c a
F1PA F2 PA
椭圆光学性质的应用
影片门
一个焦点放光源,一个 焦点处放影片。
体外碎石技术
将人的肾结石位于一个 焦点处,在另一个焦点 处释放高能冲击波。
回音壁
一人站在东配殿墙下轻 声说话,另一人在西配 殿墙下听得清清楚楚。
刁尼秀斯之耳
俘虏秘密商讨的计划, 总是被看守识破
圆锥曲线光学性质探究的一般“套路”
F1 A F2 A
思路3:斜率 +两角差的正切公式
思路1:夹角公式 即cos FP1, n cos F2P, n
解:记F1(c,0), F2(c,0),则F1P (x0 c,0), F2P (x0 c,0)
y
由焦半径公式得 F1P a ex0 , F2P a ex0 .
P (x0,y0) 当P为(0, b)时,根据椭圆的对称性显然成立.
P (x0,y0)
l
F2 x
由焦半径公式得 F1P a ex0 , F2P a ex0 .
当P为(0, b)时,根据椭圆的对称性显然成立.
当法线PA的斜率存在时,记为:y
y0
a2 y0 b2 x0
(x
x0 ),
令y 0,则x e2 x0 , 则PA与x轴的交点A(e2 x0 , 0).
PF1 F1 A
y0 , x0 c
P (x0,y0) l
法线PA的方程为:y
y0
a2 y0 b2 x0
(x
பைடு நூலகம்
x0 ),则kPA
a2 y0 b2 x0
.
F1
A F2 x 根据两角差的正切公式可得
a2 y0 b2 x0
1
a2 y0 b2 x0