泰勒公式及其应用
- 格式:doc
- 大小:1.12 MB
- 文档页数:22
泰勒公式其应用一、一阶泰勒公式1.带有Lagrange 型余项的Taylor 公式定理1(泰勒) 若函数f 在(a,b)上存在直到n 阶的连续导函数,在(a,b)内存在n +1阶导函数,则对任意给定的),(,0b a x x ∈,至少存在一点ξ使得:()(1)1000000()()()()()()()()1!!(1)!n n nn f x f x f f x f x x x x x x x n n ξ++'=+-++-+-+ξ在0,x x 之间。
2.带有皮亚诺余项的泰勒公式定理2若函数f 在(a,b)上存在直到n 阶的连续导函数,则对任意给定的),(,0b a x x ∈()000000()()()()()()0(())1!!n n n f x f x f x f x x x x x x x n '=+-++-+- (1)称为泰勒公式的余项.3、 函数的Maclaurin 公式210()2!!nxn x x e x x n =+++++352112sin (1)0()3!5!(21)!m m m x x x x x x m --=-+++-+-24221cos 1(1)0()2!4!(2)!m m m x x x x x m +=-+++-+ 231ln(1)(1)0()23nn n x x x x x x n -+=-+++-+ 2(1)(1)(1)(1)10()2!!n n x x x x n ααααααα---++=+++++2110()1n n x x x x x=+++++- 二、应用1.把函数)(x f 展开成n 阶Maclaurin 公式例1: 把函数22sin )(x x x f =展开成含16x 项的具Peano 型余项的Maclaurin 公式 .【解】 ) (!7!5!3sin 7753x x x x x x +-+-=,) (!7!5!3sin 141410622x x x x x x +-+-=. ) (!7!5!3sin 1616128422x x x x x x x +-+-=例2: 把函数x x f 2cos )(=展开成含6x 项的具Peano 型余项的Maclaurin 公式 .【解】 ) (!6!4!21cos 6642x x x x x +-+-=, ), (!62!34212cos 66642x x x x x +-+-= ∴ ) (!62!321)2cos 1(21cos 665422x x x x x x +-+-=+=. 2.求)(x f 的n 阶导数例3: )1ln()(2x x x f +=,求)3)(0()(≥n fn .【解】))(022()1ln()(22222--+-++-=+=n n x n x x x x x x x f 又)(0!)0(!1)0()0()()(n nn x x n f x f f x f +++'+= )(02243n n x n x x x +-++-=所以,21!)0()(-=n n f n ,2!)0()(-=n n f n3.利用Taylor 公式求极限 例4 求极限(1) )]1ln([cos lim2202x x x e x x x -+--→ (2)011lim (cot )x x x x →-. 【分析】用泰勒公式求极限把函数展开到x 多少次方呢?对于分子和分母有一个能确定次数的,把另一个展开到相同次数即可,例如:3sin limxx x x -→333))(61(limx x o x x x x +--=→=6161lim 330=→xx x但是对于分子和分母都不能确定次数的,要以具体情况而定。
初数数学公式解析泰勒公式泰勒公式是数学中常用的公式之一,它可以将一个函数在某一点附近展开成一个无穷级数,从而更加方便地进行计算和近似。
在初等数学中,我们经常会遇到需要使用泰勒公式的情况,下面我们就来详细解析泰勒公式及其应用。
一、泰勒公式的形式泰勒公式是根据函数在某点附近的函数值和其各阶导数的值来进行展开的。
对于一个光滑的函数f(x),在某一点a处,我们可以将其泰勒展开为以下形式:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + f'''(a)(x-a)^3/3! + ...其中,f'(a)表示f(x)在x=a处的一阶导数,f''(a)表示f(x)在x=a处的二阶导数,以此类推。
二、泰勒公式的应用1. 近似计算通过泰勒公式展开,我们可以将一个复杂的函数转化为一个无穷级数,从而实现对该函数的近似计算。
在实际应用中,我们通常只取前几项,即保留到某个阶数的导数,从而得到一个近似值。
这种方法在数值计算和工程问题中具有重要的意义。
2. 函数图像的分析通过泰勒公式展开,我们可以更好地理解函数在某一点附近的性质。
例如,通过计算函数的导数可以确定函数在某点的增减性、凹凸性以及极值点的位置等。
3. 解析函数的求导对于一些复杂的函数,直接对其进行求导可能比较困难。
但通过使用泰勒公式展开后,我们可以较为方便地求出函数的导数。
这对于解析函数的微积分问题有很大的帮助。
三、泰勒公式的局限性需要注意的是,泰勒公式只能在某一点的附近作近似,其近似程度与展开阶数相关。
当阶数较低时,近似效果可能并不理想。
另外,对于非光滑函数或者在某一点处不光滑的函数,泰勒公式无法应用。
四、例题分析我们通过一个例题来进一步说明泰勒公式的应用。
例题:计算函数f(x) = sin(x)在x=0处的泰勒展开式,保留到二阶导数。
解:首先,我们计算出函数f(x) = sin(x)的一、二阶导数:f'(x) = cos(x)f''(x) = -sin(x)然后,根据泰勒公式的形式,展开式为:f(x) ≈ f(0) + f'(0)(x-0) + f''(0)(x-0)^2/2!化简后得到:f(x) ≈ 0 + 1(x) + (-sin(0))(x^2)/2即:f(x) ≈ x - (1/2)x^2这样,我们就得到了f(x) = sin(x)在x=0处的二阶泰勒展开式。
泰勒公式的应用与技巧
泰勒公式又称为差分量化展开式,它具有极强的多项式和多元函数近似扩展能力,能够精确地表示一个函数曲线的关系,在工程领域应用广泛。
以下是泰勒公式的应用与技巧:
1. 应用
(1) 在离散系统分析中,泰勒公式可以提供系统动态响应曲线以及各自对输入信号的响应,从而降低系统设计的复杂性。
(2) 在数值分析中,泰勒公式可以用来估算函数值及其发散性,进而可以估算函数的零点及其根的估计精度。
(3) 在经济学领域,泰勒公式用来分析一系列宏观经济指标的变化对经济效果的影响,以此决定政策制定的深度和维度。
(4) 在电子工程领域,泰勒公式可以用来表征电路作用功能,求解电路实现特定功能的最优解,从而提高电路设计的效率。
2. 技巧
(1) 避免系数繁多带来的计算量大,可以将展开项作简化处理,以消除多余系数,且减少复杂度。
(2) 对于数据情况复杂的情况,可以采用交叉验证的方法,令数据集分割成多组,轮流用作训练集和测试集进行模型训练和验证,从而可以更准确地识别数据趋势。
(3) 充分利用光滑点和区间插值减少计算量,使用雅可比条件数字求
导法应对多变量多元函数及其导数求解。
(4) 针对大量样本,可以采用分类、线性回归、判别分析等机器学习模型,来更精确地分析泰勒公式的表达结果。
泰勒公式的应用超强总结泰勒公式(Taylor series)是一种用来近似表示函数的方法,它将一个光滑的函数表示为多项式的形式。
在实际应用中,泰勒公式有着广泛的应用,包括物理、工程、经济等领域。
以下是泰勒公式的一些超强应用总结。
1.函数逼近:泰勒公式可以将一个复杂的函数逼近成一个多项式,用来简化计算。
这在数值计算和科学建模中广泛应用。
比如,在物理学中,我们可以使用泰勒公式将一个非线性运动的函数逼近成一个线性函数,从而简化计算。
2.误差估计:通过泰勒公式,我们可以对近似函数的误差进行估计。
在实际计算中,我们通常使用有限项的泰勒公式近似计算,而丢弃高阶项将会引入误差。
通过估计误差,我们可以更好地控制近似结果的精度,从而提高计算效率。
3.求解无解析解的问题:有些函数在数学上没有解析解,即无法用一个简单的表达式表示。
泰勒公式可以帮助我们近似求解这些问题。
比如,在微积分中,我们可以使用泰勒公式近似求解一些复杂的微分方程,从而得到数值解。
4.数值积分:泰勒公式可用于数值积分的近似计算。
在实际计算中,我们通常使用数值积分方法来计算曲线下面积或求解积分方程。
泰勒公式可以将被积函数展开成无穷级数,再通过对级数进行近似计算来求解积分。
5.精确度改善:通过对泰勒公式进行适当的变换和近似,可以提高计算结果的精度。
在数值计算中,我们经常会遇到舍入误差和近似误差等问题,通过泰勒公式的应用可以对这些误差进行修正和改善,从而得到更精确的计算结果。
6.其他应用领域:泰勒公式还可以应用于信号处理、图像处理、优化问题等领域。
例如,在信号处理中,泰勒公式可以用来进行信号的近似重构和滤波。
在优化问题中,泰勒公式可以用来近似目标函数,并帮助我们求解最优化问题。
总之,泰勒公式在科学和工程中具有广泛的应用。
通过对函数的逼近和近似,我们可以简化计算、提高精度、解决无解析解的问题,以及在数值计算、积分、优化等领域中得到更好的结果。
因此,掌握泰勒公式的应用是非常重要的,可以帮助我们更好地理解和解决实际问题。
泰勒公式的证明及推广应用泰勒公式是一种用于近似计算函数的工具,它将函数表示为无穷级数的形式。
这个公式是由英国数学家布鲁诺·泰勒(Brook Taylor)在18世纪提出的。
在本文中,我们将简要介绍泰勒公式的证明,并探讨一些关于泰勒公式的推广应用。
证明泰勒公式的一种常用方法是使用数学归纳法。
我们可以根据函数的导数逐次展开来得到一般形式的泰勒公式。
假设函数f(x)的n次导数在区间[a,b]内连续,以及f(x)的(n+1)次导数在区间[a,b]内存在。
我们可以得到以下泰勒公式的一般形式:f(x)=f(a)+f'(a)(x-a)/1!+f''(a)(x-a)²/2!+...+fⁿ(a)(x-a)ⁿ/n!+Rⁿ(x)其中,Rⁿ(x)是余项,它可以表示为(fⁿ⁺¹(z)(x-a)ⁿ⁺¹)/(n+1)!,其中a<z<x。
余项Rⁿ(x)可以用于估计泰勒级数的误差,并在实际应用中对所得近似值进行修正。
泰勒公式可以应用于各种数学和物理问题中。
下面是一些泰勒公式的推广应用的例子:1.近似计算:泰勒公式可以用于近似计算复杂函数的值。
通过截断级数,我们可以得到一个有限项的泰勒多项式,用于计算函数在其中一点的近似值。
2.数值积分:通过将函数展开为泰勒级数,并对级数进行求和,我们可以将函数的积分转化为级数的求和。
这种方法广泛应用于数值积分的算法中。
3.近似求解微分方程:很多微分方程难以找到解析解,但可以使用泰勒公式来近似求解。
通过将微分方程转化为泰勒级数,并截断级数至有限项,我们可以得到一个逼近解。
4.反函数的泰勒展开:泰勒公式不仅适用于函数的展开,也适用于反函数的展开。
通过将函数和它的逆函数展开为泰勒级数,并对级数进行求和,我们可以得到函数的反函数的泰勒展开。
在实际应用中,泰勒公式的推广应用不仅局限于以上几个领域。
它可以使用在各种数学和物理问题中,包括信号处理、金融工程、计算机图形学等。
第一章 绪论近代微积分的蓬勃发展,促使几乎所有的数学大师都致力于相关问题的研究,特别是泰勒,笛卡尔,费马,巴罗,沃利斯等人作出了具有代表性的工作.泰勒公式是18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒,在微积分学中将函数展开成无穷级数而定义出来的.泰勒将函数展开成级数从而得到泰勒公式,对于一般函数f ,设它在点0x 存在直到n 阶的导数,由这些导数构成一个n 次多项式()20000000()()()()()()()(),1!2!!n n n f x f x f x T x f x x x x x x x n '''=+-+-++-称为函数f 在点0x 处的泰勒多项式,若函数f 在点0x 存在直至n 阶导数,则有0()()(()),n n f x T x x x ο=+-即()200000000()()()()()()()()(()).2!!n n f x f x f x f x f x x x x x x x x x n ο'''=+-+-++-+-称为泰勒公式.众所周知,泰勒公式是数学分析中非常重要的内容,它的理论方法已经成为研究函数极限和估计误差等方面不可或缺的数学工具,集中体现了微积分“逼近法”的精髓,在近似计算上有着独特的优势,利用它可以将非线性问题化为线性问题,并能满足很高的精确度要求,在微积分的各个方面都有重要的应用. 泰勒公式在分析和研究数学问题中有着重要作用,它可以应用于求极限、判断函数极值、求高阶导数在某些点的数值、判断广义积分收敛性、近似计算、不等式证明等方面.关于泰勒公式的应用,已有许多专家学者对它产生了浓厚的兴趣,它们对某些具体的题目作出了具体的解法,如求极限,判断函数凹凸性和收敛性,求渐近线,界的估计和近似值的计算等等.虽然泰勒公式应用到各个数学领域很多,但也还有很多方面学者还很少提及,因此在这泰勒公式及其应用方面我们有研究的必要,并且有很大的空间.泰勒公式不仅在极限和不等式证明中能解决许多问题,同时也是研究分析数学的重要工具.其原理是很多函数都能用泰勒公式表示,又能借助于泰勒公式来研究函数近似值式和判断级数收敛性的问题.因此泰勒公式在数学实际应用中是一种重要的应用工具,我们必须掌握它,用泰勒公式这一知识解决更多的数学实际问题.第二章 泰勒公式1.1泰勒公式的意义泰勒公式的意义是,用一个n 次多项式来逼近函数f .而多项式具有形式简单,易于计算等优点.泰勒公式由()f x 的n 次泰勒多项式()n P x 和余项0()[()]n n R x o x x =-组成,我们来详细讨论它们. 当n =1时,有1000()()()()P x f x f x x x '=+-,是()y f x =的曲线在点00(,())x f x 处的切线(方程),称为曲线()y f x =在点00(,())x f x 的一次密切,显然,切线与曲线的差异是较大的,只是曲线的近似. 当n =2时,有2020000()()()()()()2!f x P x f x f x x x x x '''=+-+-, 是曲线()y f x =在点00(,())x f x 的“二次切线”,也称曲线()y f x =在点00(,())x f x 的二次密切.可以看出,二次切线与曲线的接近程度比切线要好.当次数越来越高时,接近程度越来越密切,近似程度也越来越高.1.2泰勒公式余项的类型泰勒公式的余项分为两类,一类是定性的,一类是定量的,它们的本质相同,但性质各异.定性的余项如佩亚诺型余项0(())n o x x -,仅表示余项是比0()n x x -(当0x x →时)高阶的无穷小.如33sin ()6x x x o x =-+,表示当0x →时,sin x 用36x x -近似,误差(余项)是比3x 高阶的无穷小.定量的余项如拉格朗日型余项(1)101()()(1)!n n f x x n ξ++-+(ξ也可以写成00()x x x θ+-)、柯西余项(如在某些函数的幂级数展开时用).定量的余项一般用于函数值的计算与函数形态的研究. 1.3泰勒公式的定义(1)带有佩亚诺(Peano )型余项的泰勒公式如果函数()f x 在点0x 的某邻域内具有n 阶导数, 则对此邻域内的点x ,有()200000000()()()()()()()()(()).2!!n n f x f x f x f x f x x x x x x x x x n ο'''=+-+-++-+-当00x =时, 上式称为麦克劳林(Maclaurin )公式.即()(1)21(0)(0)(0)()(0)(0)(01)2!!(1)!n n n n f f f f x f f x x x x n n θθ++'''=+++++<<+(2)带有拉格朗日(Lagrange )型余项的泰勒公式如果函数()f x 在点0x 的某邻域内具有1n +阶导数, 则对此邻域内的点x , 有()(1)2100000000()()()()()()()()()()2!!(1)!n n n n f x f x f f x f x f x x x x x x x x x n n ξ++'''=+-+-++-+-+(ξ介于0x 与x 之间)第三章 泰勒公式的实际应用2.1利用泰勒公式求极限对于待定型的极限问题,一般可以采用洛比达法则来求,但是,对于一些求导比较繁琐,特别是要多次使用洛比达法则的情况,泰勒公式往往是比洛比达法则更为有效的求极限工具.利用泰勒公式求极限,一般用麦克劳林公式形式,并采用佩亚诺型余项.当极限式为分式时,一般要求分子分母展成同一阶的麦克劳林公式,通过比较求出极限. 例1 求224cos limx x x ex -→-分析:此题分母为4x ,如果用洛比达法则,需连用4次,比较麻烦.而用带佩亚诺余项的泰勒公式解求较简单. 解: 因为2211()2!x e x x o x =+++ 将x 换成22x -有222222211()()(())22!22x x x x eo -=+-+-+-又244cos 1()2!4!x x x o x =-++所以 24442111cos ()()()2484x x ex o x o x --=-+- 441()12x o x =-+ 故2442441()cos 112lim lim 12x x x x o x x e x x -→∞→∞-+-==- 例2 求极限2240cos limsin x x x e x-→-.解: 因为分母的次数为4,所以只要把cos x ,22x e -展开到x 的4次幂即可.24411cos 1()2!4!x x x o x =-++ 22224211()()22!2x x x eo x -=-+-+故 2240cos limsin x x x e x-→-444011()()4!8lim x x o x x→-+= 112=- 带有佩亚诺型余项的泰勒公式是求函数极限的一个非常有力的工具 ,运用得当会使求函数的极限变得十分简单. 2.2利用泰勒公式进行近似计算例1 用x e 的10次泰勒多项式求e 的近似值i ,并估计误差. 解:在x e 的泰勒公式中取1,10x n ==,则有111112!3!10!e ≈+++++2.718281801=由于e 的精确度值e 2.718281801=,可以看出这么算得的结果是比较准确的.关于计算的误差,则有如下的估计11813()6.81011!11!x e d x ξ==<≈⨯. 必须注意,泰勒公式只是一种局部性质,因此在用它进行近似计算时,x 不能远离0x ,否则效果会比较差,甚至产生完全错误的结果.如在ln(1)x +的泰勒多项式中令x =1,取它的前10项计算ln 2的近似值,得到111111111ln 212345678910≈-+-+-+-+-=0.645 634 92…而ln 2=0.693 147 28…,误差相当大,但如改用其他泰勒多项式,如1lnln(1)ln(1)1xx x x+=+--- 23223221()232232n n nx x x x x x x x o x n n ⎡⎤⎡⎤=-+--------+⎢⎥⎢⎥⎣⎦⎣⎦352122()3521n nx x x x o x n -⎡⎤=+++++⎢⎥-⎣⎦, 令1,3x =只取前两项便有3111ln 22()333⎡⎤≈+=⎢⎥⎣⎦0.69135…,取前四项则可达到3571111111ln 22()()()3335373⎡⎤≈+++⎢⎥⎣⎦=0.693 124 75…,效果比前面好得多.例2 当x 很小时,推出331111x x x x +-⎛⎫⎛⎫-- ⎪ ⎪-+⎝⎭⎝⎭的简单的近似公式. 解: 当x 很小时,111133331122111111x x x x x x x x +-⎛⎫⎛⎫⎛⎫⎛⎫-=+-- ⎪ ⎪ ⎪ ⎪-+-+⎝⎭⎝⎭⎝⎭⎝⎭2224[1][1]3(1)3(1)3(1)x x xx x x ≈+--=--- 43x≈2.3在不等式证明中的应用关于不等式的证明,我们已经在前面介绍了多种方法,如利用拉格朗日中值定理来证明不等式,利用函数的凸性来证明不等式,以及通过讨论导数的符号来得到函数的单调性,从而证明不等式的方法.下面我们举例说明,泰勒公式也是证明不等式的一个重要方法.例1 设()f x 在[0,1]二次可导,而且(0)(1)0f f ==,01lim ()1x f x ≤≤=-,试求存在(0,1)ξ∈,使()8f ξ''≥.证: 由于()f x 在[0,1]的最小值不等于在区间端点的值,故在[0,1]内存在1x ,使1()1f x =-,由费马定理知,1()0f x '=. 又21111()()()()()()2!f f x f x f x x x x x η'''=+-+- 21()1()2!f x x η''=-+-(η介于x 与1x 之间) 由于(0)(1)0f f ==,不令0x =和1x =,有211()0(0)1(0)2f f x ξ''==-+- 所以21112()2(1)(1)f x x ξξ-''=-<<当1112x <≤时,2128x -≥,而当1112x <<时,212(1)8x --≥,可见1()f ξ''与2()f ξ''中必有一个大于或等于8.2.4泰勒公式在外推上的应用外推是一种通过将精度较低的近似值进行适当组合,产生精度较高的近似值的方法,它的基础是泰勒公式,其原理可以简述如下. 若对于某个值a ,按参数h 算出的近似值1()a h 可以展开成231123()a h a c h c h c h =++++(*)(这里先不管i c 的具体形式),那么按参数2h 算出的近似值1()2h a 就是231123111()2248h a a c h c h c h =++++ (**)1()a h 和1()2ha 与准确值a 的误差都是()o h 阶的.现在,将后(**)式乘2减去(*)式,便得到11232232()()2()21ha a h a h a d h d h -==+++-也就是说,对两个()o h 阶的近似值化了少量几步四则运算进行组合之后,却得到了具有2()o h 阶的近似值2()a h .这样的过程就称为外推.若进行了一次外推之后精度仍未达到要求,则可以从2()a h 出发再次外推,22343344()()2()41ha a h a h a e h e h -==+++-,得到3()o h 阶的近似值3()a h .这样的过程可以进行1k -步,直到11112()()2()()21k k k k k k ha a h a h a o h -----==+-, 满足预先给定的精度.外推方法能以较小的待解获得高精度的结果,因此是一种非常重要的近似计算技术.例 1 单位圆的内接正n 边形的面积可以表示为1()sin(2)2S h h hπ=, 这里1h n=,按照泰勒公式351(2)(2)()223!5!h h S h h h πππ⎡⎤=-+-⎢⎥⎣⎦246123c h c h c h π=++++因此,其内接正2n 边形的面积可以表示为351()()()23!5!h h h S h h πππ⎡⎤=-+-⎢⎥⎣⎦24612314c h c h c h π=++++,用它们作为π的近似值,误差都是()o h 量级的.现在将这两个近似的程度不够理想的值按以下方式组合:4()()()()22()()4123h hS S h S S h h S h S --==+- 那么通过简单的计算就可以知道4623()S h d h d h π=+++2h 项被消掉了!也就是说,用()S h 近似表示π,其精度可以大大提高.2.5求曲线的渐近线方程若曲线()y f x =上的点(,())x f x 到直线y ax b =+的距离在x →+∞或x →-∞时趋于零,则称直线y ax b =+是曲线()y f x =的一条渐近线.当0a =时称为水平渐近线,否则称为斜渐近线.显然,直线y ax b =+是曲线()y f x =的渐近线的充分必要条件为lim [()()]0x f x ax b →+∞-+=或lim [()()]0x f x ax b →-∞-+=如果y ax b =+是曲线()y f x =的渐近线,则()()lim 0x f x ax b x →+∞-+=(或()()lim 0x f x ax b x→-∞-+=). 因此首先有()lim x f x a x →+∞=(或()lim x f x a x→-∞=). 其次,再由lim [()()]0x f x ax b →+∞-+=(或lim [()()]0x f x ax b →-∞-+=)可得 lim [()]x b f x ax →+∞=-(或lim [()]x b f x ax →-∞=-) 反之,如果由以上两式确定了a 和b ,那么y ax b =+是曲线()y f x =的一条渐近线.中至少有一个成立,则称直线y ax b =+是曲线()y f x =的一条渐近线,当0a =时,称为水平渐近线,否则称为斜渐近线.而如果()f x 在x 趋于某个定值a 时趋于+∞或-∞,即成立lim ()x f x →∞=±∞则称直线x a =是()f x 的一条垂直渐近线.注意,如果上面的极限对于x →∞成立,则说明直线y ax b =+关于曲线()y f x =在x →+∞和x →-∞两个方向上都是渐近线.除上述情况外,如果当x a +→或a -时,()f x 趋于+∞或-∞,即lim ()x a f x +→=±∞或lim ()x a f x -→=±∞,则称直线x a =是曲线()y f x =的一条垂直渐近线.例1 求 2(1)3(1)x y x -=+的渐近线方程. 解: 设 2(1)3(1)x y x -=+的渐近线方程为y ax b =+,则由定义 2(1)1lim lim 3(1)3x x y x a x x x →∞→∞-===+ 2(1)lim[]3(1)x x b ax x →∞-=-+ 2(1)1l i m []3(1)3x x x x →∞-=-+ =131lim 131x x x →∞-+=-+ 由此13x y =-为曲线y =2(1)3(1)x x -+的渐近线方程。
关于泰勒(taylor)公式的几点应用
泰勒(Taylor)公式,也被称为泰勒展开式,是一种数学方法,可以将函数表达为有限数项
的和,每一项是函数在某特定点处求偏导数后按次数得到的原函数上点的n次方,这就形
成了泰勒展开式的关键。
泰勒公式在微积分学中的应用非常广泛,它可以在复杂的数学问题中发挥其作用。
例如,
它可以用于求解积分,函数展开,求解方程组,估算函数等等。
其实,泰勒公式也可以用于更不直观的应用领域。
例如,它可以用于统计预测。
对于一些
复杂的问题,如预测一个过程中的变量,我们可以利用泰勒公式来进行建模,从而更好地
评估不确定风险或收益。
此外,泰勒公式还可以用于提供实现估计。
在某些工程领域,需要利用动态规划的方法来
进行时间和费用的优化。
为了达到最优,可以考虑采用泰勒公式来对工程中的参数进行估计,以获取最佳的贴近结果。
总而言之,泰勒公式在微积分学上非常重要,它可以帮助我们解决复杂的数学问题。
此外,它也可以用于统计预测和提供实现估计。
如果你需要解决类似的问题,采用泰勒公式是一
个非常有效的方法。
泰勒公式及其在在计算方法中的应用泰勒公式是数学中的一个重要工具,通过使用多项式函数逼近给定函数,从而在计算方法中得到广泛应用。
泰勒公式由苏格兰数学家詹姆斯·泰勒提出,用于将一个函数在其中一点的局部信息表示为一个多项式级数。
泰勒公式的一般形式如下:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+...+f^n(a)(x-a)^n/n!+Rn在这个公式中,f(x)是要逼近的函数,x是近似计算的点,a是计算的基准点,n表示多项式的阶数。
f'(a)表示函数在点a处的一阶导数,f''(a)表示二阶导数,f^n(a)表示n阶导数。
Rn是一个余项,表示多项式逼近的误差。
当n趋向于无穷大时,余项应趋近于零,此时泰勒公式收敛于原函数。
泰勒公式在计算方法中的应用非常广泛。
下面介绍几个常见的应用:1.函数逼近:泰勒公式可以将一个复杂的函数逼近为一个多项式函数,使得计算变得更加简单。
逼近后的多项式函数在计算机程序和数值计算中更容易处理。
例如,当我们需要计算一个数的正弦值时,可以使用泰勒公式将正弦函数逼近为一个多项式级数,从而可以通过计算一系列多项式项的和来得到较为精确的近似值。
2.数值积分:泰勒公式在数值积分中有重要的应用。
通过将被积函数在其中一点进行泰勒展开,并将展开式中的高阶导数消去,可以得到一些简化的数值积分公式。
这些公式允许我们通过计算少数几个函数值来近似计算复杂函数的积分值。
数值积分在物理学、工程学和统计学等领域中都有广泛应用。
3.常微分方程的数值解:泰勒公式可以用于数值解常微分方程。
通过将微分方程在一些点进行泰勒展开,并忽略高阶导数项,可以得到一阶或二阶的数值微分方程。
从而我们可以通过迭代的方式递进计算微分方程的解。
这种数值解法在科学计算和工程模拟中非常重要。
4.误差分析:泰勒公式的余项Rn可以用来分析逼近的误差。
通过估计余项的大小,可以知道逼近多项式与原函数之间的误差有多大。
泰勒公式的基本概念和应用泰勒公式是一种用于描述函数的近似方法,通过在某个点处对函数进行不断求导,求出函数在该点处的各阶导数,然后利用这些导数来构造一个多项式近似函数。
泰勒公式可看作是函数的泰勒级数展开式的一个特例,而泰勒级数是一类函数级数,能够用来表示函数在一个点附近的局部信息。
一、基本概念泰勒公式的基本形式如下:$f(x)=\sum_{n=0}^{\infty}\frac{f^{(n)}(a)}{n!}(x-a)^n$其中,$f^{(n)}(a)$ 表示 $f(x)$ 在 $x=a$ 处的 $n$ 阶导数,$n!$ 表示 $n$ 的阶乘。
泰勒公式主要用于对函数在某个点的局部近似,即在 $x=a$ 处对 $f(x)$ 进行展开。
若 $a=0$,则展开式称为麦克劳林级数。
泰勒公式的应用非常广泛,如计算机图形学中的三维模型表面细分算法(Subdivision Surface)、数值分析中的数值积分和数值微分等。
二、应用举例1. 计算三角函数三角函数 $\sin x$ 和 $\cos x$ 在 $x=0$ 处的泰勒级数分别为:$\sin x=x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+···$$\cos x=1-\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+···$对于一个给定的 $x$ 值,我们可以通过计算级数的一部分来计算三角函数的值。
例如,使用 $\sin x$ 的前 $5$ 个项来计算$\sin(2)$,我们有:$\sin 2=2-\frac{2^3}{3!}+\frac{2^5}{5!}-\frac{2^7}{7!}≈0.909`2. 计算指数函数指数函数 $e^x$ 的泰勒级数为:$e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+···$同样地,我们可以使用级数的前 $n$ 项来计算 $e^x$ 的近似值,以得到 $e$ 的近似值。
8个泰勒公式常用公式泰勒公式是一种在微积分中非常重要的工具,它可以利用函数在其中一点的导数来近似地表示函数在该点附近的取值。
在数学和物理等领域,泰勒公式广泛应用于函数的近似计算和数值求解等问题。
下面我们介绍一些常用的泰勒公式及其应用。
1.一阶泰勒公式一阶泰勒公式也称为泰勒展开式,用于近似地表示函数在其中一点附近的取值。
设函数$f(x)$在$x=a$处可导,则函数$f(x)$在$x=a$处的一阶泰勒公式为$$f(x)\approx f(a)+f'(a)(x-a)$$其中$f'(a)$表示函数$f(x)$在$x=a$处的导数。
一阶泰勒公式常用于近似计算和数值求解等问题中。
2.二阶泰勒公式二阶泰勒公式是泰勒展开式的推广,用于更精确地近似表示函数在其中一点附近的取值。
设函数$f(x)$在$x=a$处二阶可导,则函数$f(x)$在$x=a$处的二阶泰勒公式为$$f(x)\approx f(a)+f'(a)(x-a)+\frac{f''(a)}{2!}(x-a)^2$$其中$f''(a)$表示函数$f(x)$在$x=a$处的二阶导数。
二阶泰勒公式在高精度数值求解和近似计算等问题中广泛应用。
3.泰勒级数泰勒级数是将一个函数在其中一点处展开成无穷级数的形式,用于表示函数在该点附近的取值。
设函数$f(x)$在$x=a$处具有无限阶导数,则函数$f(x)$在$x=a$处的泰勒级数为$$f(x)=f(a)+f'(a)(x-a)+\frac{f''(a)}{2!}(x-a)^2+\frac{f'''(a)}{3!}(x-a)^3+...$$泰勒级数是一种非常重要的数学工具,能够用无穷阶导数展开的形式表示函数,具有广泛的应用价值。
4.泰勒多项式泰勒多项式是将函数在其中一点处展开成有限项多项式的形式,用于近似地表示函数在该点附近的取值。
泰勒公式的应用内容摘要:泰勒公式是数学分析中一个非常重要的内容,不仅在理论上占有重要的地位,在近似计算、极限计算、函数凹凸性判断、敛散性的判断、等式与不等式的证明、中值问题以及行列式的计算等方面有重要的应用。
本文着重对极限计算、敛散性的判断、中值问题以及等式与不等式的证明这四个方面进行论述。
关键词:泰勒公式皮亚诺余项级数拉格朗日余项未定式目录内容摘要 0关键词 01.引言 (2)2.泰勒公式 (2)2.1具有拉格朗日余项的泰勒公式 (2)2.2带有皮亚诺型余项的泰勒公式 (2)2.3带有积分型余项的泰勒公式 (2)2.4带有柯西型余项的泰勒公式 (3)3.泰勒公式的应用 (3)3.1利用泰勒公式求未定式的极限 (3)3.2利用泰勒公式判断敛散性 (6)3.3 利用泰勒公式证明中值问题 (11)3.4 利用泰勒公式证明不等式和等式 (13)4. 结束语 (19)参考文献 (20)1.引言泰勒公式是数学分析中一个非常重要的内容,微分学理论中最一般的情形是泰勒公式, 它建立了函数的增量,自变量增量与一阶及高阶导数的关系,将一些复杂的函数近似地表示为简单的多项式函数,这种化繁为简的功能使它成为分析和研究其他数学问题的有力杠杆。
我们可以使用泰勒公式, 来很好的解决某些问题, 如求某些极限, 确定无穷小的阶, 证明等式和不等式,判断收敛性,判断函数的凹凸性以及解决中值问题等。
本文着重论述泰勒公式在极限,敛散性判断,中值问题以及等式与不等式的证明这四个方面的具体应用方法。
2.泰勒公式2.1具有拉格朗日余项的泰勒公式如果函数()x f 在点0x 的某邻域内具有n+1阶导数,则对该邻域内异于0x 的任意点x,在0x 和x 之间至少∃一个ξ使得:当0x =0时,上式称为麦克劳林公式。
2.2带有皮亚诺型余项的泰勒公式如果函数()x f 在点0x 的某邻域内具有n 阶导数,则对此邻域内的点x 有:2.3带有积分型余项的泰勒公式如果函数f 在点0x 的某邻域()0x U 内具有n+1阶导数,令x ∈()0x U ,则对该邻域内异于0x 的任意点x,在0x 和x 之间至少∃一个t 使得:()()()()()()()()()dt t x t f n x x n x f x x x f x f x f n x x n n n -+-⋅⋅⋅⋅⋅⋅+-+=⎰+010000'0!1!)(其中()()()dt t x t fn nx x n -⎰+01!1就是泰勒公式的积分型余项。
2.4带有柯西型余项的泰勒公式如果函数f 在点0x 的某邻域()0x U 内具有n+1阶导数,令x ∈()0x U ,则对该邻域内异于0x 的任意点x 有:()()()()()()()x R x x n x f x x x f x f x f n n n 0000'0!)(+-⋅⋅⋅⋅⋅⋅+-+=()()()()()10001n 1x !1++---+=n n n x x x x f n x R θθ,10≤≤θ。
当0x =0时,又有()x R n =()()10,1!111≤≤-++θθθn n n x x f n 。
3.泰勒公式的应用3.1利用泰勒公式求未定式的极限未定式是指呈∞∞∞⋅∞-∞∞∞1000000,,,,,,等形式的极限,一般是用洛比达法则求解,当分子分母的阶数都是较高阶的无穷小的话,必须进行多次洛比达法则,或是分子分母都是带根号项的话,越微分会越复杂,此时若使用泰勒公式解决,会更简单,明了。
例1 求极限分析:此式分子含有根号项,用洛比达法则也可以求解,不过比较繁琐。
若使用泰勒公式可以将问题大大简化。
解:将x 1+、x 1+在x=0点的麦克劳林公式展开到2x 项得:()2282x 11x x x ο+-+=+, ()2282x 11x x x ο+--=-。
原式=20111x 1lim x x x )()(--+-+→=222220x 8121x 8121lim xx x x x x ⎥⎦⎤⎢⎣⎡+--+⎥⎦⎤⎢⎣⎡+-→ οο =41x 8181lim22220-=+--→x x x x )(ο。
用泰勒公式方法计算极限的实质是一种利用等价无穷小的替代 来计算极限的方法。
我们知道当 0x →时,x x x x ~tan ,~sin 等。
这种等价无穷小其实就是将函数用泰勒公式展至一次项。
有些问题用泰勒公式方法和我们已熟知的等价无穷小方法相结合,问题又能进一步简化。
例2 求极限lim 0→x (221sin 1xx -) 解:lim 0→x (221sin 1x x -)=lim 0→x x x x 2222sin sin x -。
又22cos 1sin 2xx -=,将cos2x 用泰勒公式展开: Cos2x=()442!416!2x 41x x ο++-。
则lim 0→x ⎪⎪⎭⎫⎝⎛-x x x 2222sin sin x =lim 0→x ()4443x xx ο+=31。
假如细心思考,这一题目的结果可以引起我们的兴趣。
当0x →时,x x ~sin ,易知n n x x N ~sin ,n ∈∀。
两个互为等价无穷小的函数,它们倒数之差的极限为31。
为什么是31?是什么因素造成31这一结果?如果是lim 0→x (nxx 1sin 1n -),情况会怎么样? 定理1 当0→x ,+∈N n 时,有:(1)当n ≥3时,nx x 1sin 1n -是关于x 的(n-2)阶无穷大; (2)当n=2时,221sin 1xx -31→;(3)当n=1时,x x 1sin 1-是关于x 的一阶无穷小; (4)当n=0时,001sin 1xx -=0。
证明:(2)在上题已经证明了,(4)是显然成立的,这里只证明(1)、(3)。
先证明(3): 当n=1时,lim 0→x (x x 1sin 1-)x 1=lim 0→x x x sin x sin x 2-=lim 0→x 3sin x x x-。
在这里,利用洛必达法则可以解出这个极限,但用泰勒公式则更便捷。
因为我们知道:N k x k x x x x x k k k ∈+--+⋅⋅⋅-+-=---),()!12()1(!5!3sin 2212153ο,即lim 0→x (x x 1sin 1-)x 1=lim 0→x ()333!3x x x ο+=61。
在证明(1):当n ≥3时,lim 0→x (n x x 1sin 1n -)2x -n =lim 0→x =-x x x n n n sin sin x 2lim 0→x 2sin x +-n n n x x =lim 0→x (11213sin sin x sin x ----⋅⋅⋅++⋅-n n n n x xx x x x ) =lim 0→x 3sin x x x-lim 0→x (661)sin sin 111n n x x x x n n =⋅=⋅⋅⋅++--。
命题得证。
从以上定理可以看到,当0x →时,互为等价无穷小的函数的倒数之差(或更一般的说法,这些函数的乘方之差 )的趋向情况,无穷大或无穷小的阶数以及相关的极限的特点,由函数本身在x=0处的泰勒展开式决定。
同时容易推得,在以上结论中“0x →”的条件还可以推广为 “0x x →”,这时相关特点将由函数本身在0x x =处的泰勒展开式决定。
综上所述,在求未定式极限时,要灵活运用等价无穷小与泰勒公式,并将函数展开至分子分母分别经过简化后系数不为零的阶即可。
对于泰勒余项形式的选择,要根据具体题目而定,一般而言极限的计算题应该选择皮亚若型余项。
3.2利用泰勒公式判断敛散性3.2.1数项级数的敛散性判断当级数的通项表达式是由不同类型函数式构成的复杂形式时,往往利用泰勒公式将级数通项简化或统一形式,以便利用敛判准则。
例3 讨论级数∑∞=+-1)1ln 1(n nn n 的敛散性。
分析:直接根据通项去判断级数是正项级数还是非正项级数比较困难,因而也就无法恰当选择判敛方法。
注意到nn 1ln +=)(n 11ln +,若将)11(ln n +泰勒展开为n 1的幂的形式。
开二次方后将与n1相呼应。
则判断收敛就容易进行了。
解:11132)1)(1()1(1)1(3121)1(ln ++-++-+-+⋅⋅⋅-+-=+n n n nn n x x n x x x x ξ, 取n1x =有⋅⋅⋅-+-=+3231211)n 11(ln n n n <n 1, 所以n n 1ln +<n1,且=n U n 1-n n 1ln +>0,故该级数是正项级数。
因为nn 1ln+=)1(31211332n n n n ο++->324111n n n +-=23211nn - 所以=n U n 1-nn 1ln +<n 1-(23211n n -)=2321n 。
因为∑∞=12321n n收敛,由正项级数比较判别法知原级数收敛,该题利用泰勒公式后还结合运用了放缩等技巧,在进行放缩时,要注意度。
一般根据题中要求证得结论而定,这是运用比较判别法常用的技巧。
例4讨论级数221)n a n a n+∞+∞===--∑∑的敛散性。
解:由比较判别法可知:若lim1nn pa b n →∞=,0b <<+∞,则正项级数2n n a +∞=∑和21p n n +∞=∑同时收敛和发散。
为了选取21p n n+∞=∑中的P 值,可以应用泰勒公式研究通项()0n a n →→∞的阶。
1n a n =-1n=22110n ⎛⎫⎛⎫⎪=+++ ⎪ ⎪⎪⎝⎭⎭323211110n n n n ⎛⎫=++-- ⎪⎝⎭3232110n n ⎛⎫=+ ⎪⎝⎭, 所以32lim 11nn a n→∞=。
因为3211n n +∞=∑收敛,所以2n n a +∞=∑收敛。
3.2.2 函数项级数的敛散性判断例5 设()f x 在点0x =的某一领域内具有二阶连续导数,且()0lim 0x f x x →=。
证明级数11n f n ∞=⎛⎫⎪⎝⎭∑绝对收敛。
分析:由条件中“()f x 在点0x =的某一领域内具有二阶连续导数”这一信息可提示使用泰勒公式,又由条件()lim0x f x x→=易推得:()()000f f '==,这将使()f x 在点0x =的泰勒展开式更加简单,便于利用比较判别法判敛。
解:由()lim0x f x x→=及()f x 在点0x =的某一领域内具有二阶连续导数,可知()()00lim 0x f f x →==,()()()()000limlim 00x x f x f f x f x x→→-'===-将()f x 在点0x =的某领域内展开成一阶泰勒公式:()()()21(0)02!f x f f x f x ξ'''=++()()()''21,0,2!f x x ξξ=∈。