两点 A (x 1,y 1)、B (x 2,y 2),当y 1>y 2时,试比较x 1与x 2的大小.24.(7分)如图,已知直线1y x m =+与x 轴、y 轴分别交于点A 、B ,与反比例函数2k y x=(x)的图象分别交于点C 、 D ,且C 点的坐标为(1-,2).⑴分别求出直线AB 及反比例函数的解析式; ⑵求出点D 的坐标;⑶利用图象直接写出:当x 在什么范围内取值时,1y >2y .第6章 反比例函数 参考答案1.D2. D3.A4. C C.5.D6.A7.A8.D9.C 10. A 解析:当反比例函数图象经过点C 时,k =2;当反比例函数图象与直线AB 只有一个交点时,令-x +6=,得x 2-6x +k =0,此时方程有两个相等的实数根,故Δ=36-4k =0,所以k =9,所以k 的取值范围是2≤k ≤9,故选A. 11.6 解析:因为 与成反比例,所以设,将,代入得,所以,再将代入得. 12. y =- 解析:设点P (x,y ),∵ 点P 与点Q (2,4)关于y 轴对称,则P (-2,4),∴ k=xy=-2×4=-8.∴ y=-. 13. 14.4 解析:由反比例函数xk y 3-=的图象位于第一、三象限内,得,即.又正比例函数x k y )92(-=的图象过第二、四象限,所以,所以.所以的整数值是4. 15. 反比例 16. 4解析:设点A (x ,),∵ OM =MN =NC ,∴ AM =,OC =3x .由S △AOC =OC ·AM =·3x ·=6,解得k =4 17. 或 18.> 19.解:(1)因为反比例函数x y 3=的图象经过点A (m ,1),所以将A (m ,1)代入xy 3=中,得m =3.故点A 坐标为(3,1).将A (3,1)代入kx y =,得31=k ,所以正比例函数的解析式为3x y =.(2)由方程组⎪⎩⎪⎨⎧==,3,3x y x y 解得所以正比例函数与反比例函数的图象的另一个交点的坐标为(-3, -1). 20. 解:(1) 设A 点的坐标为(a ,b ),则k b a =.∴ ab k =.∵ 112ab =,∴ 112k =.∴ 2k =. ∴ 反比例函数的解析式为2y x =. (2) 由⎪⎪⎩⎪⎪⎨⎧==x y xy 212, 得或 ∴ A 为.设A 点关于x 轴的对称点为C ,则C 点的坐标为.如要在x 轴上求一点P ,使PA+PB 最小,即最小,则P 点应为BC 和x 轴的交点,如图所示.令直线BC 的解析式为y mx n =+.∵ B 为(1,2),∴2,12.m n m n =+⎧⎨-=+⎩∴3,5.m n =-⎧⎨=⎩∴ BC 的解析式为35y x =-+. 当0y =时,53x =.∴ P点坐标为.21. 解:(1)蓄水池的蓄水量为12×4=48().(2)函数的解析式为.(3).(4)依题意有,解得(h ).所以如果每小时排水量是5 ,那么水池中的水将要9.6小时排完.22.解:(1)因为的图象过点A (),所以.因为xky =的图象过点A (3,2),所以,所以x y 6=.(2) 求反比例函数xy 6=与一次函数42-=x y 的图象的交点坐标,得到方程:x x 642=-,解得. 所以另外一个交点是(-1,-6)画出图象,可知当或时,426->x x .23. 分析:(1)显然P 的坐标为(2,2),将P (2,2)代入y =即可.(2)由k -1>0得k >1.(3)利用反比例函数的增减性求解.解:(1)由题意,设点P 的坐标为(m ,2),∵ 点P 在正比例函数y =x 的图象上,∴ 2=m ,即m =2.∴ 点P 的坐标为(2,2). ∵ 点P 在反比例函数 y =的图象上,∴ 2=,解得k =5.(2)∵ 在反比例函数y =图象的每一支上,y 随x 的增大而减小,∴ k -1>0,解得k >1.(3)∵ 反比例函数y =图象的一支位于第二象限,∴ 在该函数图象的每一支上,y 随x 的增大而增大.∵ 点A (x 1,y 1)与点B (x 2,y 2)在该函数的第二象限的图象上,且y 1>y 2,∴ x 1>x 2.点拨:反比例函数的图象和性质是解反比例函数题目的基础. 24.解:(1)将C 点坐标(1-,2)代入1y x m =+,得,所以13y x =+;将C 点坐标(1-,2)代入2k y x=,得.所以22y x=-.(2)由方程组解得所以D 点坐标为(-2,1).(3)当1y >2y 时,一次函数图象在反比例函数图象上方,此时x 的取值范围是21x -<<-.。
反比例函数复习 姓名 学号 ⑴在①1y x -=②2x y =,③xy=3④y=3x -1,⑤53s t = ⑥y=21x +反比例函数的有________ ⑵反比例函数的图象叫 线,它有_______分支,关于 对称。
⑶①当k>0时,图象两个分支在 ,在_________内,y 随着x 的 ;
②当k<0时,图象两个分支在 ,在_________内,y 随着x 的 。
⑷若反比例函数y=(m+1)23
m x -图象在第二、四象限,则函数解析式为___________.
(5)如图P 是y=k x
图象上一点,矩形PAOB 面积=______, Rt △AOP 面积=______, 若Rt △BOA 面积=4, 反比例函数为_________△PDA 面积=________
例题 1.三角形面积6厘米2,一边长y 厘米,这边上的高x 厘米,y 关于x 的函数,
解析式为___________,x 取值范围为__________,函数图象位于第 象限.
2.已知函数k y x =图象过点(-2, 3 ),说法 ①图象过点(2,-3) ②图象关于原点对称; ③ y 随x 的增大而增大; ④这个函数k y x
=图象与直线y=2x 没有交点 正确的有 __________________
3.如图,等边三角形ABC 放置在坐标系中,已知A (0,0)、B (6,0),
函数k y x
=图象经过点C .点C 的坐标 k= . 4.点A (-3.5,y 1),B (-2,2,y 2),C (3.1,y 3)都在3y x =
的图象上,
则 y 1,y 2,y 3大小______________
5.点(x 1,y 1),(x 2,y 2),(x 3,y 3)是y=k x
(k<0)的图象上的点,并且x 1<0<x 2<x 3, 则y 1,y 2,y 3的大小______________
6.函数6y x
=-①若x >2,则y 取值范围为_______________. ②若x ≤1,则y 的取值范围为_____________
7.如图,一次函数11y x =--与反比例函数22y x
=-的图象交于 点(21)(12)A B --,,,,则使12y y >的x 的取值范围是 .
8.求直线3-=x y 与双曲线x
y 2-=的交点坐标.
9.(2014济宁)如图,四边形OABC 是矩形,ADEF 是正方形,点
A 、D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点F 在A
B 上,
点B 、E 在反比例函数y =的图象上,OA =1,OC =6,
(1)反比例函数为
(2)正方形ADEF 的边长和E 点坐标.
10.如图,一次函数y =kx +b 与反比例函数y =m x 的图象交于A (2,3),B (-3,n )两点. (1)求n= m= b= ;
(2)根据所给条件,请直接写出不等式kx +b >m x
的解集______________; (3)过点B 作BC ⊥x 轴,垂足为C ,求S △ABC .
作 业
1.下列函数,①23y x -=,②y=x ,③y=5x -1,④y=11
x +是反比例函数的个数有 ( ). A .0个 B .1个 C .2个 D .3个
2、小明乘车从余姚到上海,行车的速度y (km/h)和行车时间x (h)之间的函数图像是( )
3.函数y= 12m x
-当x<0时,y 随x 的增大而减小,则m 取值范围______________ 4.函数1k y x
-=的图象与直线y x =没有交点,那么k 的取值范围是____________ 4.若M ),21(1y -,N ),4
1(2y -,P ),21(3y 三点都在函数x k y =(k <0)的图象上, 则y 1,y 2,y 3的大小关系是________________
5.反比例函数x y 8-
=,当y ≥4时,有-2 x 0;当y <4时,有x 或x . 5、已知函数k y x
=的图象经过点(1, 4),下列说法 ①点(-1,-4)不在函数图象上 ②y 随x 的增大而减小.
③当2<y <4时, 1<x <2 ④当x<4时, y >1 . 不正确的是______________
6、直线b x y +-=5与x
y 2-= 相交于点p (—2 ,m ), 则m=_____, b=______。
7、如图所示,P 是反比例函数图象在第二象限上的一点,且三角形POE•的
面积 为5,则反比例函数的表达式是_________,Rt △PDA 面积=_____
8.已知一次函数1-=kx y 的图像与反比例函数x y 2=的图像的一个交点坐 标为(2,1),那么另一个交点的坐标是( )
A .(-2,1)
B .(-1,-2)
C .(2,-1)
D .(-1,2)
9.(11杭州)如图,函数11y x =-和函数22y x
=的图象相交于点 M (2,m ),N (-1,n ),若12y y >,则x 的取值范围是( )
A .102x x <-<<或
B .12x x <->或
C .1002x x -<<<<或
D .102x x -<<>或
10.已知 反比例函数)0(≠=k x
k y , 当x>0 时y 随x 增大而增大,那么一次函数 y=kx —k 的图像经过_______________象限。
11.如图,菱形OABC 顶点C (3,4).顶点A 在x 轴的正半轴上,反比例
函数y =(x >0)的图象经过顶点B ,则B ( , ), k =
12.如图正比例函数y=2x 与反比例函数y=4x
图象交于A 、C ,AB ⊥x 轴 于B ,CD•⊥x 轴于D ,则四边形ABCD 为_________,面积=________.
13.函数()()1240y x x y x x
==
>≥0,的图象如图,则 ①两图象的交点A ()22,;
②当2x >时,21y y >;③当1x =时,3BC =;
④1y 随着x 的增大而增大,2y 随着x 的增大而减小.
其中正确结论的序号是 .
14.(2010孝感) 如图,点A 在双曲线1y x
=上,点B 在3y x =上,且AB ∥x 轴,矩形ABCD 的面积为 .
15.已知y=1y —2y ,且1y 与x 成正比例,2y 与x-1成反比例,
且当x=2时,y=1;x=-0时y=4.求y 关于x 的函数的解析式
16.直线 y=-2x 与某反比例函数图象的一个交点的横坐标为-4。
⑴求这个反比例函数的关系式; ⑵求这两个函数图象另外一个交点坐标
17.某生利用一个最大电阻为200Ω的滑动变阻器及电流表测电源电压,
测量结果如图所示.(1)该电源电压为_________.
(2)电流I (A)与电阻R(Ω)之间的函数关系式为___________.
(3)当电阻在2Ω~200Ω之间时,电流应在______________范围内,
电流随电阻的增大而_________.
(4)若限制电流不超过20A,则电阻R 范围__________
18、如图,双曲线x k y =(0>k )过矩形QABC 的边BC 的中点E ,交AB 于点D 。
若矩形QABC 的面积为8,则双曲线的解析式为___________
△EDB 的面积=_______.
19.如图,已知一次函数y=kx+b (k ≠0)的图象与x 轴、y 轴分别交于
A 、B•两点,且与反比例函数y=m x
(m ≠0)的图象在第一象限交于C 点,CD 垂直于x 轴,垂足为D ,•若OA=OB=OD=1.
(1)求点A 、B 、D 的坐标; (2)求一次函数和反比例函数的解析式.
20. 如图,△P 1OA 1,△P 2A 1A 2是等腰直角三角形,点P 1、P 2在函数y=4x
(x>0)
的图象上,斜边OA 1、A 1A 2都在x 轴上,求点A 2的坐标
21.如图,反比例函数y= 的图象与一次函数y=x+b的图象交于点A(1,4)、点B(﹣4,n).
(1)求一次函数和反比例函数的解析式;
(2)直接写出一次函数值大于反比例函数值的自变量x的取值范围.
(3)求△OAB的面积;
初中数学试卷。