液压执行元件
- 格式:ppt
- 大小:5.50 MB
- 文档页数:29
液压执行元件各有什么用途液压执行元件是液压系统中的核心部件,主要用于将液压能转化为机械能,实现各种工程机械的运动。
常见的液压执行元件包括液压缸、液压马达和液压伺服阀等。
它们各有不同的用途,具体如下:1. 液压缸:液压缸是最常见和应用广泛的液压执行元件,主要用于产生线性运动。
它通常由缸体、活塞、活塞杆和密封件等部件组成。
液压缸可用于各种工程机械,如挖掘机、铲车和推土机等,实现各种行程和推力的精确控制。
2. 液压马达:液压马达是将液压能转化为旋转运动的液压执行元件。
它通常由马达本体、齿轮或液压马达柱塞等组成。
液压马达广泛应用于各种需要转动运动的工程机械,如起重机、钻机和混凝土泵等。
3. 液压伺服阀:液压伺服阀是用于控制和调节液压系统中流量和压力的重要元件。
通过调节阀芯的位置和开口大小,实现对液压能的精确控制。
液压伺服阀广泛应用于液压系统中的动态控制和自动化控制系统。
4. 液压驻车制动器:液压驻车制动器主要用于工程机械和汽车等的停车制动。
它通过液压系统产生的压力来使制动器盘片紧密贴合,从而实现对车辆的牵制和停止。
5. 液力变矩器:液力变矩器是用于传递和调节动力的液压执行元件。
它通常由泵轮、涡轮和导向器等组成,可以实现变矩器的连续变比。
液力变矩器广泛应用于各种需要动力变速的工程机械和汽车等。
6. 液压传动件:液压传动件主要用于传递液压能和机械能的变换。
常见的液压传动件包括管路、接头和油管等。
液压传动件在液压系统中起到连接各个液压元件的作用,实现液压能的传递和分配。
总结来说,液压执行元件在工程机械、汽车等领域中起到至关重要的作用。
它们能够将液压能有效地转化为机械能,实现各种运动和动力传递。
液压执行元件的应用不仅提高了机械设备的工作效率和精度,还增加了操作的便利性和安全性。
第五专题液压执行元件第一讲定义与基本概念第一讲定义与基本概念一、液压执行元件的定义二、液压执行元件的图形符号三、液压缸的基本概念四、液压缸的分类一、液压执行元件的定义压力能机械能压力能机械能动力元件控制元件执行元件原动机辅助元件与工作介质液压执行元件是将液压泵提供的压力能转变为机械能的能量转换装置。
依据输出方式的不同可分为液压缸和液压马达两类。
液压缸是指输出直线运动(包括摆动)的液压执行元件;液压马达是指输出旋转运动的液压执行元件。
二、液压执行元件的图形符号液压泵液压马达液压缸缸筒活塞活塞杆进出油口【注意点1】进出油口放置在靠近两端的侧面位置。
缸筒活塞活塞杆进出油口【注意点2】无杆腔与有杆腔的截面面积是不同的。
无杆腔有杆腔缸筒活塞活塞杆进出油口【注意点3】单杆和双杆的工作腔是不同的。
左腔右腔四、液压缸的分类(1)按结构形式分类活塞缸、柱塞缸、伸缩缸等活塞缸又分为单杆式和双杆式两种。
(2)按受液压力作用分类单作用缸、双作用缸第五专题液压执行元件第二讲单杆式双作用缸的工作原理第二讲单杆式双作用缸的工作原理一、单杆式双作用缸的工作原理二、单杆式双作用缸的固定方式三、单杆式双作用缸的运动范围一、单杆式双作用缸的工作原理1)通压力油的油口进油;未通压力油的油口出油。
2)活塞会受到与压力油相连工作腔的作用力,向未通压力油的工作腔方向移动。
二、单杆式双作用缸的固定方式1、缸筒固定2、活塞杆固定缸筒固定方式实现较为简单,是常用的固定方式。
因此,在未说明固定方式的情况下,都默认为缸筒固定方式。
活塞能够运动的最大长度称为该液压缸的活塞行程(L)。
活塞能够伸出的最大长度近似等于活塞行程。
为简化计算,一般也认为活塞伸出的最大长度也为L。
L L运动范围:活塞缸在整个活塞行程中所波及的最大长度。
已知活塞行程为L,在缸筒固定情况下,单杆式双作用缸的运动范围是2L。
L LL【思考】已知活塞行程为L,在活塞杆固定情况下,单杆式双作用缸的运动范围是多少呢?A.0B.LC.2LD.3LL运动范围:活塞缸在整个活塞行程中所波及的最大长度。
液压控制系统的基本组成液压控制系统是一种利用压力传递液体来实现力、运动和能量转换的控制系统。
它由多个组成部分组合而成,每个部分都有着特定的功能。
下面将对液压控制系统的基本组成进行详细介绍。
1. 液压源液压源是液压控制系统的动力来源,主要由液压泵、液压马达和液压发电机等组成。
液压泵负责将机械能转化为液压能,将液体压力提高;液压马达则将液体能量转化为机械能,实现运动;液压发电机则是通过液体能量转化为电能,为系统提供电力。
2. 液压执行元件液压执行元件是液压控制系统中负责执行特定任务的部件,主要包括液压缸和液压马达。
液压缸通过液压能将液体压力转化为线性运动,实现推拉工作;液压马达则将液体能量转化为旋转运动,实现转动工作。
3. 液压控制阀液压控制阀是液压控制系统中的核心部件,负责控制液体的流动方向、压力和流量。
常见的液压控制阀包括单向阀、溢流阀、节流阀、方向控制阀和比例控制阀等。
这些阀门能够根据系统需求进行开启、关闭或调节,从而实现对液压能的精确控制。
4. 液压储能元件液压储能元件主要包括液压蓄能器,用于存储液体能量以备系统需要时使用。
液压蓄能器能够在系统停止供液或液压源故障时继续提供能量,保证系统的稳定运行。
5. 辅助元件辅助元件是液压控制系统中的其他重要组成部分,主要包括油箱、滤清器、冷却器、管路和连接件等。
油箱用于储存液压油,并起到冷却和滤清的作用;滤清器负责过滤液压油中的杂质,保证系统的正常运行;冷却器则通过散热将液压油的温度降低,防止系统过热;管路和连接件用于连接各个液压元件,使液体能够顺畅地流动。
液压控制系统的基本组成就是以上几个部分。
通过液压源提供动力,液压执行元件实现动作,液压控制阀控制液体的流动,液压储能元件存储能量,辅助元件保证系统的正常运行。
这些部分相互配合,共同完成液压控制系统的功能。
液压控制系统的基本组成是多个部分的组合,每个部分都有着特定的功能。
了解和掌握液压控制系统的基本组成,对于正确使用和维护液压系统具有重要意义。
液压执行元件是将液压泵提供的液压能转变成机械能并拖动外界负载作功的能量转换装置。
它包括液压缸和液压马达。
§5-1 液压马达一·液压马达分类和特点✓按结构类型可分为齿轮式,叶片式,柱塞式。
✓液压马达按转速分为高速小扭矩和低速大扭矩两大类。
高速小转矩马达基本类型:齿轮式、叶片式、柱塞式等。
主要特点:转速较高,转动惯量小,便于启动和制动,调节灵敏度高,输出转矩不大(仅几十Nm到几百Nm。
主要缺点:起动扭矩较低,低速稳定性差,最低转速偏高。
低速大转矩马达基本型式:径向柱塞式、多作用叶片马达等。
如: 静平衡马达、曲轴连杆式马达、多作用曲线马达等。
主要特点:排量大,体积大,转速低,因此可直接与工作机构连接,不需要减速装置,使传动机构大为简化,通常低速液压马达输出转矩较大(可达几千Nm到几万Nm。
缺点:转动惯量大,制动较为困难。
液压马达与液压泵比较,液压马达具有以下特点液压马达应该能够正、反转,因而要求其内部结构对称,进油口和出油口一样大,叶片马达的叶片径向布置;液压马达的转速范围需要足够大,特别对它的最低稳定转速有一定的要求。
因此,它通常采用滚动轴承或滑动轴承;液压马达由于在输入压力油条件下工作,因此不必具备自吸能力,但液压马达应有较大的起动扭矩。
二·高速液压马达的工作原理◆与液压泵具有同样的基本结构要素。
常用的高速液压马达的结构与同类型的液压泵很相似。
◆齿轮式、叶片式、柱塞式液压马达的工作原理。
定量泵变量泵1.齿轮式液压马达的工作原理2.叶片式液压马达的工作原理3.轴向柱塞式液压马达的工作原理三 液压马达的基本参数和基本性能1.压力(MPa )⑴工作压力:液压马达实际工作时输入口的压力。
⑵额定压力: 液压马达长期连续运转能正常工作所允许使用的最高工作压力。
⑶极限压力:液压马达在短时间内超载所允许使用的最高压力。
2. 排量和流量⑴排量V (m3/r )(mL/r )在不考虑泄漏的情况下,液压马达每转一转所输入的液体体积。
液压元件名称及作用
液压传动在现代机械中具有重要的地位,而液压元件是构成液压系统的重要部分。
以下是一些常见的液压元件名称及其在液压系统中的作用:
1. 液压泵:液压泵是液压系统的动力源,它能够将机械能转化为液压能,为液压系统提供压力油。
2. 液压马达:液压马达是液压系统的执行元件,它能够将液压能转化为机械能,驱动负载进行旋转或直线运动。
3. 液压缸:液压缸是液压系统的另一种执行元件,它能够将液压能转化为直线运动动能,驱动负载进行运动。
4. 液压阀:液压阀是液压系统中的控制元件,它能够控制液体的流动方向、流量和压力等参数,从而实现不同的动作控制。
5. 液压油箱:液压油箱是液压系统中的油液储存元件,它能够储存和供应足够的油液,为液压泵和液压马达提供必要的润滑和冷却。
6. 液压油管:液压油管是液压系统中的流体通道,它能够连接各个液压元件,使油液能够在系统中流动。
7. 密封件:密封件是液压系统中的重要元件,它能够防止油液泄漏和空气进入系统,保证系统的正常工作和稳定性。
8. 液压附件:液压附件包括各种接头、管夹、滤清器等,它们是辅助元件,用于安装、固定和保护液压元件,保证系统的正常运行。
以上是一些常见的液压元件名称及其在液压系统中的作用,了解这些元件的作用和特点,对于正确设计和维护液压系统具有重要意义。