6第三章液压执行元件.ppt
- 格式:ppt
- 大小:3.70 MB
- 文档页数:130
第3章液压泵与液压马达液压泵与液压马达,是液压系统中的能量转换装置。
本章主要介绍几种典型的液压泵与液压马达的工作原理、结构特点、性能参数以及应用。
液压泵液压马达将原动机输出的机械能转换成压力能,属于动力元件,其功用是给液压系统提供足够的压力油以驱动系统工作。
因此,液压泵的输入参量为机械参量(转矩T和转速n),输出参量为液压参量(压力p和流量q)。
将输入的液体压力能转换成工作机构所需要的机械能,属于执行元件,常置于液压系统的输出端,直接或间接驱动负载连续回转而做功。
因此,液压马达的输入参量为液压参量(压力p和流量q),输出参量为机械参量(转矩T和转速n)。
目录▪ 3.1 液压泵与液压马达概述▪ 3.2 齿轮泵▪ 3.3 叶片泵▪ 3.4 柱塞泵▪ 3.5 液压泵的选用▪ 3.6 液压马达3.1 液压泵与液压马达概述液压泵的工作原理1—偏心轮2—柱塞3—缸体4—弹簧5—压油单向阀6—吸油单向阀a—密封油腔单柱塞容积式泵的工作原理图液压泵的性能参数主要有压力、转速、排量、流量、功率和效率。
液压泵的主要性能参数3.1 液压泵与液压马达概述压力np 额定压力 max p 最高允许压力 p 工作压力 吸入压力在正常工作条件下,按试验标准 规定连续运转所允许的最高压力泵短时间内所允许 超载使用的极限压力 实际工作时的输出压力, 即液压泵出口的压力 液压泵进口处的压力3.1 液压泵与液压马达概述转速n额定转速 maxn 最高转速 minn 最低转速 液压泵的主要性能参数在额定压力下,根据试验结果推荐能长 时间连续运行并保持较高运行效率的转速 在额定压力下,为保证使用寿命和性能所允许的短暂运行的最高转速为保证液压泵可靠工作或运行效率不致过 低所允许的最低转速3.1 液压泵与液压马达概述排量及流量液压泵的主要性能参数 tq 理论流量 q实际流量 排量V在不考虑泄漏的情况下,液压泵主轴每转一周, 所排出的液体的体积在不考虑泄漏的情况下,液压泵在单位时间内 所排出的液体的体积t q nV指实际运行时,在不同压力下液压泵所排出的流量流量不均匀系数q δ瞬时理论流量 tshq 额定流量 nq 3.1 液压泵与液压马达概述液压泵的主要性能参数 排量及流量在额定压力、额定转速下,按试验标准规定 必须保证的输出流量由于运动学机理,液压泵的流量往往具有脉 动性,液压泵某一瞬间所排的理论流量 在液压泵的转速一定时,因流量脉动造成的流量不均匀程度tsh max tsh min q t()()q q q δ-=3.1 液压泵与液压马达概述输入功率P i输出功率P o理论功率P t液压泵的主要性能参数 功率原动机的输出功率,即实际驱动泵轴所需 的机械功率 i2πP T nTω==输出功率(kW)用其实际流量q 和出口压力p的乘积表示O p pq =t t t2πP pq nT ==如果液压泵在能量转换过程中没有能量损失,则输入功率与输出功率相等,即为理论功率3.1 液压泵与液压马达概述液压泵的主要性能参数效率机械效率容积效率总效率tmTTη=l l Vt t11q qqq q nV η==-=-oV miPpηηη==3.1 液压泵与液压马达概述性能曲线液压泵的容积效率、机械效率、总效率、理论流量、实际流量和实际输入功率与工作压力的关系曲线如图所示。
五、频率响应分析阀控液压缸对指令输入和对干扰输入的动态特性由相应的传递函数及其性能参数确定。
频率响应:以没有弹性负载为例,分析伯德图;1、幅频特性;系统对正弦信号的输入,输出的幅值比;2、相频特性;系统对正弦信号的输入,输出的相位差;稳定性;稳定性的判别方法.采用频率响应分析便于对系统的特性设计和调整.(一)没有弹性负载时的频率响应分析1、对指令输入Xv的频率响应系统传函结构对指令输入Xv的动态响应特性由传递函数式(3—20)表示,由比例、积分和二阶振荡环节组成;主要的性能参数:速度放大系数K q/A p;液压固有频率ωh;液压阻尼比ζh。
2、传函各分量伯德图绘制及特性采用对数和等比坐标,将复杂的系统性能的描述,简化成简单的图形表述和分析。
典型环节的伯德图及其物理意义:系统输入信号为正弦时,系统输出信号与输入信号的幅值比与输入频率之间的关系;比例环节,相当于杠杆放大;积分环节,相当于油缸位移对阀口输入的响应;惯性环节,相当于推动质量;二阶环节,相当于弹簧质量系统对输入的响应;3、对指令输入Xv系统伯德图的绘制和分析伯德图的绘制图3—3采用代数叠加法,纵坐标采用对数坐标,横坐标采用等比坐标,将曲线改成直线,便于绘制相应系统的伯德图伯德图的分析1)稳定性采用幅值裕量和相位裕量评判方法;2)速度放大系数K q/A p速度放大系数影响曲线的上下平移;3)穿越频率ωc穿越频率可以判断系统的快速性;4)转折频率ωh转折频率影响影响系统的稳定性。
4、动力元件各参数对系统的影响1)速度放大系数K q/A p液压缸活塞的输出速度与阀的输入位移成比例,比例系数K q/A p即为速度放大系数(速度增益)。
表示阀对液压缸活塞控制的灵敏度。
速度放大系数直接影响系统的稳定性、响应速度和精度。
提高速度放大系数:提高系统的响应速度和精度,但使系统的稳定性变坏。
放大系数随阀的流量增益变化而变化。
在零位工作点,阀的流量增益Kq最大,而流量—压力系数Kc最小,所以系统的稳定性最差。
液压与气压传动(第4版)第三章液压执行元件⏹第一节液压马达⏹第二节液压缸第一节液压马达液压执行元件是将液压泵提供的液压能转变为机械能的能量转换装置,它包括液压缸和液压马达。
液压马达习惯上是指输出旋转运动的液压执行元件,而把输出直线运动(其中包括输出摆动运动)的液压执行元件称为液压缸。
一液压马达的特点及分类从能量转换的观点来看,液压泵与液压马达是可逆工作的液压元件,向任何一种液压泵输入工作液体,都可使其变成液压马达工况;反之,当液压马达的主轴由外力矩驱动旋转时,也可变为液压泵工况。
因为它们具有同样的基本结构要素--密闭而又可以周期变化的容积和相应的配油机构。
但是,由于液压马达和液压泵的工作条件不同,对它们的性能要求也不一样,所以同类型的液压马达和液压泵之间,仍存在许多差别。
首先液压马达应能够正、反转,因而要求其内部结构对称;液压马达的转速范围需要足够大,特别对它的最低稳定转速有一定的要求。
因此,它通常都采用滚动轴承或静压滑动轴承;其次液压马达由于在输入压力油条件下工作,因而不必具备自吸能力,但需要一定的初始密封性,才能提供必要的起动转矩。
由于存在着这些差别,使得液压马达和液压泵在结构上比较相似,但不能可逆工作。
液压马达按其结梅类型来分可以分为齿轮式、叶片式、柱塞式和其它型式。
按液压马达的额定转速分为高速和低速两大类。
额定转速高于500r /min 的属于高速液压马达,额定转速低于500r /min 的属于低速液压马达。
高速液压马达的基本型式有齿轮式、螺杆式、叶片式 和轴向柱塞式等。
它们的主要特点是转速较高、转动惯量小,便于启动和制动,调节(调速及换向)灵敏度高。
通常高速液压马达输出转矩不大(仅几十N ·m 到几百N ·m)所以又称为高速小转矩液压马达。
低速液压马达的基本型式是径向柱塞式,此外在轴向柱塞式、叶片式和齿轮式中也有低速的结构型式,低速液压马达的主要特点是排量大、体积大转速低(有时可达每分钟几转甚至零点几转),因此可直接与工作机构连接,不需要减速装置,使传动机构大为简化,通常低速液压马达输出转矩较大(可达几千N ·m 到几万N ·m),所以又称为低速大转矩液压马达。